Mean Value Analysis

Mean value analysis (MVA) is an efficient algorithm that allow us to analyze product
form queueing networks and obtain mean values for queue lengths and response
times, as well as throughputs. The efficiency comes with a price — MVA does not
compute the joint probability distribution for queue lengths. However, in many if not
most performance evaluation situations, the mean values are the performance
metrics of interest.

Single Class Systems

We begin with systems in which there is a single job class (job classes are usually
referred to as “chains” in queueing network theory). These systems may either be
open or closed.

1. Open systems (arrival rate = 1)

D, is the total demand of a single customer for queue m. V, is the visit ratio for
queue m, with queue 0 (the "outside world") the reference queue; i.e., V, is the
average number of visits a single customer makes to queue m. u, isthe
service rate at queue m.

The maximum throughput for the system occurs at the value of the arrival rate
which saturates the queue with the largest demand.

) 1
maximum throughput = ———— = 4__
max (Dm )

lsm=M

Throughput for queue m at A< 4, is 4, = AV, =X, (1)

Utilization of queue m at A< 4, is p,, = A S AD

m m

Wy,

Response time at queue m at A< 4, is R, ().

- for an IS queue:

m

- for a FCFS, LCFSPR, or PS queue:

Rm(A) is the time spent in service + the time spent waiting for other
customers to complete service.
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time spent in service =V, - 1. D,
W,

time spent waiting for other customers to complete service

=V, A, (A) = 4,(A)D,
Mo
where A, () is the average number of customers at queue m as seen
by an arriving job.

This is intuitively correct for a FCFS queue with exponential service time,
and hence must also be true for LCFSPR and PS queues in a product-
form network.

% ( D, , IS queue
=R, (%)= Dm(1+ A,(%)) . FCFS, PS, or LCFSPR queue

Also, for product form networks with a single open class,
Am()\') = Qm()\')

where 0, () is the expectation of the length of queue m when the arrival

rateis A. Thatis, the average number of customers at queue m as seen
by an arrival is exactly equal to the average queue length at queue m
(averaged over all time, not just arrival instants).

= R,(A)=D,(1+Q,(A)) for a queueing center.
Since Q,(A)=AR, (1),

R,(2)=D,(1+ AR, (1))
R,(A)-AD,R,(A)=D,

m

D D
R )\' = m = m
(%) 1-AD, 1-p,(2)

This looks reasonable, since

p,.(A)—=0=R (1)—D,
pm()\') - 1 = Rm()\') —®
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Queue lengths:

0,(%) = AR, (%)
p.(2)  (1S)
=1 p.(2) (FCFS, LCFSPR, PS)
1-p,(%)

System response time:

R<A>=§Rm<x>

Average number of customers in system:

ex.
departures )
disk 1
arrivals .
disk 2
CPU : )_
Given: chu =121 Vdiskl =70 VdiskZ =30
o005 -3 o027
ey Ugisia Misi

D,=605 D, =21 D =135

cpu disk2

A=.3
Model outputs:

(A)= AV, =0.3(121) = 36.3

X
X u(A) = AV, =0.3(70) = 21
X o(A) = AV, =0.3(50) =15

cpu
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D,, D, 0.605
) _ _ ~0.740
cpu( ) 1 - pC[?u()\') 1 - )\'DCPu 1 - 03(0605)
D. 2.1
R. )\, — disk1 = . =~ 5676
dzskl( ) 1 _ )“Ddiskl 1 —_ 03(2 1)
Rucs2) = [t s <2269

T1-AD,y,, 1-0.3(1.35)

0.,.(A)= AR, (A) =0.3(0.740) = 0.222
Qui(A) = AR, (A) = 0.3(5.676) =1.7028
Ouia(A) = AR (1) = 0.3(2.269) = 0.6807
R(A) =R, (A)+ Ryyi(A) + Ryn (1) =~ 8.685
Q(}\‘) = Qcpu(}\') + Qdiskl()\‘) + Qdisk2()\’) = 26055

2. Closed systems

We have three basic quantities of interest — X, R, and Q — and we have three
equations relating them:

X(N)= ML
E=1R,n (V)
0,(N)=X(N)R,(N)
D, (IS)
R,(N)= { D, (1+4,(N)) (FCFS, LCFSPR, PS)

where R, (N) is the response time at center m when the total number of
customers in the system is N, and similarly for the other quantities.

If we knew A, (N), we could compute R, (N), which would allow us to compute
X(N). This would allow us to compute 0, (N).

For open models, we used
0,(4)=A,(%)

In the closed model case, we cannot use Q,(N) = A, (N), however. The
following simple example with two servers and a single job illustrates this.

D =D,=p,=p,=05=0=0,=05
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but obviously A, = A, =0 since there is only one customer in the system.

The problem in general is that at an arrival instant the arriving customer cannot
itself already be in the queue.

However, for product form networks, we have the relation
A,(N)=0,(N-1)
i.e., an arriving customer sees (on average) the steady-state number of

customers that there would have been if there were one fewer customer in the
system.

We also know that Q,(0)=0 V m.

This gives us an iterative algorithm (called Mean Value Analysis) that allows us to
solve the closed system.

for m=0 to M do Q, = 0
for n=1 to N do begin
D , IS

m

for m=1 to M do R =
{Dm (1+Q,) . FCFS,LCFSPR,PS

n
M
2k,
m=1

for m=1 to M do Qp = XRp
end

X:

The time complexity of this algorithm is O(NK), and the space complexity is
O(K).

eX.
Z=15
disk 1

Y A : )_

‘ < ) disk 2

A CPU : )_
Dcpu =0.605
D, =2.1  asbefore
Ddisk2 =1.35
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Solve for N =3
n=0 n=1 n=2 n=3
CPU - .605 .624 .644
disk1 - 2.1 2.331 2.605
disk2 - 1.35 1.446 1.551
- .0525 .1031 .1515
CPU 0 .0318 .0643 .0976
0 disk1 0 1102 .2403 .3947
disk2 0 .0709 .1491 .2350

Multiple Class Systems

In multiple class systems, each job class may have its own demand for each queue.
The routing of jobs between queues and the per-visit service demand may also be
class-dependent.

1. Open systems

C = number of classes
A, = arrival rate for class ¢
A= (A A A)
u,,, = service rate for aclass c job at queue m
V., = visitratio for aclass ¢ job at queue m
D., = average total demand of a class c job for service at queue m
p...(A) = utilization of queue m by class ¢ jobs
p,.(4) = utilization of queue m by all job classes

C
= E )\'ch,m
c=1

R_,.(A) = average residence time of a class ¢ job at queue m
0,,.(A) = average number of class ¢ jobs at queue m
max (p,, (1)) < 1 for stability

lsm=M
X_.(A) =2V, is the throughput for a class ¢ job at queue m

c’ cm
1

Pon(A)=X,,(A)—=2AD

ccm
Auc,m

e o [P (IS)
en(B) = D, (1+A,, (%) (FCES, LCESPR, PS)

Ac,m(&) is the expected number of jobs at queue m at an arrival instant for a job
of class c.

For open classes in separable networks,
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AW =0,)=Y0,,%

j=1
.. for FCFS, LCFSPR, and PS queues

N
XN)=5——

YR, (N)

Note that this expression uses D, ,,, the average total service demand for a class

(&

¢ customer at queue ¢’'. However, the arriving customer of class ¢ may see
customers of any class already in the queue, and the “intuitive” guess would be
that the arriving customer would be delayed by D._.,, for each customer of class
c¢' already in the queue. We will discuss this further in the section on closed
systems.

Since the expression in parentheses multiplying D, ,, does not depend on c,
we can simplify this expression.

R.,.(A) D :
et 2L e R, (A)=—"R_ (4
R/,m (A) D/‘,m - Jm(_) c,m Cm(_)
D,,
= R, (A)=D,, 1+E)LJ.D—’RM(A)
j=1 c,m
C
R, (A1-YAD,,|=D,,
Jj=1
D D
Rcm(z\')= o = o
1-YAD,, 1-Yp,.(3)
j=1 j=1
_ Dc,m
1-p,(2)
Qc,m (2\') = }LCRC,WZ (i\‘)
etc.
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ex. two classes of customers A and B

departures

DAL[]M_ VACpu=10 )\'A=%
DB,cpu = VB,cpu =5 )\’B - %

(A) =2V, =510=1.579
w(A)=A,D, ., =3-1=0.1579
Op.pu(X) = Ay Dy, =22 =0.2105
()=
()=

pA,duk )L DA (disk = _9 3 0 4‘737
pB,duk )\' DB disk % 4 0 4211
D, .
R, u(B) = —P— = 1 —=1 D 1583
1_pcpu(2\’) l_ﬁ 12
D
RB,(‘pu(Z\’) = B = 2 = 2 Q = 3 167
1-p,,Q) 1-3 12
D, . 3 19
RA,disk(Z\') = 1 A’d”k)b = o= 3-—=28.5
= Pun(L)  1-75 2
D
Ry sisk (L) = Bk - 4 =4- Q = 38

1 pdtsk(}\‘) - % 2
RA (Z\') RA cpu( )+ RA dsk(z\’) = 30083

etc.

n

Closed systems

N, number of customers in class ¢

N = (N.,N,,....N.)
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As in the case for single class closed systems, there are three equations:

N,
X.(N)=5—""—

YR, (N)

0..n(N)= X (N)R.,(N)

c,m 2 IS

R._(N)=
en () { D, (1+A,,(N)) . FCFS, LCFSPR, PS
Notice once again that we are using D, ,, in the expression for queues with

contention, for all customers in the queue at the arrival instant, regardless of class.
Some explanation seems in order.

That the above expression applies to a FCFS queue is easy to explain. FCFS
queues have the additional restriction that all classes of customers must see the
same (exponential) service time distribution; thus, D,_,, = D, for all classes ¢
and ¢'. Also, the distribution of the residual lifetime of an exponential random
variable is identical to the original distribution, so that it does not matter how long a
job has been in service at the arrival instant.

We can wave our hands at a PS queue and at least make the expression sound
plausible. Recall that in a PS queue, all jobs in the queue receive simultaneous
service. Ifthere are N, jobs in queue m on average while a job is being
serviced, the time to complete that job's service requirement of D, should be

N,D., . Itremains to be proven that the average number of jobs in the queue

while a job is being serviced is 1 + the average number of jobs in the queue at
the job's arrival instant.

Similar to the single class MVA algorithm, we have the chain of computations
A, (N)—=R. . (N)—=X(N)—=Q.,(N). The question is how to find A_, (N).

c,

Let N-1 =(N,,N,,...,.N_,N.-1N_,,.....N,).

For closed product-form networks,

A, (N)=0,(N-1)

This gives us the following multiple class MVA algorithm:
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for m=1 to M do Qu(0) =0

C
for n=1 to ESN} do
c=1

for each feasible population n = (nj,..,nc) s.t.

c
n=2nc ,n,=0
c=1

do begin
for c=1 to C do

for m=1 to M do

L IS
D A+ A, () . notlS

n

C

for c=1 to C do X, =5—"—
YR, ()
m=1

C
for m=1 to M do Qm(ﬂ)=EXcRc,m
c=1

end

end

A feasible population with n jobs total is a set of jobs such that the number of
jobs within each class ¢ is between 0 and N, and the sum of the number of
jobs in all classes is n. As you can see, the algorithm sets the total number of
jobs in the system and then computes results for each feasible population with
that many jobs before beginning computations for one more job total in the
system. The following diagram illustrates the precedence of feasible states for a
system with two classes A and B, N, =3,and N,=2.
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\2A,08 WA 1B oA, 28)
,-"'f \ ,-"'f \ ‘_,-"'rf
s A 4 . K
A.0B) A,18 1A,2B)
kN RN »
(34, 18] (24 25
“« p )

C
The time complexity of the algorithm is CMH(NC +1), where CM is the time

c=1
complexity of the computations for one feasible population, and the product
term is the total number of feasible populations. The space complexity is

M ﬁ(NC +1).

C#Cnax
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ex Dch'pu DA,disk =3 NA =1

Dy, =2 Dy =4 N, =1
0A.0B 1A.0B O0A.1B 1A.1B

RA,cpu - 1 - %
R, g B 3 B 5
Ry - 2 2
Ry g B B 4 7
X4 B % - 1%
X B B % %
(O 0 n 0 s
O aisk 0 3 0 5
Os cpu 0 0 3 s
Os i 0 0 3 i

Approximate MVA - multiple classes

The time and space complexities are proportional to the number of feasible
populations, and this number quickly gets large for even relatively few
classes and jobs per class. The following algorithm produces approximate
solutions for the given class populations without having to iterate through all
smaller feasible populations. Step 1 distributes the members of each class
equally among all the queues.

1. 0., (N)= ]Z\\]/IC Ve,m

2' Ac,m (M) = hc (Ql,m (N)’ QZ,m (N)’ . ’QC,m (]—V))
3. Compute R_ (N)given A_, (N)
Compute X (N) given A_, (N)

Compute new Q_, (N) given X (N) and R, (N)

4. If new 0., (W) -old 0., (W)|
| oldQ,)

c,m

< 9, stop; else go to 2.

The trick here is in step 2, where we use an approximation for the number of
jobs in queue m at ajob class ¢ arrival instant.
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= 1, (@, (M), @,y (N)..... Qs (N))
Nl e a0V
NC co.m \LL Z I, m

That is, we assume the number of class ¢’ = ¢ jobs in queue m ataclass ¢ arrival
instant is the steady state average number of class ¢’ jobs in the queue, but the
number of class ¢ jobs must be adjusted by a factor reflecting that the arriving
job could not already be in the queue.

Mixed Open and Closed Models

{0}
{c}
|

set of all open classes
set of all closed classes

load vector
(1,,L,.....I.) where I = A_if cE{O} and I =N if c €{C}

(1) Since the throughput for the open classes is already fixed, first compute the
utilization of each queue m by all of the open classes.

pc,m (l) = )\'tD(m V ce {0}

P01 D= X LoD

c'E{O}

(2) Inflate the demands for all the closed classes to account for the utilizations of the
various queues by the open classes.

P yeec)

’ 1_ p{O},m
This is sometimes referred to as load concealment.
(3) Solve the model consisting only of the closed classes, using the inflated
demands computed in step (2). Find the throughputs, average response
times, and average queue lengths for each closed class at each queue.

Note that to get the actual utilization of a queue m by a closed class ¢, we need
to use the actual rather than the inflated demand:

pc,m (l) = Xc (l)Dc,m Vee {C}

(4) Calculate the open class response times and queue lengths.

R.,,(D=D.,(1+0,, (1)) VceE{o}
0..,(D=AR., (D
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Note that D_,,, the inflated service demand for an open class ¢ customer at
queue m, is computed as in step (2); i.e., using the utilization of the queue by all
open classes. This seems unintuitive, but perhaps a better way of looking at
this is to say that we are inflating the queue length rather than the service

demand to account for the presence of the closed class customers.

etc.

p{O},cpu = )"ADA,cpu + )“BDB,cpu = 1(%‘) + %(%) = %
Pio}disk = AyDy g + Ay Dy iy = 1(%) + yZ(l) =%

JA 1
DC,cpu = 21 = 1 DD,cpu = 1 = 2
1-% 1-%
1 ¥
DC,disk = 1-2 =3 DD,disk = 1 37 =4
=73 =73

which are the same as the (uninflated) demands for the closed model example
in the handout on solution techniques for multi-class networks.

= RC,C])M = % RD,cpu = %
RC,disk =5 RD,disk =7
XC =Xo XD =%
QC,cpu = %9 QD,cpu = %9
QC,disk ="Ao QD,dixk ='Xo
_ DA,cpu (1 + Q{C},cpu) _ %(1 + %9) _ 14y
cpu - = /19
e 1 - p{O},Cpu 1 - %
R _ DB,cpu(l + Q{C},cpu) _ %( + %9) _ ZV
B,cpu — 1- 0 - 1—- y = /19
{0},cpu 2

QA,cpu = }\’ARA,cpu = 1(1%9) = 1%9
QB,cpu = }\'BRB,Cpu = %(2%9) = 1%9
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