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1 Basic Batch Means Method

Recall from lecture that if X1, X2, . . . Xn is a sequence of n i.i.d. samples, then we can for a confidence
inteval for the mean µ from sample mean, X̄(n), and sample variance, s2(n), in the usual way:
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In practice, the sequence {Xi} is generated by a programming technique called batch means, in which we
partition one long simulaton experiment into a sequence of “batches” representing the measured behavior of
the model over disjoint time periods. Thus, we might define X1 to be result of measurments obtained from
the first interval (from time 0 to time T , say), X2 to be result of measurments obtained from the second
interval (from time T to time 2T , say), and so on. The problem with this approach is that the sequence
{Xi} will be identically distributed (assuming each batch represents the same interval length) but they will
not be mutually independent because the initial state of the model for batch i is defined to be the same as
the final state of the model for batch i− 1. If the individual batch sizes are “large” compared with the time
required for the model to reach “steady-state” (aka its long-term average behavior – think about how the
value of knowing the initial conditions for the “trained flea” example decay over time) then this correlation
at the boundary is not a problem. Thus the real question is: how do you know that your chosen batch size
is large enough?

2 Adaptive Batch Means

Consider the following thought experiment.

How would your results change if you modified your program to collect data for n/2 batches
Y1, . . . Yn/2, each representing the model behavior during disjoint intervals of length 2T , instead
of n batches representing disjoint intervals of length T?

Notice that this change in data collection has zero effect on the behavior of the model. All that has changed
is the frequency with which you output a sample and reset the associated statistical counters. Thus, if each
sample represents the average of some quantity from the model (e.g., average queue size, number of cars
balking per hour) rather than a total value, then we see immediately that:
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and hence that the two sample means are identical:
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The calculation of the sample variance is a lot messier, but eventually leads to an interesting result. We
have:
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The trick for continuing the derivation is to expand the square inside the rightmost sum from Eq.6:(
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Using the identity that (A + B)2 ≡ A2 + 2AB + B2, Eq.7 can be rewritten into the form:(
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Substituting Eq.8 into Eq.6 we obtain after some simplifications:
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It is interesting to compare Eq.9 with Eq.2. First, let us ignore the “off-by-one” discrepancy in the denom-
inator terms of n − 1 versus n − 2, since the difference is insignificant as long as n is not too small. Next,
we see that the first term in Eq.9 is essentially the same as s2

X(n)/2. Finally, we recognize that the second
term in Eq.9 represents the covariance between X2i−1 and X2i. We consider two (extreme) cases.

• If the batch sizes are large enough, then X2i−1 and X2i will be independent, and the covariance term
drops to zero. In this case, if we form a confidence interval from {Yi} using Eq.3, then (i) the sample
variance drops by half and (ii) the number of samples also drops by half, so the expression inside
the square root sign is unchanged, and the final answer only differs by the amount by which the t
distribution changes due to the reduction in the number of degrees of freedom. (If n is large enough for
us to not care about the difference between n− 1 and n− 2, then surely t won’t change much either!)
Thus to summarize: if the batch size is large enough, pairwise aggregation of the data shouldn’t change
the confidence interval.

• If the batch size is too small, then X2i−1 and X2i will be positively correlated. In the most extreme
case, they will be indentical, in which case, the right-hand sum in Eq.9 looks like Eq.2 with half the
terms missing. Since in this extreme situation, the missing half of the terms are identical to the terms
we did include, the value of the right-hand sum in Eq.9 would become s2

X(n)/2 – which is the same as
the first term, so that the final result becomes s2
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variance into Eq.3 shows that the confidence interval formed from {Yi} should be
√

2 time larger than
the confidence interval formed from {Xi}. To summarize: if the batch size is too small, then pairwise
aggregation of the data will cause the size of the confidence interval to increase signficantly.

Based on these results, we are led to the following adaptive batch means algorithm:

1. Choose an initial interval size, T , and number of batches, n

2. Run your program long enough to generate n batches of size T for sample values X1, ..., Xn, then pause
to calculate some confidence intervals.

3. Aggregate the n samples of X to produce n/2 samples of Y , and calculate the confidence intervals for
both sequences.

4. If CIX is small to meet your requirements, and CIX ≈ CIY then stop.

5. Relabel samples Y1, . . . , Yn/2 to become samples X1, . . . , Xn/2 and double the batch size T . Resume
execution of your model for n/2 additional batches of the new size, and loop back to step 3.
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