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II. DISCRETE VENT SIMULATION

2.1. Introduction

Simulation modelling has been used in a wide range of physical and social sciences and engineering fields,
ranging from nuclear fusion to economic forecast to space shuttle design. For different types of situations and sys-
tems, different types of models are used. In classifying simulations, there are important distinctions among the
types of models that are being simulated, and among the types of program structures that are used to carry out the
simulation.

2.2. Deterministic Simulation Models

Simulation models may be either deterministic or stochastic (meaning probabilistic). In a deterministic simu-
lation, all of the events and relationships among the variables are governed entirely by a combination of known, but
possibly complicated, rules.

Deterministic simulations are often used to study the behaviour of physical systems. As a simple example,
consider the problem of determining the time required to pay off a $100 loan if you pay $10 per month and the
interest rate is 10 percent per year, compounded monthly. In this case, the answer (namely 11 months) can be found
very easily, by writing a simple program to ‘‘simulate’’ the history of the loan:

1 const rate := .10 / 12 % interest rate per month, expressed as a fraction
2 const payment := 10 % payment per month
3 var loan : real := 100 % current value of the loan (initially $100)
4 var month :=0 % current month
5
6 put "end of month:" : 15, "loan balance:" : 15, "payment due:" : 10
7 put month : 10, loan : 15 : 2
8
9 loop
10 month += 1
11 loan *= (1 + rate)
12 const thisPayment := min (payment, loan)
13 loan -= thisPayment
14 put month : 10, loan : 15 : 2, thisPayment : 15 : 2
15 exit when loan <= 0.0
16 end loop

By running the program, we see that the answer is 11 months:

end of month: loan balance: payment due:
0 100.00
1 90.83 10.00
2 81.59 10.00
3 72.27 10.00
4 62.87 10.00
5 53.40 10.00
6 43.84 10.00
7 34.21 10.00
8 24.49 10.00
9 14.70 10.00
10 4.82 10.00
11 0.00 4.86

In this case, it was not really necessary to resort to simulation, since standard mathematical techniques for dealing
with series can be used to obtain a general solution to the number of loan periods, P, required assuming the periodic
payment is a fraction D of the initial loan, and the interest per period is R:
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P =
ln (1 + R)

ln (D) − ln (D−R)����������������������������� ,

which in this case tells us the answer is 10.48 months.

The advantage of simulation is that you can still answer the question even if the model is too complicated to
solve analytically. For example, consider the trajectory of a baseball under the combined influence of gravity and
aerodynamic drag. Once the ball leaves the pitcher’s fingertips, with a given orientation (i.e., the direction that the
seams are facing), speed, direction and spin (i.e., the axis of rotation and rotational speed), we can in principle deter-
mine its flight path to the catcher by assuming that gravity causes it to fall towards the ground with a constant rate of
acceleration, and that at the same time aerodynamic drag causes it to slow down its rate of spin, reduce its speed,
and change its direction of flight, at rates that depend on its current orientation, speed and spin. We could use a
deterministic simulation to estimate the flight path of the ball by, in effect, ‘‘flying’’ the ball. Periodically, we take a
snapshot of the current state of the ball (i.e., its position, speed, spin, etc.), and then calculate all the forces acting on
the ball in that state. We then let the ball move ahead a short distance under the combined influence of those forces,
assuming that they remain unchanged until we take the next snapshot, recalculate all the forces, and so on. In gen-
eral, the assumption of unchanging forces causes an error in the resulting solution, so we must limit the distance
between successive recalculations of the forces to be small enough for the error to be acceptable. Nevertheless,
when the forces acting on the ball are complicated, it can be much simpler to find the flight path from such a deter-
ministic simulation than it would be to solve all the equations to obtain an analytic solution!

2.3. Stochastic Simulation Models

In a stochastic simulation, ‘‘random variables’’ are included in the model to represent the influence of factors
that are unpredictable, unknown, or beyond the scope of the model we use in the simulation. Throughout the rest of
this chapter, we will be discussing stochastic simulation models.

In many applications, such as a model of the tellers in a bank, it makes sense to incorporate random variables
into the model. In the case of a bank, we might wish to assume that there is a stream of anonymous customers com-
ing in the door at unpredictable times, rather than explicitly modelling the behaviour of each of their actual custo-
mers to determine when they plan to go to the bank.

It is worth noting here that it is well known in statistics that when we combine the actions of a large popula-
tion of more-or-less independently operating entities (customers, etc.) the resulting behaviour appears to have been
randomly produced, and that the patterns of activity followed by the individual entities within that population are
unimportant. For example, all of the telephone systems designed in the last 60 years are based on the (quite
justified) assumption that the number of calls made in fixed length time intervals obeys the Poisson distribution.
Thus the generation and use of random variables is an important topic in simulation, and we will discuss it in a
separate section below.

2.4. Static Versus Dynamic Simulation Models

Another dimension along which simulation models can be classified is that of time. If the model is used to
simulate the operation of a system over a period of time, it is dynamic. The baseball example above uses dynamic
simulation. On the other hand, if no time is involved in a model, it is static. Many gambling situations (e.g., dice,
roulette) can be simulated to determine the odds of winning or losing. Since only the number of bets made, rather
than the duration of gambling, matters, static simulation models are appropriate for them.

Monte Carlo Simulation (named after a famous casino town1 in Europe) refers to the type of simulation in
which a static, approximate, and stochastic model is used for a deterministic system. This is in contrast to the base-
ball example at the beginning of this chapter, where both the system and the model are dynamic and deterministic.
Let us now look at an example of Monte Carlo simulation. Consider estimating the value of π by finding the approx-
imate area of a circle with a unit radius. The first quadrant of the circle is enclosed by a unit square (See Figure 1).
If pairs of uniformly distributed pseudo-random values for the x and y coordinates in [0, 1] are generated, the proba-
bility of the corresponding points falling in the quarter circle is simply the ratio of the area of the quarter circle to
that of the unit square:�����������������������������������

1 Interestingly, John Von Neumann, a pioneer in computer design and use, used Monte Carlo as the code name for his
military project during the Second World War.
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Figure 1. Monte Carlo Integration of a Quarter Circle.

total number of points generated
number of points falling in the quarter circle� ������������������������������������������������������������������������� =

4
π���

The simple Turing program below simulates this situation. Some sample output follows. A good approximation can
be achieved by using a large number of points. The convergence is quite slow, though. In the next chapter, we will
discuss a faster way through numerical integration.

1 randseed(1, 1)% could have used interactive input to initialize, but this is simpler
2 randseed(2, 2)
3
4 var x, y: real
5 var repeatCount, inCount := 0
6
7 put "repetition count: " ..
8 get repeatCount
9
10 for i: 1 .. repeatCount
11 randnext(x, 1)
12 randnext(y, 1)
13 if x*x + y*y < 1 then
14 inCount += 1
15 end if
16 end for
17
18 put "Approximate value of pi (based on ", repeatCount, " samples): ", 4 * (inCount / repeatCount)

Repetition count Approximate value of π	 	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
100 3.24

1,000 3.16
10,000 3.1608

100,000 3.14508
1,000,000 3.14098














The above program is an example of Monte Carlo integration, by which definite integral of arbitrary but finite func-
tions can be estimated. Consider the following integral:

∫a
b

f (x)dx
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Such an integral can be partitioned into segments above or below the horizontal axis. Without loss of generality, let
us assume f (x)≥0, a ≤ x ≤ b. We can then bound the curve with a rectangle with borders of x = a, x = b, y = 0, and
y = y max , where y max is the maximum value of f (x) in the interval [a, b]. By generating random points uniformly
distributed over this rectangular area, and deciding whether they fall above or below the curve f (x), we can esti-
mate the integral.

2.5. Program Structures for Dynamic Simulation

In the remainder of chapter, dynamic stochastic simulation models will be emphasized. A dynamic simula-
tion program that is written in a general purpose programming language (such as Turing) must:

i) keep track of ‘‘simulated’’ time,

ii) schedule events at ‘‘simulated’’ times in the future, and

iii) cause appropriate changes in state to occur when ‘‘simulated’’ time reaches the time at which one or
more events take place.

The structure of a simulation program may be either time-driven or event-driven, depending on the nature of
the basic loop of the program. In time-driven models (see Figure 2a), each time through the basic loop, simulated
time is advanced by some ‘‘small’’ (in relation to the rates of change of the variables in the program) fixed amount,
and then each possible event type is checked to see which, if any, events have occurred at that point in simulated
time. In event-driven models (see Figure 2b), events of various types are scheduled at future points in simulated
time. The basic program loop determines when the next scheduled event should occur, as the minimum of the
scheduled times of each possible event. Simulated time is then advanced to exactly that event time, and the
corresponding event handling routine is executed to reflect the change of state that occurs as a result of that event.

�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
initialize
time := startingTime
loop

exit when time >= endingTime
% Collect statistics and record measurements.
% Call event routines for each type of event
% that has occurred by this time.
time += timeIncrement

end loop

initialize
TimeToStop := false
loop

exit when TimeToStop
% remove entry for next event from event list
time := NextEventTime
% Collect statistics and record measurements.
% Call event routine for next event
% (end of simulation event sets TimeToStop).
% Insert next occurrence of this event type
% in event list.

end loop

a. Time Driven Structure b. Event Driven Structure�����������������������������������������������������������������������������������������������
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Figure 2. Structure of the basic program loop.

The choice of whether a time- or event-driven program structure should be used depends on the nature of the
model. In general, an event driven structure means that the basic program loop gets executed fewer times (since an
event is guaranteed to take place every time through the loop). However, there is overhead involved in managing
the event list, so that the ‘‘cost’’ (i.e., execution time) of going around the loop once is, in general, substantially
higher than it would be for a time-driven structure. Thus, a time-driven structure is generally better for models in
which it is possible to find a time increment that is both small enough to distinguish among the times at which events
occur that cannot be treated as simultaneous, and also large enough for at least one event to occur at a significant
proportion of the times through the basic program loop. If such a compromise is not possible (because events occur
at irregular intervals), an event-driven structure is preferable.
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2.5.1. Time-Driven Dynamic Stochastic Simulation

Some dynamic systems have events occurring at regular intervals, so the time-driven structure discussed in
Section 1 is more suitable than the event-driven structure (See Figure 2). Consider a ‘‘drunken’’ flea being placed
at the center of a 20×20 plate (See Figure 3). The flea will make a sequence of random jumps, each being in one of
the four directions, east, west, north, or south, and with a unit distance. How many jumps will it take for the flea to
fall off the plate? There is apparently no definite answer to this question, because the process is stochastic in nature.
If we assume that the flea makes its jumps at regular intervals, the appropriate type of model for this system would
be time-driven, dynamic, and stochastic. We can use the following Turing program to find out the possible numbers
of jumps.
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Figure 3. Drunken Flea on a Plate.

1 var x, y, step, direction: int := 0
2
3 randomize
4 loop
5 exit when abs(x) > 10 or abs(y) > 10
6 randint(direction, 1, 4)
7 case direction of
8 label 1: x += 1
9 label 2: y += 1
10 label 3: x −= 1
11 label 4: y −= 1
12 end case
13 step += 1
14 end loop
15 put "Flea jumped off plate in ", step, " steps"

By running this program, you will find that the number of jumps varies (depending on the random seed). You can
repeat the experiment a number of times, and compute the mean and standard deviation of the number of jumps.

2.5.2. Event-Driven Dynamic Stochastic Simulation

If an event-driven structure is used, the program must manage an event list in some manner. If the number of
future events scheduled is large, then the determination of the next event to occur is most efficiently accomplished
by maintaining a linked list of all scheduled events, ordered by the times at which they are scheduled to occur.
Thus, each time through the basic program loop, the event description for the next event is (easily) removed from
the front of the list and acted upon. However, whenever a future event needs to be scheduled, an event description
must be inserted at an arbitrary point in the linked list. A way to improve the efficiency of insertion would be to use
a heap data structure instead of an ordered linked list to store the events.
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If the number of scheduled events remains small at all times, however, it is more efficient to simply set aside
one variable for each type of event, and use it to hold the next time at which an event of that type is scheduled to
occur. (If at some point no event of that type is scheduled to occur, then the value of the corresponding variable
should be set to ‘‘infinity’’, i.e., to any value that is greater than the ending time for the simulation.) The basic loop
of the program then determines the next scheduled event by scanning all the variables holding times of future events
and selecting the one with the smallest value.

2.6. Constructing a Simulation Model

2.6.1. Identification of Components

Our first task is to identify those system components that should be included in the model. This choice
depends not only on the real system, but also on the aspects of its behaviour that we intend to investigate. The only
complete model of a system is the system itself. Any other model includes assumptions or simplifications. Some
components of a system may be left out of the system model if their absence is not expected to alter the aspects of
behaviour that we wish to observe. For example, returning to our bank teller model, we need not keep track of the
activities of individual customers in order to determine the optimum number of tellers. However, we might have to
track the activities of individual customers in our model to investigate customer satisfaction, assuming that custo-
mers can ‘‘balk’’ (i.e., leave without service) if they arrive when the waiting lines are too long, go about some other
business for a few minutes, and then return to the bank. It is also important to keep track of individuals when the
total population is small. For example, if we were to imagine the (highly unrealistic!) case that only two people had
accounts in our bank, then we could not simply ‘‘toss a coin’’ to decide whether the next incoming customer is the
businessman (with a long list of things for the teller to do) or the student (who merely wants to withdraw enough
money to go to a movie). Otherwise, we may reach a state in which there are two businessmen (or two students) in
the bank! (Although this example may sound far fetched, sampling without replacement can be very important,
for example when selecting cards from a deck of playing cards.)

With the goal of formulating a simulation model in mind, we now proceed to list each of the necessary con-
cepts. These concepts will be illustrated by applying them to the problem of simulating an automobile service sta-
tion. The purpose of the simulation is to determine how many pumps the service station should keep running in
order to maximize its profit. We assume that the problem specification includes the following information:

i) the times between successive arrivals of customers, expressed as a probability distribution,

ii) the distribution of the number of litres of gasoline needed by customers,

iii) the distribution of how long service at the pump takes as a function of the number of litres needed,

iv) the probability that an arriving customer will balk as a function of the number of cars already waiting
at the service station and the number of litres of gasoline he needs,

v) the profit per litre of gasoline sold, and

vi) the cost per day of running a pump (including an attendant’s salary, etc.).

2.6.1.1. Entities

Customers, resources, service facilities, materials, service personnel, etc., are entities. Each type of entity has
a set of relevant attributes. In our service station example, the entities are cars, with the attributes ‘arrival time’ and
‘number of litres needed’, and pumps, with the attribute ‘time to the completion of service to the current customer’.

A Turing record is well-suited for representing an entity and its associated attributes. A group of similar enti-
ties may be represented as either an array or a collection of records. An array is best suited for representing a
group of ‘‘static’’ entities (i.e., those that are present throughout the simulation run, such as the pumps), while a col-
lection is more appropriate for ‘‘dynamic’’ entities (i.e., those that enter the system, spend some time there, and then
depart, such as the autos).
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2.6.1.2. Events

Events are occurrences that alter the system state. Here the events are the arrival of a customer at the station,
the start-of-service to a customer at a pump, and the completion-of-service to a customer at a pump. The first
arrival event must be scheduled in the initialization routine; the remaining arrivals are handled by letting each invo-
cation of the arrival routine schedule the next arrival event. The scheduling of a start-of-service event takes place
either in the arrival routine, if there are no other cars waiting and a pump is available, or in the completion-of-
service routine, otherwise. Each time the start-of-service routine is invoked, the completion-of-service at that pump
is scheduled.

Besides the types of events identified in the real system, there are two other pseudo-events that should be
included in every simulation program. End-of-simulation halts the simulation after a certain amount of simulated
time has elapsed, and initiates the final output of the statistics and measurements gathered in the run. End-of-
simulation should be scheduled during the initialization of an event-driven simulation; for time-driven simulations,
it is determined by the upper bound of the basic program loop. A progress-report event allows a summary of statis-
tics and measurements to be printed after specified intervals of simulated time have elapsed. These progress-report
summaries can be used to check the validity of the program during its development, and also to show whether or not
the system is settling down to some sort of ‘‘equilibrium’’ (i.e., stable) behaviour.

2.6.1.3. Groupings

Similar entities are often grouped in meaningful ways. Sometimes an ordering of the entities within a group
is relevant. In the service station example, the groupings are available pumps (that are not currently serving any
auto), busy pumps (ordered by the service completion time for the customer in service), and autos awaiting service
(ordered by time of arrival). In a Turing program, such groupings can be represented as linked lists of records, as
long as a suitable link field is included in the records for that entity type.

2.6.1.4. Relationships

Pairs of non-similar entities may be related. For example, a busy pump is related to the auto that is being
served. Relationships can be indicated by including in the record for one of the entities in a pair a link to the other
entity. In some cases, it may be desirable for each of the entities in the pair to have a link to the other entity. For
example, the relationship between a busy pump and the auto being served can be represented by a link from the
pump record to the corresponding auto record.

2.6.1.5. Stochastic variables

In a stochastic simulation, certain attributes of entities or events must be chosen ‘‘at random’’ from some pro-
bability distribution. In the service station example, these include the customer interarrival times (i.e., the times
between successive arrivals), the number of litres needed, the service time (based on the number of litres needed),
and whether the customer decides to balk (based on the length of the waiting queue and the number of litres
needed).

In a Turing program, a value is calculated for each instance of a stochastic variable by generating a ‘‘pseudo-
random’’ (i.e., random-appearing, but actually algorithmically computed) number using one of the pre-defined
pseudo-random number generators in Turing (based on built-in functions rand, randint, and randnext), and then
transforming it as necessary to match the specified probability distribution for the stochastic variable. For example,
randint (n, 10, 60) could be used to set n to the number of litres needed by the next incoming auto, assuming that
any integer value between 10 litres and 60 litres is equally likely to occur. See the section on pseudo-random
number generation below for more details.

2.6.1.6. Strategies

Typically, a simulation experiment consists of comparing several alternative approaches to running the system
to find out which one(s) maximize some measure of system ‘‘performance’’. In the case of the service station, the
strategies consist of keeping different numbers of pumps in service.

All code that is not common to all of the strategies should be localized to facilitate changing strategies. Some
strategies, such as the number of gasoline pumps, involve merely picking a number, so that changing the value of a
single variable suffices to alter the strategy. In other cases, changing strategy may involve taking some actions in
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substantially different ways, such as replacing separate queues for each teller in the bank with a common queue
feeding customers to all of the tellers. Each particular strategy might then be represented by a separate subprogram,
and changing the strategy could done by invoking different subprograms to carry out a certain action.

2.6.1.7. Measurements

The activity of the system will be reflected in measurements associated with entities, events, groups, or rela-
tionships. Such measurements are used in specifying the performance of the system. If the measurement is associ-
ated with an entity, it should be recorded in a field contained within the record for that entity. For measurements
associated with events, groupings or relationships, additional variables or records must be declared to record the
measured quantities.

In our example system, we might wish to measure the numbers of customers served, litres of gasoline sold,
customers who balk, and litres of gasoline not sold to balking customers, the total waiting time (from which we can
calculate average waiting time), the total service time (to get pump utilization), and the total time that the waiting
queue is empty.

The number of customers served and litres of gasoline sold are found by setting counters to zero in the initiali-
zation routine, and thereafter at each completion of service incrementing the number of customers served by one
and the number of litres sold by the amount of this sale. The number of customers who balk and the number litres
lost because of balking are handled similarly, except that the updating takes place at customer arrivals. The total
waiting time is the sum over all customers of the differences between his start of service and his arrival time, and
may be recorded in one of two ways. First, the start-of-service routine could simply add the difference between the
current value of simulated time and the arrival time for the auto to the total. Second, the arrival routine could sub-
tract the arrival time for each auto from the total waiting time, and the start-of-service routine could add the starting
time for each auto’s service to the total. The total service time and total time that the waiting queue is empty are
handled similarly. No matter how the measurements are recorded, it is important to make sure that the boundary
conditions due to customers left in the system when end-of-simulation is reached are handled properly.

2.6.2. Outlines for the Event Routines

For each type of event, we require an event routine with the following basic structure:

i) Collect statistics and record measurements.

ii) Carry out the actions associated with the event (i.e., change the state of the system).

iii) Schedule future events if necessary.

There is much freedom in choosing where to collect a particular statistic or to schedule the next event of a
particular type. However, it is very important to make sure that each desired measurement is recorded somewhere,
and that each type of event is scheduled somewhere.

2.6.2.1. Arrival Routine

Generate the number of litres needed.
if customer balks when planning to buy L litres because of the queue size then

Update the number of balking customers
Add L litres to the total number of litres needed by balking customers

else
Create a new auto record
Record the arrival time and number of litres in the auto record
if available pump list is not empty then

Schedule start-of-service immediately
else
Link the auto record to the end of the waiting queue
end if

end if
Generate the next interarrival time
Schedule the next arrival at the current time plus the next interarrival time



9 CHAPTER 2

2.6.2.2. Start-of-Service-Routine

Match the auto to an available pump
Add auto’s waiting time to total wait time
Generate service time based on the number of litres needed
Add service time to total service time
Schedule the departure of the auto
Link the pump record into the departure list

2.6.2.3. Departure Routine

Remove the first pump from the departure list
Add 1 to the number of autos served
Add the number of litres needed to the total number of litres
Free the auto record
Place the pump on the available pump list
if the waiting queue is not empty then

Schedule start-of-service immediately
end if

2.7. Pseudo-Random Number Generation

2.7.1. Probability and Random Variables

Probability is used to express our confidence in the outcome of some random event as a real number between
0 and 1. An outcome that is impossible has probability 0; one that is inevitable has probability 1. Sometimes, the
probability of an outcome is calculated by recording the outcome for a very large number of occurrences of that ran-
dom event (the more the better), and then taking the ratio of the number of events in which the given outcome
occurred to the total number of events. For example, we could try to estimate the probability that the outcome of
tossing a coin is ‘‘heads’’ by tossing some coin 100 times, and then dividing the number of times that it came up
‘‘heads’’ by 100. Chances are that our estimate will be close to 0.5, the value that gamblers have ‘‘known’’ to be
correct for centuries!

It is also possible to determine the probability of an event in a non-experimental way, by listing all possible
non-overlapping outcomes for the experiment and then using some insight to assign a probability to each outcome.
For example, we can show that the probability of getting ‘‘heads’’ twice during three coin tosses should be 3/8 from
the following argument. First, we list all eight possible outcomes for the experiment (TTT, TTH, THT, THH, HTT,
HTH, HHT, HHH). Next, we assign equal probability to each outcome (i.e., 1/8), because a ‘‘fair’’ coin should
come up heads half the time, and the outcome of one coin toss should have no influence on another. (In general,
when we have no other information to go on, each possible outcome for an experiment is assigned the same proba-
bility.) And finally, we observe that the desired event (namely two H’s) includes three of these outcomes, so that its
probability should be the sum of the probabilities for those outcomes, namely 3/8.

A random variable is a variable, say X, whose value, x, depends on the outcome of some random event. For
example, we can define a random variable that takes on the value of 1 whenever ‘‘heads’’ occurs and 0 otherwise.
Our estimate of the probability of ‘‘heads’’ can then be found as the average value of this random variable over our
100 tosses. A random variable can be characterized by the set of possible values that it can take on, together with
the probability that it takes on each of those possible values, say x, which can be expressed as a probability density
function, fX(x).

2.7.1.1. Discrete Random Variables

Random variables can be either discrete or continuous. A discrete random variable can take on only a finite
or countable number of different values v 1, v 2, . . . , vN. In this case, 0 ≤ fX(vj) ≤ 1, and we have

j =1
Σ
N

fX(vj) = 1
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The outcome of a coin toss, discussed above, provides a simple example of a discrete random variable. In
fact, this is just a special case of the discrete uniform distribution, where each of the N possible values occurs with
probability 1/N. Another common example of a discrete uniform distribution is the outcome of rolling a die, where
each of the values 1, 2, 3, 4, 5, and 6 occurs with probability 1/6. The binomial distribution represents the number
of times that a given outcome comes up during n experiments, assuming that the given outcome occurs with proba-
bility p at each experiment. The probability of exactly k occurrences, 0 ≤ k ≤ n, is given by

fX(k) =
��
k
n�� p k(1 − p)n −k

(The term �� kn�� ≡ n !/[k !(n −k)!] in the equation above represents the number of distinct ways that the k outcomes can

come up during the n experiments.) Thus, another way to determine the probability of getting exactly two ‘‘heads’’
in three coin tosses would be to substitute n =3, k =2 and p =1/2 in the formula above to get 3/8. The Poisson distri-
bution represents the number of times that a random event (such as the arrival of an auto to our service station)
occurs over a time interval of length t, assuming that the events occur at a uniform rate of r events per unit time.
The probability of exactly k occurrences, k ≥ 0, is given by

fX(k) =
k !

(r t)k��������� exp{−r t}

So if autos arrive at the rate of 10 per hour, the probability of having 5 arrivals in a 30 minute period would be

5!
(10×1/2)5� ��������������� exp{−10×1/2} ∼∼ 0.176

2.7.1.2. Continuous Random Variables

A continuous random variable can take on any value within some segment of the real line, say ranging from a
to b. Since the probability of hitting a particular real number within this interval is essentially zero (because there
are so many of them!), we must restrict ourselves to finding the probability of the event that the random variable
falls within some interval (x 1, x 2), a ≤ x 1 < x 2 ≤ b. (The probability of this event can still be non-zero, because any
interval contains an infinite number of real numbers.) For this reason, we define the probability density function so
that its integral from x 1 to x 2 gives the probability of that event, namely

∫x 1

x 2

fX(z)dz

Obviously, we must have ∫a
b

fX(z)dz = 1.

In the continuous uniform distribution over the interval (a, b), the probability that the random variable falls
within a sub-interval of (a, b) is proportional to the length of that sub-interval, from which we can see that
fX(x) = 1/(b − a), a ≤ x ≤ b. By far the most important example of a continuous uniform distribution is for the inter-
val (0, 1), because, as we shall see below, it is always possible to transform a random variable that is uniformly dis-
tributed over (0, 1) into another random variable with any other distribution. For this reason, most programming
languages (including Turing) include built-in pseudo-random number generators that produce a sequence of
values that are uniformly distributed over (0, 1) and appear to be randomly generated.

Other important continuous distributions include the exponential distribution and the normal distribution. It
can be shown that the exponential distribution represents the time between two consecutive events, when the events
occur at a uniform rate. If that rate is r per unit time, the distribution is given by

fX(t) = r exp{−r t}

for all t ≥ 0. Note the relation between the Poisson and exponential distributions: if random events are occurring at a
uniform rate over time, then the times between consecutive events will be exponential and the number of events that
fall within a given interval will be Poisson. The normal distribution represents the well-known ‘‘bell-shaped’’
curve given by

fX(x) =
√� ���2π σ

1����������� exp{−(x − µ)2 / 2σ2}

where µ represents the mean and σ the standard deviation of the distribution. The normal distribution is important
in statistics because the sum of a large number of random variables drawn from any distribution tends to obey a
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normal distribution, no matter what is the distribution of the individual random variables. (The serviceTime pro-
cedure in Section 4 is based on this property.)

2.7.2. Generating Uniform Pseudo-Random Numbers

Since the result of executing any computer program is in general both predictable (if we look carefully at the
code before execution) and repeatable (if we run the same program again), the idea that a computer can be used to
generate a sequence of random numbers seems to be a contradiction. There is no contradiction, however, because
the sequence of numbers that is actually generated by a computer is entirely predictable once the algorithm is
known. Such algorithmically generated sequences are called pseudo-random sequences because they appear to be
random in the sense that a good pseudo-random number sequence can pass most statistical tests designed to check
that their distribution is the same as the intended distribution. On the other hand, to call them ‘‘random’’ numbers is
no worse than it is to label floating point numbers as ‘‘real’’ numbers in a programming language.

It is worth noting that the availability of pseudo-random (rather than truly random) numbers is actually an
advantage in the design of simulation experiments, because it means that our ‘‘random’’ numbers are reproducible.
Thus, to compare two strategies for operating our service station, we can run two experiments with different
numbers of pumps but with exactly the same sequence of customers. Were we to attempt the same comparison
using an actual service station, we would have to try the two alternatives one after the other, with a different
sequence of customers (e.g., those that came on Tuesday instead of those that came on Monday), making it difficult
to claim that a change in our profits was due to the change in strategy rather than the differences in traffic patterns
between Mondays and Tuesdays.

In general, most pseudo-random number generators produce uniform values. (This does not lead to a loss of
generality because, as we shall see in the next section, uniform values can be transformed into other distributions.)
Since only finite accuracy is possible on a real computer, we cannot generate continuous random variables. How-
ever, it is possible to generate pseudo-random integers, xk , uniformly between 0 and some very large number (say
m), which we use directly as a discrete uniform distribution, or transform into the fraction xk/m to be used as an
approximation to a uniform continuous distribution between 0 and 1.

The most popular method of generating uniform pseudo-random integers is as follows. First, an initial value
x 0, the seed, is chosen. Thereafter, each number, xk , is used to generate the next number in the sequence, xk +1, from
the relation

xk +1 :== (a * xk ++ c) mod m

The only difficult part is choosing the constants a, c and m. These must be chosen both to ensure that the period of
the random number generator (i.e., the number of distinct values before the sequence repeats) is large, and also to
ensure that consecutive numbers appear to be independent. Note that the period can be at most m, because there are
only m distinct values between 0 and m −1. A more complete discussion is beyond the scope of this course. For
more information, see The Art of Computer Programming, Volume 2, by D. E. Knuth, Addison-Wesley.

In most programming languages, one or more pre-defined subprograms are provided that return either an
integer between 0 and m, or a ‘‘real’’ number between 0 and 1. If the seed is initialized to the same value when the
program starts executing, then the sequence is repeatable. However, if the seed is set to a different value, a different
sequence will be generated.

In Turing, the ‘‘standard’’ random number generator can be called using

rand (r)

to set r to a uniform value between 0 and 1 (limits not included), or

randint (k, a, b)

to set k to one of the integers a, a +1, . . . , b with equal probability. The seed is automatically initialized to the same
value when the program starts executing. However, the seed can be changed at any time to a value that is both
unpredictable (to the programmer) and non-repeatable, using

randomize

In addition, Turing has 10 more uniform (0, 1) random number generators available using
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randnext (r, j)

to set r to a new value taken from the jth random number generator, 1 ≤ j ≤ 10. The seeds for each of these 10 ran-
dom number generators may be independently reset, for example using

randseed (s, j)

to reset the seed for the jth random number generator to the integer value s. Note that randnext allows us to use a
separate random number stream to generate each of the random variables in our simulator (customer inter-arrival
times, service times, etc.), so it is easier to assess the effects of changing strategies. For example, if separate ran-
dom number streams are used, it is clear that by changing the number of pumps, we do not accidentally change the
customer arrival times or service requirements. Otherwise, were we to use a single random number stream to gen-
erate all random variables in our simulation, we might end up using the kth random number to generate a service
time in one case and an arrival time in the other.

2.7.3. Generating Pseudo-Random Numbers with Other Distributions

At this point, we must introduce the cumulative distribution function, FX(x), which represents the probabil-
ity that the value of the random variable X is less than or equal to x. (Note the difference from the probability den-
sity function that we have been using up to now, which represents the probability that the value of X is equal to x.)
Whenever X is less than x, it is also less than all values greater than x, so that FX(x) is non-decreasing.

For discrete random variables (where X can only take the values v 1, . . . , vN, and v 1 < v 2 < . . . < vN), we can
find FX(x), assuming vk ≤ x < vk +1, as

FX(x) =
j =1
Σ
k

fX(vj)

For continuous random variables, we have

FX(x) = ∫−∞

x
fX(z)dz

Figure 4 shows graphs of FX(x) as a function of x for both discrete and continuous random variables that are uni-
formly distributed between 1 and 4, inclusive.
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Figure 4. Probability Distribution Functions for Uniform [1, 4] Random Variables

We are now ready to explain how FX can be ‘‘inverted’’ in a way that allows us to transform pseudo-random
numbers that have a uniform distribution over the interval (0, 1), which we now know how to generate, into
pseudo-random numbers with other distributions. First, we observe that no matter what value the random variable,
X, takes on, the corresponding value of FX is always between 0 and 1, which also ‘‘happens’’ to be the range of a
continuous uniform (0, 1) random variable. Next, with reference to Figure 4 we choose any value, y, between 0 and
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1, for example y =0.4. For any y, a horizontal line through y always intersects the FX(x) curve at a unique point,
which for this example is x =2 in the discrete case and x =2.2 in the continuous case. (If FX has a horizontal com-
ponent at that point, for example at y=0.25, then we take the left-most intersection point.) >From the definition of
the cumulative distribution function, it should be clear that at this intersection, we have determined the value of x
such that the random variable X takes on values no greater than x a fraction y of the time. But it is also true that a
continuous uniform (0, 1) random variable takes on values no greater than y a fraction y of the time. Thus, we can
generate a sequence of values x 1, x 2, . . . for the random variable X having cumulative distribution function FX by
generating a sequence of values y 1, y 2, . . . having a continuous uniform (0, 1) distribution and then solving the
equation yk = FX(xk) for xk , i.e.,

xk = FX
−1(yk)

where we use FX
−1 to indicate the inverse function to FX. In general, it is not easy to invert FX (for example, FX for

the normal distribution cannot be inverted), but in many cases we can write down an explicit expression for FX
−1. In

the examples below we will explain how to generate pseudo-random variables with several commonly used distribu-
tions in a programming language such as Turing.

For any discrete distribution, where X takes on the value vj with probability pj , j =1, 2, . . . , N, we have in
general that xk can be found from yk using a loop:

rand (y)
j := 1
loop

exit when y <= p (j)
y −−= p (j)
j += 1

end loop
x := v (j)

In the special case of a discrete uniform distribution over the interval [a, b ] (such as Figure 4a, for example), we
can invert FX to obtain

FX
−1(y) = a + floor [ y (b − a + 1) ]

In the case of the Poisson distribution, there is again no simple way to express FX
−1, but since the value of X is poten-

tially unbounded, it is more common to exploit the relation between the exponential and Poisson distributions to
yield the following algorithm

x := 0
interval := t
loop

exponential (y, n) % y set to an exponential value at rate n, as described below
exit when y > interval % i.e., if next arrival occurs outside interval
x += 1 % this arrival is within the interval
interval −−= y % so we can test for more arrivals in remaining interval

end loop

As for continuous distributions, we have that pseudo-random variables having a continuous uniform distri-
bution over (a, b) can be found from

FX
−1(y) = a + y × (b − a)

To generate a value from the exponential distribution with rate r, we proceed as follows. First, we must integrate
the probability density function that was given in Section 3.1 to find FX(x):

FX(x) = ∫0
x

r exp{−r t} dt

for all x>0. Therefore, to invert FX, we must solve y = 1 − exp{−r x} in terms of x, i.e., x = −1/r ln {1 − y}. But if y
is uniformly distributed over (0, 1), then so is 1−y, so we can replace 1−y by y to obtain:

xk = (−1/r) ln(yk)
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2.8. A Complete Example Simulation Program

We have now outlined the general approach to designing a stochastic simulation program, and illustrated each
step by referring to an automobile service station problem. It is now time to show you what a complete simulation
program for modelling this system might look like in Turing. Thus, the remainder of this section is a complete Tur-
ing program for modelling the service station problem. Notice the correspondence between the concepts mentioned
above (entities, relationships, event routines, generation of stochastic variables, etc.) and the various components of
the program. In the final section of this chapter, we will refer to the output generated by this program when we con-
sider the problem of how to interpret the output of a stochastic simulation.

const profit := .025 % dollars per litre
const cost := 20 % the incremental cost in dollars to operate one pump for a day

var ReportInterval, endingTime : real
get ReportInterval, endingTime

var simulationTime : real := 0 % in seconds since the start of the simulation
var TotalArrivals, customersServed, balkingCustomers : int := 0
var TotalLitresSold, TotalLitresMissed, TotalWaitingTime, TotalServiceTime : real := 0

%------------------------------------------------------------------------------
% Entities
%------------------------------------------------------------------------------

var car : collection of
record

arrivalTime : real
litresNeeded : real
next : pointer to car

end record

var numPumps : int
get numPumps
put "This simulation run uses ", numPumps, " pumps " ..

var pump : array 1 .. numPumps of
record

completionTime : real
next : int
carInService : pointer to car

end record

% Link all pumps into the available pumps list.

var availablePump : int := 1
for j : 1 .. numPumps −− 1

pump (j).next := j + 1
end for
pump (numPumps).next := 0

%------------------------------------------------------------------------------
% Event list.
%------------------------------------------------------------------------------
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% To avoid managing a separate list of busy pumps, sorted by departure times, we do the
% following "trick": event types will be represented as integer constants, where values
% 1 .. numPumps represent a departure from the respective pump, 0 represents an arrival,
% -1 a progress report, and -2 the end of the simulation. (We don’t reserve a number for
% the start of service events, because all are triggered by service completions or arrivals)

const pervasive arrival := 0
const pervasive progressReport := −− 1
const pervasive allDone := −− 2

module event
export (insert, getNext)

var eventList : collection of
record

what : int
whatTime : real
next : pointer to eventList

end record

var firstEvent := nil (eventList)

% Now create insert/delete utilities for manipulating the eventList

procedure insert (whatType : int, time : real)
var e : pointer to eventList
new eventList, e
eventList (e).what := whatType
eventList (e).whatTime := time
if firstEvent = nil (eventList) or time < eventList (firstEvent).whatTime then

eventList (e).next := firstEvent
firstEvent := e

else
var behind := firstEvent
var ahead := eventList (firstEvent).next
loop

exit when ahead = nil (eventList) or eventList (ahead).whatTime > time
behind := ahead
ahead := eventList (ahead).next

end loop
eventList (behind).next := e
eventList (e).next := ahead

end if
end insert

procedure getNext (var what : int, var whatTime : real)
pre firstEvent not= nil (eventList)
what := eventList (firstEvent).what
whatTime := eventList (firstEvent).whatTime
const restOfList := eventList (firstEvent).next
free eventList, firstEvent
firstEvent := restOfList

end getNext

end event
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%------------------------------------------------------------------------------
% Queue for waiting cars
%------------------------------------------------------------------------------

module carQueue
import (simulationTime, var car)
export (insert, getNext, queueSize, emptyTime)

var firstWaitingCar, lastWaitingCar : pointer to car := nil (car)
var hiddenQueueSize : int := 0
var totalEmptyQueueTime : real := 0

function queueSize : int % This function is only necessary because of the Turing proof rules
result hiddenQueueSize

end queueSize

function emptyTime : real
if hiddenQueueSize > 0 then

result totalEmptyQueueTime
else

result totalEmptyQueueTime + simulationTime
end if

end emptyTime

procedure insert (newestCar : pointer to car)
pre car (newestCar).next = nil (car)
if lastWaitingCar = nil (car) then

assert hiddenQueueSize = 0
firstWaitingCar := newestCar
totalEmptyQueueTime += simulationTime

else
assert hiddenQueueSize > 0
car (lastWaitingCar).next := newestCar

end if
lastWaitingCar := newestCar
hiddenQueueSize += 1

end insert

procedure getNext (var nextCar : pointer to car)
pre hiddenQueueSize > 0 and firstWaitingCar not= nil (car)
hiddenQueueSize −−= 1
nextCar := firstWaitingCar
firstWaitingCar := car (firstWaitingCar).next
if firstWaitingCar = nil (car) then

% empty queue: update the pointer to the end of queue too!
assert lastWaitingCar = nextCar
lastWaitingCar := nil (car)
totalEmptyQueueTime −−= simulationTime

end if
car (nextCar).next := nil (car) % so we can’t have a dangling pointer

end getNext

end carQueue
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%------------------------------------------------------------------------------
% Generation of Stochastic Variables
%------------------------------------------------------------------------------

module random
export (interarrivalTime, numLitres, DoesCarBalk, serviceTime)

% Since Turing provides us with 10 separate pseudo-random number streams, and
% our program contains four stochastic variables, will reserve a different
% stream for each stochastic variable as follows:
const arrivalStream := 1 % auto arrival times
const litreStream := 2 % number of litres needed
const balkingStream := 3 % balking probability
const serviceStream := 4 % service times

put "and the following random number seeds:"
var nextSeed : int
for j : 1 .. 4

get nextSeed
put nextSeed : 10 ..
randseed (nextSeed, j)

end for
put ""

procedure interarrivalTime (var thisArrivalTime : real)

% The interarrival time of the next car is exponentially distributed

const MEAN := 50 % seconds
var r : real
randnext (r, arrivalStream)
thisArrivalTime := −− MEAN ∗ ln (r)

end interarrivalTime

procedure numLitres (var n : real)

% The number of litres required by a car is uniform between 10 and 60

randnext (n, litreStream)
n := 10 + n ∗ 50

end numLitres

procedure DoesCarBalk (litres : real, queueLength : int, var yes : boolean)

% The probability that a car leaves without buying gas (i.e., balks)
% grows larger as the queue length gets larger, and grows smaller
% when the car requires a greater number of litres of gas, such that:
% (1) there is no balking if the queueLength is zero, and
% (2) otherwise, the probability of *not* balking is
% (40 + litres) / (25 * (3 + queueLength))

var r : real
randnext (r, balkingStream)
yes := queueLength > 0 and r > (40 + litres) / (25 ∗ (3 + queueLength))

end DoesCarBalk
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procedure serviceTime (litres : real, var howLong : real)

% Service times will have a near Normal distribution, where the mean is 150
% seconds plus 1/2 second per litre, and the standard deviation is 30 seconds
% (It can be shown that the sum of 12 random numbers from the
% uniform distribution on (0,1) has a near Normal distribution
% with mean 6 and standard deviation 1.)

var r : real
howLong := −− 6
for i : 1 .. 12

randnext (r, serviceStream)
howLong += r

end for
howLong := 150 + 0.5 ∗ litres + 30 ∗ howLong

end serviceTime
end random

%------------------------------------------------------------------------------
% Event Routines
%------------------------------------------------------------------------------

procedure startService (arrivingCar : pointer to car)
pre availablePump > 0

TotalWaitingTime += simulationTime −− car (arrivingCar).arrivalTime
var pumpTime : real
random.serviceTime (car (arrivingCar).litresNeeded, pumpTime)
TotalServiceTime += pumpTime

% Match the auto to first available pump
pump (availablePump).carInService := arrivingCar
pump (availablePump).completionTime := simulationTime + pumpTime
% Schedule departure of car from this pump
event.insert (availablePump, pump (availablePump).completionTime)
availablePump := pump (availablePump).next

end startService

procedure carArrives
TotalArrivals += 1
var L : real
random.numLitres (L)
var carLeaves : boolean
random.DoesCarBalk (L, carQueue.queueSize, carLeaves)
if carLeaves then

balkingCustomers += 1
TotalLitresMissed += L

else
% Create and initialize a new auto record

var arrivingCar : pointer to car
new car, arrivingCar
car (arrivingCar).arrivalTime := simulationTime
car (arrivingCar).litresNeeded := L
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car (arrivingCar).next := nil (car)

if availablePump > 0 then
startService (arrivingCar)

else
carQueue.insert (arrivingCar)

end if
end if
var timeToNextCar : real
random.interarrivalTime (timeToNextCar)
event.insert (arrival, timeToNextCar + simulationTime)

end carArrives

procedure departure (whichPumpFinished : int)
pre pump (whichPumpFinished).carInService not= nil (car)
var departingCar := pump (whichPumpFinished).carInService
pump (whichPumpFinished).next := availablePump
availablePump := whichPumpFinished
customersServed += 1
TotalLitresSold += car (departingCar).litresNeeded
free car, departingCar
if carQueue.queueSize > 0 then

carQueue.getNext (departingCar)
startService (departingCar)

end if
end departure

procedure snapshot
put simulationTime : 8, TotalArrivals : 7, carQueue.emptyTime / simulationTime : 8 : 3 ..
if TotalArrivals > 0 then

put simulationTime / TotalArrivals : 9 : 3,
(TotalLitresSold + TotalLitresMissed) / TotalArrivals : 8 : 3 ..

else
put "Unknown" : 9, "Unknown" : 8 ..

end if
put balkingCustomers : 8,

TotalWaitingTime / max (1, customersServed) : 9 : 3,
TotalServiceTime / (numPumps ∗ simulationTime) : 7 : 3,
TotalLitresSold ∗ profit −− cost ∗ numPumps : 8 : 2,
TotalLitresMissed ∗ profit : 8 : 2

event.insert (progressReport, simulationTime + ReportInterval)
end snapshot

%------------------------------------------------------------------------------
% Initialization
%------------------------------------------------------------------------------

% Schedule the end-of-simulation and the first progress report.

event.insert (allDone, endingTime)
if ReportInterval <= endingTime then

event.insert (progressReport, ReportInterval)
end if
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% Schedule the first car to arrive at the start of the simulation

event.insert (arrival, 0)

% Print column headings for periodic progress reports and final report

put " Current" : 10, "Total" : 7, "NoQueue" : 8, "Car−>Car" : 9, "Average" : 8, "Number" : 8,
"Average" : 9, "Pump " : 7, "Total " : 8, " Lost " : 6

put " Time " : 10, " Cars" : 7, "Fraction" : 8, " Time " : 9, " Litres " : 8, "Balked" : 8,
" Wait " : 9, "Usage" : 7, "Profit" : 8, "Profit" : 6

put repeat ("−", 80)

%------------------------------------------------------------------------------
% Main program
%------------------------------------------------------------------------------

var currentEvent : int
loop

event.getNext (currentEvent, simulationTime)
exit when currentEvent = allDone
if currentEvent = progressReport then

snapshot
elsif currentEvent = arrival then

carArrives
elsif currentEvent > 0 and currentEvent <= numPumps then

departure (currentEvent)
else

put "Error: unknown event code encountered"
end if

end loop
snapshot

2.9. Output Analysis in Stochastic Simulation

Once the simulation program has been completely written and carefully tested, the actual simulation experi-
ment must be carried out. The idea of the experiment is to conduct one or more simulation ‘‘runs’’ from which
measurements are collected. The output from these runs is used to assess the performance of the system (or sys-
tems, if alternative strategies are being evaluated). For example, one run from our service station simulator might
have produced the following output:
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This simulation run uses three pumps and the following random number seeds:

1 2 3 4

Current Total NoQueue Car−>Car Average Number Average Pump Total Lost

Time Cars Fraction Time Litres Balked Wait Usage Profit Profit���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
20000 382 0.529 52.356 34.342 67 54.877 0.875 221.34 46.62

40000 771 0.470 51.881 34.454 136 59.949 0.887 505.85 98.25

60000 1157 0.475 51.858 34.767 206 61.015 0.888 794.76 150.87

80000 1554 0.476 51.480 35.052 290 60.764 0.884 1088.26 213.51

100000 1967 0.475 50.839 34.974 379 60.524 0.884 1376.51 283.35

120000 2351 0.477 51.042 34.957 451 60.753 0.882 1652.25 342.38

140000 2760 0.473 50.725 34.824 539 61.889 0.883 1934.74 408.09

160000 3175 0.468 50.394 34.682 625 62.332 0.886 2225.05 467.86

180000 3574 0.464 50.364 34.753 696 62.592 0.888 2524.16 521.05

200000 3957 0.468 50.543 34.746 769 61.654 0.887 2807.68 569.61

2.9.1. Initial and Final Conditions

When calculating performance figures from a simulation run, care must be taken to ensure that the results
obtained are not systematically distorted because of either the initial state of the system at the beginning of each
simulation run or the final state of the system when end-of-simulation is encountered.

For example, suppose we were concerned with the time for an auto to fill up its tank during a busy time of
day, such as afternoon rush hour before a holiday. If we ran the simulation for a long time, we might find that under
those operating conditions an average of 15 autos are in the station having their tanks filled or waiting for a free
pump. But if the initial state for the simulation did not have any autos in the service station, then it would be obvi-
ous that the first few autos spent less time waiting than a ‘‘typical’’ auto would. Thus, our estimate for the mean
system time would turn out too low unless we

i) ran our simulation for such a long time that the measurements from these first few customers had very
little influence on the mean,

ii) began our measurements part way through the simulation run, by which point the system should have
reached a state that is more ‘‘normal’’, or

iii) used the average values from one simulation run as the initial conditions for the next simulation run so
that, hopefully, the system is in a normal state throughout the entire run.

In the output from our service station simulator, the effect of the initial conditions (i.e., a completely idle sta-
tion) are quite evident. Notice that even though the first progress report was not printed until almost 400 cars had
passed through our service station, we still see a downward trend in the fraction of time that the queue of waiting
cars is empty, and an upward trend in both the average waiting time and the utilization of the pumps.

The end conditions of the simulation must also be checked before we can trust our calculated performance
statistics. For example, the waiting times and service times for customers in the system when end-of-simulation is
reached may or may not be counted, depending on the method used for recording these measurements. If such cus-
tomers are not counted, then we risk underestimating the utilization of the server, because some customers who
might have been part way through their service time are ignored. If such customers are counted, then we risk
underestimating the mean waiting time and overestimating the mean service rate because, in effect, we may be
claiming that these customers were served during our simulation run when in fact their service would not have been
completed until later.

In the case of our service station simulator, notice that we are adding the service times for each car to the total
service performed in the startService procedure. Thus, we are always overestimating the pump utilization: in effect,
we are (optimistically) claiming that the entire service times for all cars not still in the waiting queue have been
completed by the end of simulation — even those cars still in service. If the run length is short enough, this choice
of stopping condition can lead to ‘‘impossibly good’’ results. For example, notice that in the following data
(representing a short run with a heavily loaded service station) the pumps appear to be busy more than 100 percent
of the time at the first few progress reports!



MODELLING AND SIMULATION 22

This simulation run uses two pumps and the following random number seeds:

1 2 3 4

Current Total NoQueue Car−>Car Average Number Average Pump Total Lost

Time Cars Fraction Time Litres Balked Wait Usage Profit Profit ! � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 
2000 39 0.072 51.282 31.508 11 182.897 1.002 -18.43 9.15

4000 82 0.039 48.780 31.037 28 184.429 1.004 2.70 20.93

6000 124 0.059 48.387 33.032 46 190.620 1.014 26.29 36.10

8000 162 0.068 49.383 34.455 62 190.959 1.005 50.97 48.57

10000 207 0.069 48.309 33.815 81 205.277 1.002 71.16 63.84

12000 240 0.067 50.000 34.090 92 204.176 1.005 92.20 72.33

14000 284 0.058 49.296 34.094 111 215.161 1.005 115.38 86.68

16000 304 0.088 52.632 34.567 113 210.377 0.993 134.53 88.18

18000 343 0.094 52.478 34.308 127 210.086 0.996 155.13 99.06

20000 382 0.084 52.356 34.227 140 211.138 0.997 178.59 108.28

Of course, we could easily replace the overestimate with an underestimate by moving the accumulation of
service time to the departure routine. However, calculating the correct value for pump utilization is much trickier.

Another possibility that must be considered in assessing the end conditions of the simulation is whether or not
the system being simulated is overloaded. Since only a finite period of simulated time elapses during each simula-
tion run, the average waiting time will always be finite, even if the system is in fact so overloaded that the customer
waiting times are growing without bound as simulated time advances. Thus, our performance statistics are unreli-
able if a significant proportion of the customers are still in the system at the end of simulation: either the simulation
run was too short (and the effects of the initial and final conditions are large), or the system was overloaded.

2.9.2. Confidence Intervals on the Mean of a Random Variable

Once we have carried out one or more simulation runs, and convinced ourselves that the boundary conditions
due to initial and final conditions have not spoiled our results, we are left with the task of trying to conclude some-
thing about the values of various random variables in the model, such as the mean waiting time for an auto in our
service station, for example. It is simple to calculate the sample mean

X" " ≡
N
1#�#

j =1
Σ
N

xj ,

i.e., the average of the N measurements that we made of the value of the random variable X. Similarly, we can cal-
culate the sample variance

SX
2 ≡

N −1
1$ $�$�$�$

j =1
Σ
N %&

xj − X' ' () 2

by averaging the squared differences between each measurement and the sample mean. But as we scan down the
columns of measurements in the output, it is obvious that these sample quantities vary as a function of (simulated)
time. Furthermore, if we repeat the experiment using different random number seeds, we soon see that the measure-
ments also vary from one run to the next. Consequently, we should be skeptical of concluding that any of these
sample means or variances are equal to the true mean and variance of X that we set out to find in the first place.
And indeed to proceed further, we need to make some assumptions about the distribution of X.

As a first step, suppose a ‘‘helpful genie’’ were to tell us that the random variable X has a Normal distribu-
tion (i.e., a ‘‘bell-shaped’’ probability density function). In this case, knowledge of the Normal distribution would
allow us to construct confidence intervals about the sample mean, say X* * ± C, that contain the true mean, say M, a
specified fraction of the time (the greater the fraction, the wider the resulting confidence interval about X+ + ). This
construction is based on the following two facts about the Normal distribution with mean M and variance σ2. First,
the proportion of measurements that fall within a distance of Kσ from M is known. For example, if we make a large
number of measurements x 1, x 2, . . . , then approximately 95 percent of them will fall within the interval M ± 2σ.
The key observation for us is that, since the distance from M to a measurement xj is the same as the distance from xj

to M, we can turn this result around to say that 95 percent of the time M falls within the interval xj ± 2σ. A table of
results in this form is shown below in Figure 5. Second, the average of N measurements taken from a Normal
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distribution with mean M and variance σ2 also has a Normal distribution, but with mean M and variance σ2/N.
Thus, if the confidence interval ends up too wide, it can be tightened by averaging in additional measurements. For
example, using four times as many measurements cuts the width of the confidence interval in half.

, ,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,
Interval Fraction of time that the interval includes the true mean- -�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-

(x − σ, x + σ) 0.67
(x − 2σ, x + 2σ) 0.95

(x − 2.6σ, x + 2.6σ) 0.99. .�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.///
//
/

///
//
/

///
//
/

Figure 5. Intervals about a measurement x that will contain the true mean a given fraction of the time, when the ran-
dom variable has a Normal distribution with mean M and variance σ2

The problem with the result above is that even if we knew that the random variable had a Normal distribution,
we still couldn’t write down a confidence interval for M without knowing σ2 (which depends on M). To get out of
this circular chain of reasoning, we need a method of estimating σ2 that is based on X0 0 instead of M. Clearly the
sample variance, defined above, is not a very good estimate, especially when the number of measurements is small.
Indeed, if only one measurement is available, then the sample variance is always zero, indicating that we have not
observed any variability in our measurements. But σ2 = 0 means something quite different, namely that X is not a
random variable at all! The solution is to use an ‘‘unbiased’’ estimate of the sample variance to represent σ2, i.e.,

σ2 ∼∼
N −1

11 1�1�1�1
j =1
Σ
N 23

xj − X4 4 56 2
,

and then simply go ahead and use the results described above in Table 1. (By dividing the sum by N −1 instead of
N, it is clear that we cannot estimate σ2 from a single measurement.)

A more serious problem with the method outlined above is that the kinds of random variables that usually
come up in simulation models, such as the mean time in system for autos at our service station, almost never have a
Normal distribution! Fortunately, the Central Limit Theorem in statistics tells us that under fairly general cir-
cumstances, the average of a large number of measurements does have a Normal distribution even if the individual
measurements themselves do not have a Normal distribution. It follows that we can still find a confidence interval if
we carry out K independent repetitions of the same simulation experiment and treat the K sample means X7 7 j ,
j =1, . . . , K, as the measurements.

For example, suppose we ran four more runs of the service station simulation with 3 pumps, giving us, in
total, five independent measurements of the mean waiting time. The last line of output from each of these runs is
reproduced in the following table:

Current Total NoQueue Car−>Car Average Number Average Pump Total Lost

Time Cars Fraction Time Litres Balked Wait Usage Profit Profit8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8
200000 3957 0.468 50.543 34.746 769 61.654 0.887 2807.68 569.61

200000 4096 0.397 48.828 35.081 881 76.382 0.903 2870.20 662.09

200000 4062 0.432 49.237 34.850 848 66.428 0.899 2826.69 652.29

200000 3961 0.440 50.492 35.108 787 69.013 0.894 2821.66 594.93

200000 3972 0.429 50.352 34.886 790 66.098 0.890 2799.53 604.62

Because each of these five numbers is the average of a large number of individual measurements, we can use the
Central Limit Theorem to conclude that they can be treated as measurements from a Normal distribution with mean

X9 9 =
5

61.654 + 76.382 + 66.428 + 69.013 + 66.098: :�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�: = 67.915

with variance

σ2 ∼∼
4
1;<;>=? (61.654−X@ @ )2 + (76.382−XA A )2 + (66.428−XB B )2 + (69.013−XC C )2 + (66.098−XD D )2EF

Next, we note that 67.915 is (almost) the average of five measurements from the Normal distribution with variance
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σ2. Thus, we can use the second fact about the Normal distribution mentioned above to conclude that the average of
five measurements, such as 67.915, is itself Normally distributed with the same mean, M, but with the variance
reduced to σ2/5. Finally, we can use Table 1 to construct a confidence interval about 67.915 that includes the true
mean waiting time 95 percent of the time. Namely, XG G ±2σ, i.e., the interval (63.07, 72.77), contains the true mean,
M, about 95% of the time.


