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The main interconnect of the massively parallel Blue Genet/L is a
three-dimensional torus network with dynamic virtual cut-through
routing. This paper describes both the architecture and the
microarchitecture of the torus and a network performance
simulator. Both simulation results and hardware measurements are
presented.

Introduction
One of the most important features of a massively parallel

supercomputer is the network that connects the

processors together and allows the machine to operate

as a large coherent entity. In Blue Gene*/L (BG/L),

the primary network for point-to-point messaging is

a three-dimensional (3D) torus network [1].

Nodes are arranged in a 3D cubic grid in which each

node is connected to its six nearest neighbors with high-

speed dedicated links. A torus was chosen because it

provides high-bandwidth nearest-neighbor connectivity

while also allowing construction of a network without

edges. This yields a cost-effective interconnect that is

scalable and directly applicable to many scientific and

data-intensive problems. A torus can be constructed

without long cables by connecting each rack with its next-

to-nearest neighbor along each x, y, or z direction and

then wrapping back in a similar fashion. For example, if

there are six racks in one dimension, the racks are cabled

in the order of 1, 3, 5, 6, 4, 2, 1. Also, because the network

switch is integrated into the same chip that does the

computing, no separate switch and adapter cards are

required, as is typical in other supercomputers. Previous

supercomputers, such as the Cray T3E [2], have also used

a torus network.

The torus network uses both dynamic (adaptive) and

deterministic routing with virtual buffering and cut-

through capability [3]. The messaging is based on

hardware packets of variable length. A robust error-

recovery mechanism that involves an acknowledgment

and retransmission protocol is implemented across the

physical links that connect two BG/L compute nodes.

These features provide excellent communication

characteristics for a large variety of communication

patterns found in most scientific applications. This

paper is organized as follows: The architecture and

microarchitecture are presented, followed by an overview

of the custom-designed simulator that was used to make

many of the design decisions and provided expected-

performance figures. Sample performance studies done

on the simulator are presented, as are measurements on

the fully functioning hardware, which are compared with

the expected-performance numbers from the simulator.

Torus network

In this section, the torus network architecture and

microarchitecture are presented. The torus network

router directs variable-size packets, each n3 32 bytes,

where n = 1 to 8 ‘‘chunks.’’ Messages, such as those

conforming to the Message Passing Interface Standard

(MPI), may consist of many packets that are constructed,

sent, and received by software running on one or both

associated BG/L processors. The first eight bytes of each

packet contain link-level protocol information (e.g.,

sequence number); routing information, including

destination; virtual channel and size; and a byte-wide

cyclic redundancy check (CRC) that detects header data

corruption during transmission.

In addition, a 24-bit CRC is appended to each packet,

along with a one-byte valid indicator. The valid indicator

is necessary, since packets can be forwarded before being

entirely received. This CRC permits checking of each

packet as it is sent over each link. A time-out mechanism

is used for retransmission of corrupted packets. Use of

the eight-bit packet header CRC is an optimization that

permits early detection of packet header errors because

the header CRC is included in the full packet CRC.

The error detection and recovery protocol is similar

to that used in IBM High Performance Switch
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(HPS) interconnection networks and in the HIPPI-6400

standard [4].

As in the BG/L collective network, each sender

(receiver) also maintains a 32-bit link-level CRC that

includes all data packets sent (received) successfully on

the link. At the end of a run or at a checkpoint, each

sender link-level CRC matches its corresponding receiver

link-level CRC, thereby providing a mechanism to detect

24-bit packet-level CRC escapes. If not, the results of the

run are not to be trusted, and the job should be restarted

from the last checkpoint. Since BG/L is massively

parallel, an efficient, simple, and local error-recovery

mechanism (as opposed to an end-to-end message

retransmission approach) was paramount.

For routing, the header includes six ‘‘hint’’ bits that

indicate the directions in which the packet may be routed.

For example, hint bits of 100100 mean that the packet

can be routed in the xþ and y� directions. Either the xþ
or the x� hint bits, but not both, may be set. If no x hops

are required, the x hint bits are set to 0. Each node

maintains a set of software-configurable registers that

control the torus functions. For example, a set of registers

contains the coordinates of its neighbors. Hint bits are set

to 0 when a packet leaves a node in a direction such that

it will arrive at its destination in that dimension, as

determined by the neighbor coordinate registers. These

hint bits appear early in the header so that arbitration

may be efficiently pipelined. The hint bits can be

initialized by either software or hardware; if done by

hardware, a set of two registers per dimension is used to

determine the appropriate directions. Once the hint bits

are set, they cannot be subsequently changed by software.

These registers can be configured to provide minimal

hop routing. The routing is accomplished entirely by

examining the hint bits and virtual channels; i.e., there are

no routing tables. Packets may be either dynamically or

deterministically dimension-ordered (xyz) routed. That is,

they can follow a path of least congestion based on other

traffic, or they can be routed on a fixed path. Besides

point-to-point packets, a bit in the header may be set that

causes a packet to be broadcast down any Cartesian

dimension and deposited at each node. Hardware

broadcasting in more than one dimension would have

greatly complicated the logic, although deadlocks could

have been prevented by broadcasting in the same xyz

order, as described in [5]. The hardware does not have

the capability to route around ‘‘dead’’ nodes or links.

However, software can set the hint bits appropriately

so that such nodes are avoided; full connectivity can be

maintained when there are up to three noncolinear faulty

nodes.

The torus logic consists of three major units—a

processor interface,a sendunit,andareceiveunit (Figure1).

The processor interface consists of network injection and

reception FIFOs (queues in which access is according to

the first in, first out rule). Access to these FIFOs is via the

double floating-point unit (FPU) registers; i.e., data is

loaded into the FIFOs via 128-bit memory-mapped stores

from a pair of FPU registers, and data is read from the

FIFOs via 128-bit loads to the FPU registers. There are a

total of eight injection FIFOs organized into two groups:

two high-priority (for internode operating system

messages) and six normal-priority FIFOs, which are

sufficient for nearest-neighbor connectivity. Packets in

all FIFOs can go out in any direction.

On the reception side, there are again two groups of

FIFOs. Each group contains seven FIFOs, one high-

priority and one dedicated to each of the incoming

directions. More specifically, there is a dedicated bus

between each receiver and its corresponding reception

FIFO. As in mechanisms in the BG/L collective network,

there is a checksum associated with each injection FIFO;

these can be used for fault-isolation and debugging

purposes to see whether a node sends the same data onto

the network in two different runs. Watermarks can also

be set by software for the injection and reception FIFOs

so that interrupts fire when the FIFO contents cross the

corresponding threshold. For storage, all torus FIFOs use

static random access memory chips (SRAMs) protected

by error checking and correction (ECC), and all internal

data paths are checked for parity. There is a total of

58 KB of SRAMs.

The datapath for each of the six receivers, as shown in

Figure 1, is composed of an eight-stage input pipeline,

four virtual channels (VCs), and a bypass channel. The

input pipeline processes the packet header on the fly.

Multiple VCs help reduce head-of-line blocking [6],

but—since mesh networks, including tori with dynamic

routing, can deadlock—appropriate additional escape

Figure 1

General structure of the torus router. There are six interconnected 
receiver/sender pairs (only one pair is shown here). 
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VCs are provided [7, 8]. The approach we use to

this problem is similar to the recent, elegant solution

proposed in [9, 10]: the bubble escape VC. BG/L has two

dynamic VCs, one a bubble escape VC that can be used

both for deadlock prevention and deterministic routing,

and the other a high-priority bubble VC. Dynamic

packets can enter the bubble escape VC only if no

valid dynamic VCs are available. Each VC has 1 KB of

buffering, enough for four full-sized packets. The bypass

channel allows packets, under appropriate circumstances,

to flow through a node without entering the VC buffers.

This places stringent timing requirements both on the

processing of the header routing information by the input

pipeline and on the routing arbitration by the receiver

arbiters.

A token flow-control algorithm is used to prevent the

VC buffers from overflowing. Each token represents a 32-

byte chunk. For simplicity in the arbiters, a VC is marked

as unavailable unless space is available to handle a full-

sized packet. However, token counts for packets on

dynamic VCs are incremented and decremented

according to the size of the packet. The bubble rules, as

outlined in [9, 10], include the rule that tokens for one

full-sized packet are required for a packet already on the

bubble VC to advance. Tokens for two full-sized packets

are required for a packet to enter the bubble VC upon

injection, upon a turn to a new direction, or when a

dynamic VC packet enters the bubble. This rule ensures

deadlock-free operation, since buffer space for one packet

is always available after an insertion, and thus some

packet can always move eventually. However, when our

simulator deadlocked using this rule, we discovered that

the rule is incorrect for variable-sized packets. With this

rule, the remaining free space for one full-sized packet can

become fragmented, resulting in a potential deadlock. To

prevent this, the bubble rules are modified so that each

packet on the bubble is accounted for as if it were a full-

sized packet. BG/L uses dimension-ordered routing on

the bubble VC.

Eight-byte acknowledgment (ack-only) packets or

combined token–acknowledgment (token–ack) packets

are returned either when packets are successfully received

or when space has freed up in a VC. Acknowledgments

permit the torus send units to delete packets from their

retransmission FIFOs, which are used in the error-

recovery protocol. The send units also arbitrate between

requests from the receiver and injection units.

Because of the density of packaging and ASIC-module

pin constraints, each of the 12 BG/L torus links (six in, six

out) is bit-serial. The torus is internally clocked at a

quarter of the rate of the processor. At the target 700-

MHz clock rate, each torus link is 1.4 Gb/s, which gives

175 MB/s. There are enough internal buses so that each

of the six outgoing and six incoming links can be busy

simultaneously; thus, each node can be sending and

receiving 1.05 GB/s. In addition, there are two transfer

buses (paths) coming out of each receiver that connect

with the senders. As a result, a single receiver can have up

to four simultaneous transfers, e.g., one to its normal

processor reception FIFO, one to the high-priority

processor reception FIFO, and two to two different

senders. The torus network input and output are byte-

wide and are serialized and deserialized by the high-speed

signaling units outside the torus module. The torus

internal buses are all 11 bits wide (eight data, one parity,

two control).

Arbitration is distributed and pipelined, but occurs in

three basic phases. It generalizes an approach described

in [11] and represents tradeoffs among complexity,

performance, and the ability to meet timing constraints.

In the first phase, a decision is made for each packet at the

head of the injection or VC FIFOs about the direction in

which it should preferably move and which VC it should

use. There is only one valid choice for deterministically

routed packets, but there may be many choices for

dynamically routed packets. The preferred direction and

VC are selected using a modified join-the-shortest-queue

(JSQ) algorithm, as follows. The senders provide the

receivers and injection FIFOs with a bit that indicates

both link and token availability for each VC in each

direction. This bit vector is ANDed with a bit vector of

possible moves constructed from the packet hint bits

and VC. This defines the set of possible and available

arbitration requests. In addition, for each VC the sender

provides two bits that indicate one of four ranges of

available downstream tokens. Of all the possible and

available dynamic direction and VC pairs, the packet

selects the one with the most available downstream

tokens. Ties are randomly broken. If no combination

of dynamic direction and VC is available, the packet

requests its bubble escape direction and VC pair (if

available). If that is also unavailable, no arbitration

request is made for the packet. This is a somewhat

simplified description, since data bus availability must

also be taken into account. In addition, when a packet

reaches its destination, the ‘‘direction’’ requested is simply

the corresponding reception FIFO.

In the second phase, arbitration is required to

determine which of the requesting packets in the receiver

wins the right to request, since each receiver has multiple

VC FIFOs in addition to the bypass channel. If a high-

priority packet is requesting, it wins. Barring that, a

modified serve the longest queue (SLQ) is used, based on

two-bit (four ranges) FIFO fullness indicators; i.e., the

packet from the VC that is fullest as measured to within

the two bits of granularity wins. However, this algorithm

cannot always be used, because doing so may completely

block out a VC. Therefore, a certain (programmable)
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fraction of the arbitration cycles are designated SLQ

cycles, in which the above algorithm is used, while the

remaining cycles select the winner randomly. A packet on

the bypass channel always receives the lowest priority

unless it is a high-priority packet.

In the third phase, the requests from the receivers and

injection FIFOs are presented to the senders. Note that

on a given cycle a receiver presents at most one request

to the senders; thus, each sender arbiter can operate

independently. The senders give highest priority to token–

ack or ack-only packets, if any. Barring that, the senders

tend to favor packets already in the network and use

a similar modified SLQ algorithm in which there are

SLQ cycles and random cycles. In particular, a certain

programmable fraction of cycles (typically 100%) give

priority to packets already in the network, unless the only

high-priority packet requesting is in an injection FIFO.

On such cycles, the modified SLQ algorithm is used.

Higher priority can be given to injection packets by

lowering the above in-network priority fraction. On

cycles in which injection packets receive priority, barring

in-network high-priority packets, the modified SLQ

algorithm is also used.

This design is complex; the torus unit requires slightly

more area (10.2 mm2 in CU-11) than a PowerPC* 440

processor core and its associated double FPU. The entire

torus arbitration is carried out by 44 arbiters on the

receiver/processor-injection side and six arbiters on the

sender side. To manage this level of complexity, the

design is highly modular. For example, a single arbiter

module was designed that could serve all VC FIFOs and

processor-injection and bypass channels. This module

was then instantiated 38 times.

Simulator overview
Given the complexity and scale of the BG/L

interconnection network, having an accurate

performance simulator was essential during the design

phase of the project. Because of the potential size of such

a model, simulation speed was a significant concern.

Thus, we selected a proven shared-memory parallel

simulation approach. In particular, parallel simulation

on shared-memory machines has been shown to be very

effective in simulating interconnection networks (see [12],

for example), whereas success with message-passing

parallel interconnection network simulators is more

difficult to achieve (see [13], for example). We also

recognized the difficulties in developing an execution-

driven simulator, such as that in [14], for a system

with up to 64K nodes. We therefore decided upon a

simulator that would be driven primarily by application

pseudocodes, in which message-passing calls could be

easily passed to the simulator; such calls include the

time since the last call (the execution burst time), the

destination and size of the message, and so on. This

pseudocode included a subset of the message passing

interface (MPI) point-to-point messaging calls as a

workload driver for the simulator. We also extended the

IBM unified trace environment trace capture utility that

runs on IBM SP* supercomputer machines and were able

to use such traces as simulator input for up to several

hundreds of nodes.

The basic unit of simulation time is a network cycle,

defined to be the time it takes to transfer one byte.

Because theBG/L isorganizedaround512-node (83838)

midplanes, the simulator partitions its work on a

midplane basis; i.e., all nodes on the same midplane are

simulated by the same processor thread, and midplanes

are assigned to threads in as even a manner as possible.

Because different threads are concurrently executing,

the local simulation clocks of the threads must be

properly synchronized. To deal with this problem, we use

a simple but effective ‘‘conservative’’ parallel simulation

protocol known as YAWNS (yet another windowing

network simulator) [15]. In particular, we take advantage

of the fact that the minimum transit time between

midplanes is known and is at least some constant w � 1

cycles. In this protocol, time ‘‘windows’’ of length w are

simulated in parallel by each of the threads. At the end

of each window, a synchronization phase takes place

in which each thread picks up the information about

packets that will arrive in future windows. If w = 1, this

protocol requires a barrier synchronization every cycle.

On BG/L, however, the minimum inter-midplane delay is

approximately w = 10 network cycles. When a large

number of BG/L nodes are being simulated, each

processor executes many events during a window, i.e.,

between barriers; thus, the simulator should obtain good

speedups.

The simulator runs on a 16-way IBM POWER3þ*
375-MHz symmetric multiprocessor (SMP) node with

64 GB of memory. The model of the torus hardware

contains close to 100 resources per node (links, VC token

counters, buses, FIFOs, etc.), so that a full 64K-node

system can be thought of as a large queuing network with

approximately six million resources. The model consumes

a large amount of memory and runs slowly; a 32K-node

simulation of a fully loaded network advances at about

0.25 microseconds of BG/L time per second of wall clock

time. However, it obtains excellent speedup—typically,

more than 12 on 16 processors—and sometimes achieves

superlinear speedup because of the private 8-MB L3

caches on the SMP and the smaller per-node memory

footprint of the parallel simulator.

The model, which was written before the hardware

design in Very high-speed integrated circuit Hardware

Description Language (VHDL) was implemented, is

thought to be a quite accurate representation of the BG/L
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hardware, although a number of simplifications were

made. For example, in BG/L, the arbitration is pipelined

and occurs over several cycles. In the simulator, this

is modeled as a delay of several cycles followed by

presentation of the arbitration request. Because the

simulator focuses on what happens once packets are

inside the network, the assumptions that the injection

FIFOs were of infinite size and that packets were

placed in these FIFOs as early as possible, rather than

as space became available in the FIFOs, are both gross

simplifications. This has little effect on either network

response time or throughput measurements during

the middle of a run, but it can affect the dynamics,

particularly near the end of runs. Also, the simulator

did not model the error-recovery protocol; i.e., no link

errors were simulated, and the ack-only packets that are

occasionally sent if a link is idle for a long time were not

modeled. However, the arbitration algorithms and token

flow control were modeled to a high level of detail.

Sample simulation performance studies
In this section, we present some examples of use of the

simulator to study design tradeoffs in BG/L. The studies

presented are illustrative and sometimes use assumptions

and corresponding parameters about the system that

do not reflect the final BG/L design.

Figure 2 shows the response time for various 32K-node

BG/L configurations when the workload driver generates

packets for random destinations and the packet

generation rate is low enough that the average link

utilization is less than 1. This figure compares

deterministic routing to dynamic routing with one or

more dynamic VCs and one or more buses (paths)

connecting receivers to senders. Random arbitration rules

simpler than SLQ and JSQ were used, and the plot was

generated early in our studies when the target link

bandwidth was 350 MB/s. (The 350-MB/s assumption

essentially affects the results by only a rescaling of the

y-axis.) The figure shows the clear benefit of dynamic over

deterministic routing. It also shows that there is little

benefit in increasing the number of dynamic VCs unless

the number of paths is also increased. Finally, it shows

only marginal benefit in going from a two-VC, two-path

configuration to a four-VC, four-path configuration.

Throughput under nonuniform traffic

Figure 3 plots the throughput as a function of time for a

4K-node BG/L system under a highly nonuniform traffic

pattern. In this pattern, the destinations of 25% of the

packets are chosen randomly within a small ‘‘hot’’

contiguous submesh region consisting of 12.5% of the

machine. The destinations for the remaining 75% of the

packets were chosen uniformly over the entire machine.

Again, random arbitration and a 350-MB/s link speed

were used. The figure reflects three different buffer sizes

for the VC FIFOs: 2 KB, 1 KB, and 512 B.

At the beginning of the run, throughput (as measured

over 10K-cycle intervals) increases as packets enter

the network, but then declines as the buffers fill up.

Eventually, the throughput levels off at a value that is

approximately equal for the three buffer sizes. The decline

happens more quickly for smaller buffer sizes. It is worth

noting that the steady-state throughput is close to the

peak possible throughput for this workload; the

throughput is limited by the number of links entering
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the hot region. Measurements during the simulations

indicated that those links generally have a mean

utilization of around 95%.

Arbitration policies

Figure 4 shows the response time for the light-traffic,

random-destination workload on a 32K-node BG/L

system using different arbitration policies. The ‘‘base’’

policy is the above-mentioned random policy. In light

traffic, SLQ provides little benefit (since queues are not

that full), but JSQ does reduce response time in moderate

traffic; at 95% link utilization, the average response time

is reduced by about 20%.

The throughput for a 4K-node BG/L under the hot-

region model for the different arbitration policies is

shown in Figure 5. While the throughputs of all policies

stabilize near the same value, the decline is slowest for the

SLQ policy (75% are SLQ cycles). For this traffic pattern,

JSQ provides little benefit. Thus, the two policies are

complementary; JSQ helps reduce response time in

moderate traffic and SLQ helps defer throughput

degradation under heavy, nonuniform traffic.

Alltoall

MPI alltoall is an important MPI collective

communications operation in which every node sends

a different message to every other node. Figure 6 plots

the average link utilization during the communications

pattern implied by this collective. Again, the data shows

the benefit of dynamic over deterministic routing. For this

pattern, there is marginal benefit in going from one to two

dynamic VCs, but what is important is that the average

link utilization is approximately 98%, close to the

theoretical peak. This peak includes the overhead for the

8-B ack or token–ack packets, the packet headers, and the

4-B hardware trailers. There is also a 2-B gap between

packets to help keep the links trained. Thus, a 256-B

packet actually implies that the link is occupied for

270 (= 256 þ 4 þ 8 þ 2) byte times. A reasonable

assumption for the BG/L software is that each packet

carries 240 bytes of payload and, with this assumption,

the figure shows that the payload occupies 87% of the

links. The fact that a very low percentage of the traffic

flows on the escape bubble VC is not shown in these

figures. Also not shown, but indicated by statistics

collected during the run, is the fact that few of the VC
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buffers are full. Three-dimensional fast Fourier transform

algorithms often require the equivalent of an alltoall, but

on a subset of the nodes consisting of either a plane or

a line in the torus. Simulations of these communication

patterns also resulted in near-peak performance.

The above simulation was for a symmetric BG/L.

However, the situation is not so optimistic for an

asymmetric BG/L. For example, the 64K-node system

will be a 643 323 32-node torus. In such a system, the

average number of hops in the x dimension is twice that

of the y and z dimensions, so that even if every x link is

100% busy, the y and z links can be, at most, 50% busy.

Thus, the peak link utilization is, at most, 66.7%. In other

words, the bisection bandwidth is the same as in a 32332

3 32-node machine. Since 12% of that is overhead, the

best possible payload utilization is 59%. However, we

expect significantly more blocking and throughput

degradation due to full VC buffers. Indeed, a simulation

of the alltoall communications pattern on a 323 163 16

torus resulted in an average link utilization of 49% and

payload utilization of 44%, corresponding to 74% of the

peak. This figure is probably somewhat pessimistic

because of the simulator artifact of infinite-sized injection

FIFOs, which distorts the effects at the end of the

simulation. We also believe that appropriate injection

flow-control software algorithms can reduce VC buffer

blocking and achieve a performance that is closer to peak.

Nevertheless, the above study points out a disadvantage

of the torus architecture for asymmetric machines in

which the application cannot easily be mapped such that

the result is a close-proximity communications pattern.

Virtual channel architecture

Here we consider several different deadlock-prevention

escape VC architectures. The first, originally proposed in

[7], has two escape VCs per direction. Each dimension has

a ‘‘dateline.’’ Before crossing the dateline, the escape VC

is the lower-numbered of the pair, but after crossing the

dateline, the escape VC is the higher-numbered of the

pair. In addition, we consider dimension-ordered or

direction-ordered escape VCs. In the dimension-ordered

version, the escape VC is x first, then y if no x hops

remain, then z if no x or y hops remain. In the direction-

ordered version introduced by Cray Inc. [2], the escape

VCs are ordered by xþ, yþ, zþ, x�, y�, z� (other

orderings are possible).

We also consider dimension- and direction-ordered

escape VCs for the bubble escape and again use the

hot-region workload, in which the hot region starts at

coordinates (0, 0, 0) and the datelines are set at the

maximum coordinate value in each dimension. Figure 7

shows the throughput as a function of time. The

dimension-ordered dateline pair shows particularly poor

and wild behavior, with a steep decline in throughput,

followed by a rise and then another steep decline.

Figure 8 shows the throughput on a per-VC basis for

a longer period of time. The decreasing and increasing

Cycles  (millions)

Figure 7

Throughput under hot-region traffic for different escape VC architec-
tures. [4K-node BG/L under hot-region traffic (25% of traffic to 
12.5% of machine); two dynamic 2-KB VCs, two paths, 2-KB escape 
buffers. Early assumptions were used (see text).]
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bandwidth waves persist, even over this much longer time

scale. An appreciable fraction of the traffic flows on the

escape VCs, indicating a high level of VC buffer

occupation.

One may ask, What causes these waves? First, the

placement of the dateline causes an asymmetry in the

torus, whereas the bubble escape is perfectly symmetrical

in each dimension. Since there are two escape VCs, we

thought it likely that packets at the head of the VC

buffers could be waiting for one of the escape VCs, but

tokens are returned for the other escape VC. In such a

situation, no packets can move, even though the link may

be available and downstream buffer space is available. To

confirm this, the simulator was instrumented to collect

additional statistics. In particular, we measured the

fraction of time in which a token–ack is returned that

frees at least one previously blocked packet to move.

Figure 9 shows this unblocking probability, along with

the throughput, as a function of time, confirming our

hypothesis. The unblocking probability is relatively

constant for the bubble (after the initial decline), but

varies directly with the throughput for the dateline pair;

when the unblocking probability increases (or decreases),

the throughput increases (or decreases).

Performance verification

To verify the VHDL logic of the torus, we built a

multinode verification testbench. This testbench, which

runs on the Cadence** VHDL simulator, consisted of the

following: workload drivers that inject packets into the

injection FIFOs; links between nodes on which bits can

be corrupted to test the error-recovery protocol; and

packet checkers that pull packets out of the reception

FIFOs and check them for a variety of conditions, such

as whether the packet arrived at the correct destination

and whether its contents were received correctly. The

workload drivers can be flexibly configured to simulate

a number of different traffic patterns.

As we neared the end of the logic verification process,

we wanted to ensure that network performance was as

Figure 9

(a) Bandwidth as a function of time. (b) Unblocking probability as a function of time. [4K-node BG/L under hot-region traffic (25% of 
traffic to 12.5% of machine); two dynamic 2-KB VCs, two paths, 2-KB escape buffers. Early assumptions were used (see text).]
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intended. One of the benchmarks we tested was the

alltoall. The VHDL simulator was limited by memory to

a maximum of 64 nodes, so we simulated both a 43 43 4

torus and an 83 83 1 torus and compared the average

link utilizations to those predicted by the performance

simulator. While these agreed to within 2%, the VHDL,

corresponding to the actual network hardware, indicated

that VC buffers were fuller than that predicted by the

performance simulator. A close inspection of the

arbitration logic revealed that a one-cycle gap in the

arbitration pipeline of the receivers could occur when all

possible outgoing links and VCs were busy. This gap was

sufficient to permit packets from the injection FIFOs

to sneak into the network, leading to fuller VCs than

intended. A simple fix to eliminate this possibility was

implemented, and subsequent VHDL simulations

indicated greatly reduced levels of VC buffer occupation.

Sample hardware performance measurements
We now describe some performance measurements of a

number of important communications patterns done on

the 512-node prototype. These measurements were made

using the Blue Gene/L advanced diagnostics environment

(BLADE) kernel [16]. Since BLADE is a lightweight

kernel permitting direct access to the BG/L hardware,

and since these measurements do not involve the MPI

library, the measurements are intended to stress and

demonstrate raw torus hardware performance. Also,

given our understanding of the network hardware and

protocols, the packet format, and the communications

pattern, we are able to express results as a percentage of

peak performance. For example, as described earlier, a

256-byte packet actually implies that the link is occupied

for 270 byte-times, and this provides a limit on the

throughput.

Ping-pong latency

Ping-pong latency is measured by sending a message from

one node, which we call ping, to another node, pong. Once

the message is received and stored by pong, pong sends it

back to ping. Ping receives and stores the full message.

The one-way latency (half the total time from the point

of the first injection to the final reception by ping) is

measured in units of processor cycles and is plotted

against message size for one, two, and three network hops

(Figure 10).

The curves marked total are plots of the measured one-

way latency, as described above. The curves marked

network bound are calculated theoretically on the basis of

the expected bandwidth and latency of the network. They

do not include the bandwidth and latency incurred in

transferring the message from memory to the torus

injection FIFOs or from the torus reception FIFOs to

memory. In this sense, they represent a lower bound for

the ping-pong latency. Note that these measurements

were made using a thin packet layer interface and do not

include MPI overhead.

Alltoall

Figure 11 plots the percentage of peak performance

obtained on both a 32-way 43 43 2 torus and a 512-way

83 83 8 torus for the all-to-all pattern described earlier.

The x-axis in this plot is the number of payload bytes

(assuming that 16 bytes of software overhead are carried

in each packet) between each source–destination pair. On

the 512-way—even when the messages are extremely

short, involving only one 32-byte packet between each

pair of nodes—the torus delivers 71% of theoretical peak,

and for long messages, it delivers more than 98% of peak.

The simulator predicts the throughput quite accurately.

For example, with ten full-sized packets, the simulator

predicted 94% of peak (i.e., 94% link utilization), whereas

Figure 10

BG/L torus network ping-pong latency as measured on the hard-
ware (2 � 2 � 2 mesh). 
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the hardware measurement achieved 96% of peak. This

is a difference of only 2%, with most of that discrepancy

due to different software start-up sequences. Thus, the

hardware measurement is in close agreement with the

simulation. Again, this measurement involves a thin

packet layer and is not an actual MPI alltoall

measurement.

Hot region

In this pattern, a subcube of nodes are receivers, and all

nodes outside this subcube are senders. Each sender sends

a certain large number of 256-byte packets to each

receiver. The amount of time required to complete this

test is determined by the number of links into the hot-

region subcube. For a hot spot (13 13 1 subcube), 92%

of peak is achieved, while 95% of peak is achieved for

both 23 23 2 and 43 43 4 hot regions, again in

accordance with simulations. Note that the hot-spot

communications pattern corresponds to that of the

MPI allgather collective communications call.

Line and plane fill

Line and plane fill communication patterns are those

obtained when broadcasting in either a row or a plane of

the torus. This pattern can take advantage of the row-

broadcast capability in BG/L. Depending on the mapping,

the major communication patterns in the Linpack

benchmark correspond to row or plane broadcasts. By

appropriately dividing the data to be broadcast into

different sections (colors) and broadcasting the different

colors in different directions, one can attempt to keep all

links busy transmitting different data at all times. For the

line broadcast of large messages, more than 99% of peak is

achieved. For the plane broadcast, we employed both

cores, with one core servicing the plus directions and

another servicing the minus directions. In this case, certain

nodes have to make ‘‘corner turns’’ in which, for example,

packets traveling in the xþ direction are received and

reinjected in the yþ direction. Our prototype software

accomplished this by loading the data from the torus

reception FIFOs to the FPU registers and then storing the

register contents to both memory and the torus injection

FIFOs. For production software, some additional care

must be taken to prevent deadlocks in case the injection

FIFOs are full, but the prototype software did not

encounter a deadlock situation. In this case, more than

96% of peak is achieved for the plane fill. With the links

running at 175 MB/s and assuming 87% payload

efficiency, this translates to the ability to broadcast

in a plane at 585 MB/s (= 1753 43 0.873 0.96).

Conclusions
We have described the details of the three-dimensional

torus network which forms the principal interconnect

of the Blue Gene/L supercomputer. By combining

adaptive cut-through and deterministic routing, we

have formed a robust and deadlock-free network.

By comparing simulation with measured results, we

have demonstrated the ability to realistically model a

massively parallel network, to precisely predict network

performance under load, and to accurately assess the

impact of architecture choices such as arbitration codes,

buffer sizes, and number of virtual channels. Using a thin

packet layer interface, we have measured the performance

of the BG/L torus for all-to-all, plane fill, and line fill,

independently of the MPI overhead. For most application

codes, we believe that the BG/L torus will be more than

adequate in terms of reliability, bandwidth, and latency.
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