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Abstract— Since the identification of long-range depen-
dence in network traffic ten years ago, its consistent appear-
ance across numerous measurement studies has largely dis-
credited Poisson-based models. However, since that original
data set was collected, both link speeds and the number of
Internet-connected hosts have increased by more than three
orders of magnitude. Thus, we now revisit the Poisson as-
sumption, by studying a combination of historical traces and
new measurements obtained from a major backbone link be-
longing to a Tier 1 ISP. We show that unlike the older data
sets, current network traffic can be well represented by the
Poisson model for sub-second time scales. At multi-second
scales, we find a distinctive piecewise-linear non-stationarity,
together with evidence of long-range dependence. Combin-
ing our observations across both time scales leads to a time-
dependent Poisson characterization of network traffic that,
when viewed across very long time scales, exhibits the ob-
served long-range dependence. This traffic characteriza-
tion reconciliates the seemingly contradicting observations
of Poisson and long-memory traffic characteristics. It also
seems to be in general agreement with recent theoretical mod-
els for large-scale traffic aggregation.

Index Terms—Network Measurements, Traffic Analysis.

I. I NTRODUCTION

Does the observed long-range dependence make Poisson-
based models obsolete? This is a key question for our work.

During the last decade, there has been ample evidence
of long-range dependence, scaling phenomena and heavy
tailed distributions in various aspects of network behavior.
Specifically, it has been observed that packet interarrival
times are described by marginal distributions with heavier
tail than that of the exponential. Furthermore, networking
series such as the aggregate number of packets and bytes
in time, have been shown to exhibit correlations over large
time scales (i.e., long-range dependence) and self-similar
scaling properties. These findings resulted in invalidating
the traditionally used in modeling and simulations assump-
tions of Poisson packet arrivals and independence of packet
sizes and interarrival times.

The first empirical evidence of self-similar characteristics
in local area network traffic were presented in the pioneer-
ing work in [21]. The authors performed a rigorous sta-

tistical analysis of Ethernet traffic measurements and were
able to establish its self-similar nature. Similar observa-
tions were presented for wide area Internet traffic in [29],
where it was also shown that interarrival times are described
by heavy tailed distributions. The origins of self-similarity
in Internet traffic have been mainly attributed to heavy tail
distributions of transfer sizes [10] [37] [27]. Apart from
long-range dependence, it has been observed that Internet
traffic presents complex scaling and multifractal character-
istics that were usually associated with Round-Trip Time
(RTT) delay [11] [34] [40] [30] [14]. In addition, studies
have argued whether or not TCP congestion control con-
tributes to the observed scaling [35] [36] [22].

We believe it is time to reexamine the Poisson traffic as-
sumption in relation to the traffic carried within the Internet
core. Long before the identification of self-similar charac-
teristics in Internet traffic, Poisson packet arrivals and the
independence assumption were widely used as the basis for
network modeling and analysis [18]. Despite the tendency
of the community to discard Poisson models as being overly
simplistic, they can be used to represent the limiting behav-
ior of an aggregate traffic flow created by multiplexing large
numbers of independent sources [17] [32]. Thus, given the
tremendous growth of the Internet backbone in recent years,
we anticipate that any peculiarities due to individual flows
might cancel out due to the vast number of different multi-
plexed flows. Thus, we revisit the Poisson assumption sub-
ject to the following caveats:

Aggregated traffic vs. individual flows: We con-
sider the combined packet arrival stream generated by all
sources, rather than focusing on the subset of packets gener-
ated by a single source. Because of our focus on the highly-
multiplexed Internet core, such primary performance met-
rics as packet delays and buffer occupancies should be in-
sensitive to the details of an individual flow.

Idle periods vs. back-to-back packets:It is well known
that the packet interarrival time distribution may deviate
from the Poisson model for very small values because of
multiple-packet deterministic sequences. In our case, the
primary cause will be “busy periods” at the upstream router,
which transmits back-to-back packets until it manages to
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empty the queue. In other studies, fixed delay transaction-
oriented protocols like NFS, and processing time bottle-
necks in the hosts have been identified as the causes for
particular “spikes” appearing in the interarrival time distri-
bution [13]. Such short-range artifacts can be incorporated
into the Poisson model as “packet trains” [15].

The effect of the scale of observation:For moderately
loaded network resources, the system will rapidly respond
to any short-range transients in the load. Thus, by measur-
ing the system’s behavior across larger time scales, individ-
ual transient events become less significant relative to the
long-term averages, allowing us to determine the steady-
state behavior of the system. Eventually, however, we may
reach a point, where further increases in the length of the
measurement period can actually hurt us because of the
presence of nonstationarity. More specifically, long-term
nonstationarity can interfere with variance calculations be-
cause the global average across very large time scales may
drift very far away from the short-term average. To see why
such discrepancies might make things obscure, rather than
just different, we offer the following analogy.

Consider the problem of determining correlation between
the motions of two insects wandering randomly around a
small garden. To an observer in the garden who watches the
two bugs, their motions might appear completely indepen-
dent and uncorrelated. However, to an observer watching
the two bugs from outer space, the motions of the two bugs
appear almost perfectly correlated, since they are never
more than a few inches apart as they traverse a daily rotation
of the earth around its axis, which is itself embedded in an
annual orbit of the earth around the sun. Clearly, estimat-
ing the motions of the two bugs relative to some “average”
derived from celestial-scale measurements is not appropri-
ate for solving this problem! Similarly, we should not try
to normalize all network measurements relative to some far
away global long-term average value that the system may
never reach within the time scales relevant to the calcula-
tion of its primary performance metrics.

In this paper, we show and explain the coexistence of
Poisson distributions and long-range dependence in the In-
ternet backbone. More specifically, our findings can be
summarized in the following points:
• Packet arrivals appear Poisson at sub-second time

scales:The packet interarrivals follow an exponential
distribution. In addition, packet sizes and interarrival
times appear uncorrelated. These observations agree
with traditional modeling of network arrivals as Pois-
son processes.

• Internet traffic is nonstationary at multi-second
time scales: We demonstrate that traffic oscillates
around a global mean, in a piecewise linear manner.

• Internet traffic exhibits long-range dependence

(LRD) at large time-scales: In agreement with pre-
vious findings, we observe that Internet traffic is LRD
at scales of seconds and above.

Practical impact.What does this mean to a practitioner?
Our work suggests that Poisson models should not be aban-
doned especially in the Internet backbone with high speeds,
and huge levels of traffic multiplexing. Thus, simulations
may get sufficiently accurate results by varying the arrival
rate of a Poisson process.

The rest of this paper is structured as follows: Section II
gives a brief description of self-similarity and long-range
dependence. Section III describes our traces. Sections IV
and V demonstrate the Poisson and nonstationary nature of
Internet traffic. Section VI presents the scaling behavior of
backbone traffic. Section VII concludes the paper.

II. D EFINITIONS

This section briefly presents concepts that will be used in
the paper and a brief description of long-range dependence
and self-similarity.

We extensively use thecomplementary cumulative distri-
bution function (CCDF)throughout this paper. The CCDF
is defined as,F c(t) = 1 − F (t), whereF (t) is the cumu-
lative distribution function (CDF). The CCDF of the expo-
nential distribution with mean1/λ is

F c(t) = e−λt, t ≥ 0.

Long-range dependence measures the memory of a pro-
cess. Intuitively, distant events in time are correlated.
This correlation is captured by theautocorrelation function
(ACF), ρ(k), which measures the similarity between a se-
riesXt, and a shifted version of itself,Xt+k:

ρ(k) =
E[(Xt − µ)(Xt+k − µ)]

σ2

whereµ, σ are the sample mean and standard deviation re-
spectively. If a stationary process has nonsummable auto-
correlation function [4], that is

∑∞
k=1 ρ(k) = ∞, then this

process islong-range dependent. Intuitively, there is non-
zero correlation even for infinitely largek. On the contrary,
short-range dependence is characterized by quickly decay-
ing correlations (e.g., ARMA processes).

Self-similarity describes the phenomenon where certain
properties are preserved irrespective of scaling in space or
time. A stochastic processX(t) is self-similar ifX(at) =
aHX(t), where H is the self-similarity parameter, namely
theHurst exponent.

In time-series, second-order self-similarity describes the
property that the correlation structure (ACF) of a time-
series is preserved irrespective of time aggregation. Sim-
ply put, the autocorrelation function of a second-order self-
similar time-series is the same in either coarse or fine time



3
TABLE I

OC48TRACES ANALYZED.

August 2002, 14 (11:00 - 11:20) January 2003, 15 (10:00 - 10:10) April 2003, 24 (00:00-00:20)
Direction 0 Direction 1 Direction 0 Direction 1 Direction 0 Direction 1

Bytes 58.2G 92G 21G 24G 14.8G 17.4G
Packets 140.8M 145M 41.2M 34.6M 28.8M 42.5M

Mean Rate 333Mbps 612Mbps 318Mbps 278Mbps 98Mbps 116Mbps
Mean Flows/sec 18,590 19,118 16,193 18,783 8,712 9,494

% TCP bytes (packets) 89.7 (58.7) 97.2 (92.6) 91.4 (88.8) 96.1(91.1) 96.7 (91) 95(86.6
% UDP bytes (packets) 9.8 (40.6) 2.2 (6.7) 4.9 (8.1) 3.2 (6.9) 3.1 (8) 4 (12.7)

scales.The aggregated processX(m)(k) is defined as fol-
lows:

X(m)(k) =
1
m

km∑

i=(k−1)m+1

Xi, k = 1, 2, ..., [
N

m
].

A stationaryprocessXt is asymptotically second-order
self-similar [28], if

lim
k→∞

ρ(k) =
1
2
[(k + 1)2H − 2k2H + (k − 1)2H ].

Second-order self-similar processes are characterized by
a hyperbolically decaying autocorrelation function and are
extensively used to model long-range dependent processes.

The notion of stationarity refers to the stability of the be-
havior. Most traffic models assume, explicitly or implicitly,
a stable behavior over a period of time. The stationarity
assumption is critical when self-similar behavior is stud-
ied, since nonstationarity can lead to misidentification of
self-similarity. Furthermore, all Hurst exponent estimation
methodologies assume a stationary time-series and their es-
timates are quite sensitive to the existence of nonstationari-
ties.

While the concepts of self-similarity and long-range
dependence are often used interchangeably in the litera-
ture, they are not equivalent. Although second-order self-
similarity usually implies long-range dependence (i.e., non-
summable ACF), the reverse is not necessarily true. In addi-
tion not all self-similar processes are long-range dependent
(e.g., Brownian motion).

III. D ATA DESCRIPTION

We use three types of traces for our study: a) Internet
backbone traces from an OC48 link, b) traces from the
WIDE backbone maintained by theMAWI Working Group
Traffic Archiveand the WIDE project [2] [9], and c) the
“well-known” BC-pAug89andLBL-PKT-4traces [1] which
were analyzed in [21] and [29] respectively.

The WIDE backbone traces were captured in a trans-
Pacific 100Mbps link. They are 15 minute traces taken

daily at 14:00 local time (JST). We use traces from June
2003. The BC-pAug89 trace was taken at 11:25 (EDT)
on August 29, 1989 on an Ethernet at the Bellcore Mor-
ristown Research and Engineering facility. It consists of
1,000,000 packets (approximately 3142.82 seconds). Fi-
nally, the LBL-PKT-4 was captured on January 21, 1994,
14:00-15:00 (PST) at Lawrence Berkeley Laboratory (ap-
proximately 1.3M packets).

Our primary focus in this work is on the OC48 backbone
traces. These were taken on CAIDA monitor located at a
SONET OC48 (2.5 Gbps) link that belongs to MFN, a US
Tier 1 Internet Service Provider (ISP).

The traces were collected by Linux-based monitor with
Dag 4.11 network cards and packet capture software origi-
nally developed at the University of Waikato [24] and cur-
rently produced by Endace. The nominal resolution of the
Dag 4.11 card timestamp is 15ns. A number of techno-
logical factors prevent Dag from reaching corresponding
precision. The largest source of uncertainty is Sonet over-
head that makes interpretation of time differences under
1µs problematic [24]. The traffic is monitored in both di-
rections. The captured packet traces contain 44 bytes of
each packet, enough to include the IP and TCP/UDP head-
ers.

We analyze three different backbone traces captured in
August 2002, January 2003 and April 2003. Table I shows
the specific dates these traces were collected, the mean rate
in Mbps, the average number of flows per second, as well
as the total number of packets and bytes for each trace. In
general, the link in question is overprovisioned. With the
exception of direction 1 of the August trace that has average
utilization of approximately 24%, the utilization for the rest
of the traces is rarely over 15%. The number of active flows
per second varies between 15,000 - 20,000 for the January
and August traces, and between 8,000 - 12,000 for the April
traces.

TCP accounts for the vast majority of the traffic. Ap-
proximately 95% of the bytes and 90% of the packets are
transfered with TCP. However, UDP represents a signifi-
cant portion of the total traffic for direction 0 of the August
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dataset. In this trace, there is a UDP flood which signifi-
cantly increases the percentage of UDP packets.

Overall, the traffic on this measured backbone link mul-
tiplexes a wide variety of diverse sources, since the Tier 1
ISP has rich infrastructure in Asia and Europe.

Throughout the paper, we will use these traces inter-
changeably. Although we will be presenting figures for
some of the traces in each case, the results presented ap-
ply to all described traces irrespective of the direction of
the link, unless otherwise specified.

IV. I NTERNET TRAFFIC APPEARSPOISSON AT

SUB-SECOND TIME SCALES

In this section, we show that the distribution of packet
interarrival times of backbone traffic can be well described
by an exponential distribution. Furthermore, packet sizes
and interarrival times appear independent.

A. Distribution of Packet Interarrival Times

We study the interarrival distributions of all the backbone
traces described in section III. We find that the packet in-
terarrival time distribution is well approximated by an ex-
ponential distribution both for the OC48 traces, as well as
for the WIDE backbone traces.

An interarrival time distribution consists of two por-
tions [5]. One that can contain back-to-back packets and
another for packets that are guaranteed to be separated by
idle time. For heavily utilized links, interarrival times are
function of packet sizes since many packets are sent back-
to-back. For links that are overprovisioned, the distribution
tends to contain most probability in the “idle” portion.

For the link in question, packet interarrival times can be
closely approximated by an exponential distribution. The
packet interarrival distributions for one of the MFN traces,
for the aggregate (total), TCP and UDP traffic is shown in
Fig. 1. The CCDF of packet interarrival times is a straight
line when the Y axis is plotted in log scale, which corre-
sponds to exponential distribution.

A closer look at the CCDF reveals that there is a triv-
ial deviation from the exponential line at two points: the
tail of the distribution and for small interarrival times. The
tail represents a minimum portion of the distribution (less
than10−6). On the other hand, the shape of the distribu-
tion for small values of interarrival times (less than 6µs)
is the effect of back-to-back packets and Layer 2 technolo-
gies. However, linear least squares fitting shows that the
CCDF is well described by an exponential with confidence
99.99%. Similar observations hold for the interarrival time
distribution of specific packet sizes (i.e., interarrival distri-
bution of 1500-byte packets); interarrival times are expo-
nentially distributed.

Nevertheless, exponential distribution for packet interar-
rival times is not specific only to our OC48 traces. Fig.2(a)
shows the packet interarrival CCDF for a WIDE backbone
trace (June 16, 2003). The distribution is qualitatively sim-
ilar to the distributions of the OC48 traces. With 99.89%
confidence the distribution is well described by the expo-
nential distribution. Note that the bandwidth of the WIDE
link is 100Mbps and despite the huge bandwidth difference
with the OC48 link (2.5Gbps), both links are characterized
by exponentially distributed interarrival times.

To highlight the differences between current backbone
traces and past Ethernet-link traces, Fig. 2(b) and 2(c) show
the CCDF and histogram of interarrival times for the LBL
and BC traces. We present the CCDF of one of the traces
and the histogram of the other, since both traces have simi-
lar characteristics. Their shapes are in agreement with dis-
tributions that have been observed in Ethernet traffic [13],
[15] in the mid ’80s and early ’90s, before the identification
of self-similarity. The spikes seen in the histogram (caused
mostly by request-response protocols) result in the devia-
tion of the CCDF at the early values of the distribution.
Furthermore, the tail of the distribution is heavier than that
of an exponential distribution indicating the effects of in-
dividual flow characteristics in these limited Ethernet links
(10Mbps).

B. Independence

We separately examine and show independence of packet
sizes and interarrival times of the OC48 link traces. The
independence is validated using various tests: a) the auto-
correlation (ACF) and cross-correlation (XCF) functions,
b) the Box-Ljung statistic, c) the visual inspection of con-
secutive arrivals, and d) the conditional probabilities.

Correlation functions: Fig. 3 presents the autocorrela-
tion and cross-correlation functions calculated for 200 lags
for 40,000 consecutive packet arrivals for the packet sizes
and interarrivals series. Thesizesseries consists of the ac-
tual packet sizes as individual packets arrive; theinterar-
rivals series consists of the timestamp differences between
consecutive packets. Apart from some limited correlation
at small time lags, sizes and interarrivals are not correlated.
The trivial correlation at small time lags close to zero in-
dicated by correlation coefficients that are just outside the
95% confidence interval of zero (straight lines just above
and below zero), is the effect of back-to-back packets and
phenomena that cause the interarrival distribution to deviate
from the exponential for interarrival times less than 6µs.

Increasing the number of lags or the size of the series
(number of packet arrivals in this case) does not have any
effect on the ACF or XCF. However, nonstationarity can in-
terfere with variance calculations (see sections V, VI) when
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Fig. 1. CCDF of packet interarrival times for OC48 link traces, for aggregate (total), TCP and UDP traffic. The distributions can be
well approximated by an exponential distribution.
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rival times for the BC-pAug89 trace.

Fig. 2. Distributions of packet interarrival times for the WIDE, LBL and BC traces.
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Fig. 3. Autocorrelation function of packet interarrival times and packet sizes and sample cross correlation. All the correlation
coefficients are within the 95% confidence intervals except for a small number of coefficients for small lags.

the correlation is estimated across nonstationary time inter-
vals. This is an artifact of the way the ACF and XCF func-
tions are estimated. A change in the mean of the series will
result in distant events in time to seem correlated accord-
ing to the ACF or XCF, while they are not (recall the bug
analogy from the introduction).

Box-Ljung statistic: The Box-Ljung statistic [23]Qk is
defined as:

Qk = n(n + 2)
k∑

i=1

r2
i

n− i
,

whereri is the autocorrelation coefficient for lags1 ≤ i ≤
k andn is the length of the series. TheQk statistic is com-
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pared withχ2 distribution withk degrees of freedom in or-
der to test the null hypothesis. For large values ofk the
following approximation for theχ2 distribution withk de-
grees of freedom can be used [20]:

χ2
k,1−a ≈ k(1− 2

9k
+ z1−a

√
2/(9k))3,

wherez1−a is the upper percentile of theN(0, 1) distribu-
tion. We applied the test for lags 1 up to 200, for varying
numbers of consecutive packet arrivals for both the interar-
rival times and packet sizes. The Box-Ljung statistic shows
that both variables can be considered i.i.d with 95% confi-
dence for up to a certain number of consecutive packet ar-
rivals. Increasing the lag produces similar results. Further-
more, independence is valid for a large number of consec-
utive arrivals. The point where dependence appears differs
with the trace and time within the trace. For interarrival
times, independence holds for 20,000 consecutive packet
arrivals on the average according to the test. For the packet
sizes series the average is approximately 16,000 consecu-
tive packet arrivals.

Consecutive arrivals: We visually examine size and in-
terarrival time scatter plots of consecutive packet arrivals
similar to Fig. 4. Although this type of figures does
not prove independence, it can reveal dependencies in the
dataset. The X axis shows the size of packet arrivalk,
while the Y axis shows the size of packet arrivalk + 1.
Fig. 4 demonstrates that the plot is symmetric and no spe-
cific trends can be seen. At the end of X and Y axes of the
figure, we plot the histogram of packet sizes for reference.

Conditional probabilities: Examining the conditional
probabilities of sizes and interarrivals also points to inde-
pendence. We study the probabilities of sizes and interar-
rival times conditioned on the value of the previous size
or interarrival time respectively. For example, each straight
line in Fig. 5 presents the CCDF of packet interarrival times
conditioned on the previous interarrival time being within
seven different bins. Because the exponential distribution
falls off rapidly with increasing time, the bin sizes increase
with powers of 2 (i.e., 0-2µs, 2-4µs...64-128µs). If the in-
terarrival times were independent, the lines would fall on
top of each other, as is the case for Fig. 5.

C. Burst Sizes

To stress-test the claim for the memoryless properties of
Poisson arrivals and independence, we studied bursts of
packets. A burst describes successive packet arrivals with
interarrival times less than a default value, which is consid-
ered to be the idle period. However, in our traces the idle
period cannot be identified by the interarrival distribution.
Thus, in order to define bursts, we use different values of

Fig. 4. Scatter plot for sizes of 1,000,000 consecutive packet
arrivals. The figure is symmetric and does not show any patterns
that would be indicative of dependence between sizes.
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Fig. 5. CCDFs for interarrival times conditioned on the previous
interarrival being in seven different bins based on powers of two.

interarrival time. If the arrival process is memoryless, the
characteristics of the burst should remain the same irrespec-
tive of the interarrival time that defines the idle period. We
find that the distributions of the duration of the busy/idle
period, as well as the number of packets or bytes in a busy
period are well approximated by exponential distributions.
This is irrespective of the interarrival time that is used as the
boundaryfor distinguishing between idle and busy periods.
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Fig. 6. Nonstationarity inBC-pAug89trace file. LEFT: The byte count during consecutive 10msec intervals varies chaotically over
a 6 minute window. RIGHT: The same data presented as cumulative bytes sent as a function of time looks surprisingly smooth,
although clearly nonstationary.
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Fig. 7. The cumulative number of packet arrivals can be seen to
change in an approximately piecewise-linear manner. The figure
shows 2sec worth of traffic.

V. I NTERNET TRAFFIC APPEARSSURPRISINGLY

SMOOTH, BUT NONSTATIONARY, AT MULTI -SECOND

TIME SCALES

In this section, we demonstrate that Internet traffic is non-
stationary. Furthermore, we discuss a number of possible
causes leading to nonstationarity and characterize the be-
havior.

A. Traffic has become smoother over time.

Fig. 6 displays approximately 6 minutes of data from
the well-knownBC-pAug89packet trace dataset [1], [21]
in terms of both the familiar image of chaotically-varying
byte counts per 10 msec. interval, as well as a cumulative
display of total bytes sent as a function of timewithout us-
ing any data aggregation or smoothing. The smoothness of
the cumulative graph (Fig. 6, right) is striking, in compari-
son to the more familiar chaotically varying appearance of
the per-interval graph (Fig. 6, left). In particular, we see
that despite the burstiness of individual packet arrivals, the

slope of the cumulative traffic curve is well defined for time
scales on the order of seconds. Although the slope may re-
main relatively constant for several minutes at a time, it is
clearly a time-varying function.

Fig. 7 shows that current Internet backbone traffic ex-
hibits similar nonstationarity. In Fig. 7 we show the cu-
mulative number of packets sent over a 2 second inter-
val from the August 2002 dataset. Notice that the total
number of individual data points in each curve is approx-
imately the same, since the changes in link speed (2.5 Gbps
vs. 10Mbps) and measurement period (2 sec. vs. 6min.)
between these two figures are complementary. However,
the slope of the new dataset is significantly smoother than
the earlier graph, and shows a distinctive pattern of piece-
wise linear segments separated by well-defined corners.

The spikes shown near the bottom of Fig. 7 highlight the
points at which the rate changes. The height and direction
of each spike represents the relative magnitude of change
in the slope. In order to find the change points, a one-
dimensional version of theCanny Edge Detectoralgorithm
is applied [6]. The algorithm is often used in image pro-
cessing to reveal object boundaries. The algorithm works
as follows: first, Gaussian filtering is applied to the time-
series to filter out high frequency noise. Then, the point
where the gradient (i.e., derivative) reaches a peak value
(i.e., a “ridge line”) is found. The ridge lines are finally
refined by setting to zero all points that are on the sloping
edges leading up to the peak, but not actually there.

B. Possible causes for nonstationarity.

Among the overwhelming number of studies document-
ing self-similarity and long-range dependence in Internet
traffic, a few authors have identified various examples of
nonstationarity. In [38] [39], for example, the authors ex-
amine different notions of stationarity for various end-to-
end performance parameters of network traffic. It is sug-
gested that the notion of stationarity depends on the scale
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of observation. Moreover, the authors show that many pro-
cesses (e.g., loss episodes) can be well modeled as i.i.d
within change free regions, where stationarity is assumed.
This concept of describing the overall network behavior as
a series of piecewise-stationary intervals seems equally ap-
plicable to our traffic data. Thus, in the remainder of this
section, we speculate on several possible mechanisms that
could be responsible for creating the piecewise-stationary
traffic patterns we have observed in the data.

Clearly, the simplest possible explanation for nonstation-
arity is the variation of the number of active sources over
time. This is obviously responsible for (large) diurnal traffic
variations, and the authors in [7] [8] suggest that it may also
be a significant factor over much shorter time periods until
the number of multiplexed sources becomes large enough
to drive the arrival process to Poisson and sizes to indepen-
dent. Although this explanation could certainly apply to
links that support a relatively small number of multiplexed
sources (e.g., LAN segments similar to the well-knownBC-
pAug89trace), it seems far less reasonable as a possible
explanation for the piecewise-linear variations we found in
our OC-48 traces because the number of individual flows
that were both large and fast enough to create visible rate
changes at these scales was extremely small.

Another obvious possibility is to consider self-similarity
in the traffic generation process. In this case, we must try
to distinguish between nonstationarity and long-range de-
pendence, since it is well known that LRD estimators can
be fooled by nonstationary behavior (such as trends or pe-
riodicity). For this reason, the authors in [21] suggest parti-
tioning the time-series into disjoint segments and separately
calculating the value of the Hurst exponent for each seg-
ment. We applied the same procedure to our OC48 traces
by partitioning one of the 20 minute traces to form 60 dis-
joint time-series, each containing approximately 2 million
samples from 20 sec intervals. The results of our analy-
sis are shown in Fig. 8(a), which shows that the Hurst ex-
ponent value varies significantly over time, oscillating be-
tween 0.5-0.7 for small scales. Similar observations hold
for the case of larger scales where the Hurst exponent value
varies between 0.65-0.9. This suggests that our current In-
ternet core traces are nonstationary, at least for time scales
on the order of approximately one hour.

We also considered the possibility that routing changes
might be responsible for the variations in the piecewise lin-
ear traffic rates. Note that a routing change could affect
the measured traffic on our link eitherdirectly, by inserting
or removing our measurement link from the paths followed
by a (set of) active flow(s), orindirectly, by inserting or
removing other traffic from a distant link and hence trig-
gering a change in rate for the active flow(s) that use both
links. This would be especially true for highly reactive TCP

streams that suddenly see more bitrate available [31]. Ac-
cording to the routing persistence results reported in [39],
approximately 10% of the commercial Internet routes had
lifetimes of a few hours or less. Moreover, their cumulative
distribution function for route lifetimes (based on sampling
more than 36,000 host-pairs) was very flat across short time
scales. Thus, since routing update protocols are specifically
designed to avoid synchronization in the update times, and
since the entire Internet contains a huge number of routers,
we cannot reject the possibility that the mean time between
routing updates of both types visible to our measurement
point is below one second. This hypothesis will be left as
the subject of further study.

However, perhaps the most convincing explanation for
this type of nonstationary behavior comes from [32], where
the authors carefully develop a methodology for quantify-
ing the deviation from the Poisson limit of an aggregated ar-
rival process composed of large numbers of highly-variable
individual streams, when viewed over a wide range of dif-
ferent time scales. In particular, they show how aggrega-
tion of sources can “transfer” variability (which originated
from the stationary, high-variance packet interarrival time
distribution representing a single source) to the aggregate
arrival process (which quickly takes on the characteristics
of an almost-perfect Poisson process with a time-dependent
mean arrival rate). Consequently, they show how the aggre-
gate arrival process can behave like Poisson process in con-
junction with small buffer sizes, but not with large buffer
sizes, because of the cumulative variability caused by large
numbers of small long-term covariance terms. In other
words, these many small deviations from the Poisson limit
may occasionally align themselves in peculiar ways to cre-
ate artifacts that are visible across large time scales, similar
to the beats produced by two tuning forks set to nearly iden-
tical frequencies.

Such deviations can be visualized using the index of dis-
persion for intervals (IDI) [32], which is defined as the se-
quence{c2

k}, k ≥ 1, where:

c2
k =

kV ar(Sk)
[E(Sk)]2

and the random variableSk is the sum of ofk consecutive
interarrival times.1 Notice that if the arrival process is an
ideal Poisson process, then we should havec2

k ≡ 1 for every

1[32] includes the following remark about the IDI. “This technique
applies much more broadly, and we believe that it can greatly help un-
derstand other complex arrival processes in queueing systems (and else-
where).” We agree, and would further like to emphasize its advantage of
normalizing the autocovariances across the interarrival time sequence,
{Xi}, with respect toE[X] rather toV ar(X). Hence the magnitude
of c2

k is a meaningful quantity, which allows us to determine theactual
significanceof the correlations across a distance ofk steps. In contrast,
the autocorrelation function,ρ(k), is normalized by the standard devi-
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k. However, if the arrival process has higher variance at
some time scale, thenck will tend to increase as a function
of k.

Fig. 8(b) shows howc2
k varies as a function ofk for a

variety of trace datasets. Similar to Fig. 4 from [32], we
expect the Poisson assumption to be quite effective over
short ranges (so thatc2

k ≈ 1 for small values ofk), but
to gradually degrade ask increases. For example, the au-
thors in [32] found that when aggregating 60 voice sources
(each having a squared coefficient of variation of 18.1), the
Poisson assumption was very good for arrival sequences
of length less than approximately 50, beyond whichc2

k be-
gan to increase almost linearly. Notice that the well-known
BC-pAug89trace is a very poor fit to the Poisson distribu-
tion, but the recent traces obtained from both our OC-48
link and the 100 Mbps trans-Pacific link monitored by the

ation, σ ≡ ρ(0), so we can only compare therelative significanceof
correlations across different distances — without knowing whether any
of these deviations are significantly greater than zero.

WIDE project show a remarkably good fit, even for large
block sizes. Except for the April 2003 trace, all of our re-
cent traces fit the Poisson assumption very well even when
we increase the arrival sequence lengths into the thousands.
Note that,c2

k does not depend on the specific part of the
trace but it does depend on the length of the series used.
That is, its value remains approximately the same when es-
timated at any disjoint piece of the trace with the same num-
ber of points. However, when the number of samples in the
series is increased past the point where more than 5-10 sec-
onds are represented (e.g., more than500, 000−2, 000, 000
consecutive arrivals depending on the OC48 traces), it in-
creases due to the piecewise nonstationarity. For Fig. 8(b),
we used 500,000 arrivals to estimate IDI.

C. Characterizing the nonstationarity.

To quantify the behavior of the aggregate traffic pro-
cess over longer time scales, we studied both themagni-
tude of the rate change events that separate each interval
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(i.e., the height of the “spikes” in Fig. 7) and the durations
of the piecewise-linear change free intervals between each
“spike”. Our results are shown in Fig. 9. We found that the
magnitude of the rate change events appears to be uncor-
related beyond a significant negative correlation at distance
one. This negative correlation at lag one implies that an
increase in rate is followed by a decrease. This is also ev-
ident from the alternation of direction of changes in Fig.7.
However, the remainder of the ACF is very flat and falls
within the 95% confidence interval of zero. We also found
that the durations of the change free intervals follow the
exponential distribution. Although we do not show it here
because of space limitations, the ACF for the durations of
the change free intervals fell within the 95% confidence in-
terval of zero.

These results are consistent with theoretical results on
the aggregation of large numbers of independent renewal
streams under theintermediate connection ratemodel
in [12], where we increase the number of active sources in
proportion to the available service rate to maintain a con-
stant normalized load. They show that the variability of the
aggregate arrival process converges to a non-stable, non-
Gaussian process with a zero mean and stationary incre-
ments2. Thus, by combining our observations with these
theoretical results, we conjecture that the nonstationarity of
the Poisson traffic rate may be well described by a Marko-
vian random walk model.

VI. I NTERNET TRAFFIC APPEARSLRD AT LARGE

TIME SCALES

In this section, we study the scaling behavior of the back-
bone traffic using the same set of OC48-link traces from
which we showed nonstationary Poisson behavior at multi-
second time scales. Our observations across large time
scales show that backbone traffic demonstrates long-range
dependence as measured by the Hurst exponent estima-
tors. The scaling behavior is characterized by a dichotomy
between small and large scales. To analyze the scaling
behavior, we study the series of byte and packet counts
with smallest aggregation level at 10µs. To overcome
accuracy related problems of the Hurst exponent estima-
tors [19] [25] [16] [33], all common estimators [4] [33] [3]
are applied to each series.

Our analysis shows that backbone traffic is characterized
by long-range dependence. However, the intensity of corre-
lation depends on the scale of observation. Specifically, in
all traces analyzed we observe a dichotomy in the scaling in
agreement with previous studies [40]. The point of change
is within the millisecond scales, albeit different for each

2In [12], they also show that the limit process is continuous, has finite
moments of all orders, is second-order self-similar, but not self-similar.

TABLE II
SCALE OF CHANGE FOR THEHURST EXPONENT VALUE.

August 2002 January 2003 April 2003

Dir. 0 650 msec 40 - 80 msec 320 msec
Dir. 1 80 - 320 msec 160 -320 msec 320 msec

case. However, the pattern is the same: At scales below the
point of change the Hurst exponent is just above 0.6, while
at larger scales it varies between 0.7 and 0.85 depending on
the trace and the estimator used3. Table II summarizes the
points of change for the value of Hurst exponent. Similar
observations hold for the packet counts case.

Fig. 10(a) presents the scaling behavior of byte counts us-
ing the wavelet estimator for the aggregate, TCP and UDP
traffic. The base wavelet used is the Haar wavelet for scales
6-25 (640µs-5min). Because of the dominance of the TCP
traffic (Table I), the energy line for the UDP traffic appears
lower in both figures. Fig. 10(a) demonstrates that the scal-
ing behavior of the aggregate traffic is highly correlated
with the behavior of TCP traffic. Both show the change
in the value of the Hurst from 0.62 to 0.8 at the same scale
(16). On the contrary, UDP scaling behavior does not fol-
low the pattern of the aggregate traffic or TCP traffic.

In order to highlight the thin line between long-range de-
pendence and nonstationarity, we offer the following exam-
ple motivated by our observations in the previous sections.
We calculated the ACF coefficients for 400 lags using two
different ways: a) The regular ACF function described in
section II and b) replacing theglobal average used in the
ACF, by a moving average(calculated using a Gaussian
window), thus removinglocal nonstationaritiesfrom the
calculation of the autocorrelation function. Fig. 11 shows
the effect of removing “nonstationarity” from the January
OC48 trace on the autocorrelation function. The correla-
tions fall within the 95% confidence interval of zero, after
1msec when the moving average is used. The magnitude
of the correlation depends mostly on the standard deviation
(sigma) of the Gaussian window, and also on its size.

On the other hand, when the Hurst exponent estimators
are applied to the Gaussian moving average function, we
find that the smoothed function has the same Hurst ex-
ponent (approximately 0.8) as the original series at large
enough scales. Fig. 10(b) presents the scaling behavior for
the aggregate traffic after the Gaussian smoothing. Because
high frequency noise has been removed, the smoothed
curves have lower energy at small scales. On the other
hand, high frequency noise is present in Fig. 11, where

3Figures showing the result of the Hurst exponent estimators for our
traces have been omitted due to space limitations. However all show
with 99% confidence similar dichotomy and Hurst exponent values.
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there are only deviations from the local average. At larger
scales, the scaling behavior is the same as the original ag-
gregate traffic (Fig. 10(b), beyond scale 13).

However, since this same Gaussian moving average func-
tion can also be thought of as an approximation to the piece-
wise linear rate function described in the section V with its
corners rounded off, we now have two different perspec-
tives of the same nonstationarity: exponentially distributed,
stationary uncorrelated increments and long-term correla-
tions4. While this description of the rates series is in agree-
ment with fractional Gaussian noise theory, this is clearly a
question for further study in the future!

VII. C ONCLUSIONS

In this paper, we revisit the validity of the Poisson as-
sumption by examining a number of current and historical

4Note that in section V we examined the rate changes, while the Gaus-
sian moving average function corresponds to the series of the rates them-
selves.

traces of Internet traffic. We find that that at sub-second
time scales, backbone traffic appears to be well described
by Poisson packet arrivals. Our study provides evidence
for how the ongoing pattern of Internet evolution is going
to affect the future characteristics of its traffic. We conjec-
ture that the particular way in which this increase in scale
is unfolding seems to be pushing the Internet in the general
direction of easier-to-understand and better-behaved traffic
models (i.e., the Poisson assumption) – or at least not in the
direction of sophisticated traffic models!

More specifically, we found that up to sub-second time
scales current Internet backbone traffic is well characterized
by a stationary Poisson model. This is important because it
covers the relevant time scales for the delivery of a single
packet (i.e., the Round-Trip Time). Beyond that point, the
traffic seems to take on a distinctive form of nonstationary
behavior, which consists of short intervals of “change free
regions” punctuated by sudden change events. The dura-
tions of the change free intervals were found to be exponen-
tially distributed and uncorrelated, while the change events
themselves appeared to be stationary with only a trivial one-
step (negative) correlation in the increments. We note that
these observations are also consistent with the theoretical
results for large-scale aggregations of renewal processes
which have been derived under the assumption of scaling
the number of sources and network capacity together to
keep the normalized offered load fixed. We also show that
this type of traffic model (i.e., Poisson with nonstationarity
at multi-second time scales) is consistent with the kind of
long-range dependence that is commonly observed in net-
work data over larger time scales.

Our work has also left a number of interesting ques-
tions unanswered, which must remain as subjects for fur-
ther study. Most importantly, is the type of nonstationary
behavior we see at multi-second time scales sufficient to
explain everything, or are there even-larger scale effects re-
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maining to be discovered? Another important open issue is
finding the mechanism that is responsible for the distinctive
piecewise-linear variation in the rate.

Finally, we found that focusing on the proper time scale
turned out to be a recurring theme in our work as well as
in many of the references cited. Just as the analogy of the
two bugs in the garden shows it is important to avoid ex-
cessively large scales, we must also be careful not to fo-
cus on too small a time scale. Although Whitt pointed out
that the right time scale must be an increasing function of
load placed on a network resource [32], Norros [26] has ob-
served that network traffic sources have the flexibility and
intelligence to adapt their transmission policies to the re-
sources currently available in the network. Thus, we expect
the traffic characteristics for the Internet backbone to con-
tinue to grow even better behaved in the future.
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