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CS164 Notes on “ Verification of Link-Level Protocols”  
by D. Knuth, published in BIT vol. 21 (1981), pp. 31-36. 

1. Background 
Recall that Alice’s data-link controller needs to send a never-ending sequence frames 

M [0], M [1], M [2], M [3] … 

to Bob’s data-link controller reliably, across a noisy channel. 

Based on our previous discussions, we know that Bob must send back some form of 
acknowledgement to Alice, telling her whether he has received a particular frame, so she 
can decide if she needs to send Bob another copy. Moreover, since frames and/or 
acknowledgements could be lost, they must agree on some method to identify which 
specific frame they are talking about, rather than assuming they will always agree on 
what is “ this frame” or “ the last frame”. Otherwise, Alice and Bob might get confused in 
a way that causes Bob to miss a particular frame (if Alice thinks he received it when he 
did not, and never sends it again), or to accept the same frame multiple times (if Alice 
thinks he missed it when he did not, and sends another copy of the same frame anyway).  

The easiest way to handle this problem would be to tag each frame, M [j], with its actual 
sequence number, j ∈ I+. However, this naïve approach is guaranteed to fail eventually 
because the space available in the header of the frame is limited, whereas the space 
occupied by an actual sequence number, j, is O (log2 j), which keeps growing forever. For 
example, if the frame header reserved 8 bits for storing the tag, Alice could send only 256 
frames before the tag field overflows. If we increased the tag field to 16 bits, Alice could 
send a lot more frames (i.e., 65,536) before the problem occurred. However, if Alice tries 
to send 100 frames per second, the tag field will overflow in less than 11 minutes.  

Clearly, we need a method for tagging frames that allows Alice to keep transmitting 
forever without running out of space in the (fixed size!) tag field. We already saw one 
such method in the Alternating Bit Protocol1, which uses a 1-bit tag but forbids Alice 
from sending more than one frame before she must stop and wait for some feedback 
about the fate of “ this frame” from Bob. Since this stop-and-wait strategy would be 
exceedingly wasteful if the round-trip time between Alice and Bob were much larger than 
the transmit time for a frame, there is a need for Alice to send multiple frames to Bob 
without waiting for a response from Bob, and at the same time using only a small number 
of bits to represent the tag field. 

2. Detailed Description of the Problem 
2.1 Behavior of Alice 

• Alice has one local variable, A, signifying that she knows Bob has correctly 
received (at least!) the first A consecutive frames that she has sent since the 

                                                 
1 Bartlett et al., “A Note on Reliable Full-Duplex Transmission Over Half-Duplex Links” , Communications 
of the ACM, May 1969, pp. 260-261. 
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beginning of time. Note that the numbering of the frames starts at zero, so this is 
equivalent to saying that Bob must have received all of the frames: 

M [0], M [1], M [2], …, M [A–1] 

• Alice can execute either one of two procedures whenever she likes: 

o a1: If she is not already in the middle of transmitting another frame, she 
can begin transmitting frame M [j], for any frame whose sequence number 
falls within the range j ∈{ A, …, A+k–1} . Thus, in contrast to the 
Alternating Bit protocol (where she is only allowed to send the first 
unacknowledged frame), she is free to choose any frame from among the 
next k unacknowledged frames. 

o a2: If there are any incoming acknowledgements waiting, she can receive 
the first one, and use the value, b, that it contains as the new value for her 
local variable, A, i.e., A ← b.  

2.2 Behavior of Bob 

• Bob has one local variable, B, signifying that he has correctly received (and 
decided to keep!) the first B consecutive frames that Alice has sent since the 
beginning of time and possibly also some additional messages, which are either 
not consecutive with the first B or he has simply chosen not to reveal this extra 
information yet. Again, since the numbering of the frames starts at zero, this is 
equivalent to saying that Bob must have received all of the frames: 

M [0], M [1], M [2], …, M [B–1] 

• Bob can execute either one of two procedures whenever he likes: 

o b1: If he is not already in the middle of transmitting a previous 
acknowledgement to Alice, he can send a new acknowledgment to Alice 
containing the current value, b, of his local variable B. 

o b2: If there are any incoming frames waiting, and he is not in the middle 
of receiving an earlier frame, he can decide to begin receiving the first 
incoming frame, which is M [i] say, and thereafter to decide whether or 
not to keep M [i] or simply throw it away. Once Bob finishes with the 
reception of this frame, he computes a new value, b, for his local variable, 
B, i.e., B ← b. Note that the value b must be greater than or equal to the 
current value of B. Furthermore, Bob must have received and decided to 
keep all of the frames: 

M [0], M [1], M [2], …, M [b–1] 

However, b does need not be related to the sequence number of the 
incoming frame, i, since he may have chosen this time to reveal the 
“secret”  that he previously received and kept some extra frames. 

3.2 Behavior of the Channel between Alice and Bob 

As far as Alice and Bob are concerned, the channel between them looks like a pair of 
FIFO queues. For the frame queue, Bob deletes (i.e., reads) incoming frames from the 
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front, starting with the oldest first, while Alice inserts (i.e., writes) outgoing frames to the 
end, with the newest last. Similarly, for the acknowledgement queue, Alice deletes (i.e., 
reads) incoming acknowledgements from the front, while Bob inserts (i.e., writes) 
outgoing acknowledgments to the end. At any time, there might be multiple frames 
and/or acknowledgments in transit between Alice and Bob, either because the 
propagation delay over the link is very large (e.g., the data is being relayed through a 
satellite), or because data-link control programs at Alice and Bob are simply so slow that 
data from the link is piling up in an input buffer faster than they can read it. We really 
don’ t care what is responsible for the delay as long as the channel behaves like “a piece 
of wire”  i.e., data can be lost or damaged in transit, but never reordered. 

Let us now define some notation to make it easier to describe what we would see in the 
frame queue and acknowledgement queue if we took a snapshot of the system. First, we 
will use the variable i as an index to the acknowledgement queue, so the contents of the 
acknowledgment queue (from front to back) would be described as: 

 b [1], b [2], …, b [i], …, b [n] 

where n represents the total number of acknowledgements that have been sent by Bob 
and not yet received  by Alice.  

Similarly, we would like to use the variable j as an index into the frame queue, but the 
situation here is more complicated because we must be careful not to confuse the 
sequence number for a frame with its current position in the frame queue. In particular, 
the sequence number for the second frame in the queue is not necessarily one greater than 
the sequence number for the first frame in the queue because Alice has the freedom to 
pick any of the first k unacknowledged frames for her next transmission using procedure 
a1. Thus, we will define s [j] to be the sequence number of the frame currently at position 
j in the frame queue, so the contents of the frame queue (from front to back) may be 
described as: 

M [s [1]], M [s [2]], …, M [s [j]] , …, M [s [r]] 

where r represents the total number of frames that have been sent by Alice and not yet 
received by Bob.  

3. Invariant Properties of the Combined System 
What is especially interesting about the material in this section is that we will derive 
some non-trivial global properties, which are always true for the combined system 
(consisting of Alice, Bob and their intermediate channel) even though neither Alice nor 
Bob by themselves has access to enough information about the global system to check 
whether those properties are really true. Moreover, once we have established those global 
properties, it will become very easy to find the minimum space requirement for tagging 
frames when Alice and Bob can send and/or receive frames out of order. 
 
3.1 The contents of the acknowledgment queue is always non-decreasing. 

More generally, the following condition is always true: 
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The proof of Invariant 3.1 is by induction on the total number of times that the above 
condition has been changed by either Alice or Bob. The base case is established at the 
beginning of time, when Alice and Bob initialize A = B = 0, and the acknowledgement 
queue starts out empty (i.e., n = 0). Thereafter, there are exactly three ways in which the 
above condition can be changed: 

1. Alice executes procedure a2, which removes b [1] from the front of the 
acknowledgment queue and sets A ← b [1]. As a result, we must subtract one 
from the queue length, n, and from the queue position indices for each of the 
remaining acknowledgements. 

2. Bob executes procedure b1, which inserts an (n+1)st entry at the end of the 
acknowledgement queue that carries the same value as B.  

3. Bob executes procedure b2, which causes him to set B ← b, where the new value 
satisfies B  b, after he has removed the first frame, M [s [1]], from the front of 
the frame queue. 

Clearly each of these changes preserves the truth of the Invariant, assuming it was true 
previously. 
 
 QED. 
 
3.2 The contents of the frame queue is “ almost”  non-decreasing in the sense that later 
sequence numbers can never back up to k or more below the largest previous value. 

More generally, let j_max represent the largest frame sequence number ever to reach Bob 
up to the current time.2 Then if we augment the list of queued frame sequence numbers 
by defining s [0] ≡ j_max, and s [r+1] ≡ A, the following condition is always true: 

In other words, if the frame with sequence number s [j’ ] is currently at position j’  in the 
frame queue, then Alice has never transmitted another frame ahead of it with a sequence 
number j’+k or larger. In particular, if such an earlier frame (with a sequence number that 
is “ too large”) existed, then there are only two possibilities for its current location. Either 
the “ too large”  frame has already reached Bob, in which case its value would be included 
in j_max, or it is still in the frame queue at some earlier position j < j’ . However, since we 
have defined j_max to be the sequence number for position zero in the augmented frame 
queue, it should be clear that both of these possibilities are part of the above condition. 

Once again, the proof of Invariant 3.2 is by induction on the total number of times that 
the augmented frame queue has been changed by either Alice or Bob. The base case is 
established at the beginning of time, when Alice and Bob initialize A = j_max = 0, and 
the frame queue starts out empty (i.e., r = 0). Thereafter, there are exactly two ways in 
which the above condition can be changed: 

                                                 
2 Note that we need to refer to the value j_max as part of the proof. However since Bob has no particular 
use for this information, he may not choose to keep track of it and hence we did not define it as another 
local variable for Bob in section 2.2. 

A � b [1]  b [2]  …  b [n]  B (3.1) 

s [j] < s [j’ ] + k, for all 0 ≤ j < j’  ≤ r+1 (3.2) 
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1. Alice executes procedure a1, which inserts an (r+1)st entry at the end of the frame 
queue. Note that Alice may choose any value between A and A+k–1 for the 
sequence number for the newly-inserted frame, which is both large enough to 
preserve the inequality when the new frame acts as j’  relative to some earlier 
frame, and also small enough when it acts as j relative to the last value A. 

2. Bob executes procedure b2, which causes him to remove frame M [s [1]] from the 
front of the frame queue. In addition, we must subtract one from the queue length, 
r, and from the queue position indices for each of the remaining entries. Note that 
removing the first entry from the frame queue will clearly trigger a reevaluation 
of j_max, which makes this change equivalent to replacing the first two entries 
from the head of the augmented frame queue with a single entry, equal to the 
maximum of the two. Thus since the upper limit condition on s [j] was 
individually true for both values beforehand, it is also true for their maximum. 

QED. 

 
3.3 I f frame M [s [j]] is currently in the frame queue, then its sequence number, s [j], 
must be “ close”  to B. 

More specifically, the following condition is always true: 

The proof of Invariant 3.3 can be done in the following way. First, by evaluating 
Invariant 3.2 with j’  = r+1, we see immediately that 

s [j] < A + k 

Thus, the right-hand inequality from Invariant 3.3 is established by using the result A ≤ B, 
which is obtained from Invariant 3.1. 

Next, we recognize that since j_max ≡ s [0] is part of the definition of the augmented 
frame queue, we see immediately from Invariant 3.2 that 

j_max < s [j] + k 

We also recognize from the definition of B that all frames up to and including at least M 
[B–1] must have reached Bob, and hence that 

B – 1 ≤ j_max 

By combining these last two results, we see that B – 1 ≤ s [j] + k, or B – k < s [j], 
establishes the left-hand inequality from Invariant 3.3.  

QED. 

 
3.4 I f acknowledgement b [i] is currently in the acknowledgement queue, then its value 
must be “ close”  to A. 

More specifically, the following condition is always true: 

B – k ≤ s [j] < B + k  (3.3) 

A ≤ b [i] ≤ A + k  (3.4) 
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The proof of Invariant 3.4 is very easy. The left-hand inequality from Invariant 3.4 is just 
a special case of Invariant 3.1. Thus, to prove the right-hand inequality we just need to 
continue the derivation in section 3.3 for a few more steps. In particular, by combining 
the above result that B – 1 ≤ j_max with the fact that j_max < A + k from Invariant 3.2, 
we see immediately that B – 1 < A + k, or B  ≤ A + k. The final step is to use Invariant 3.1 
to show that b [i] ≤ B.  

QED. 

4. Main Result: Sequence Numbers Modulo m May be Used as Tags 
Now consider what happens to the correctness of the system if Alice and Bob don’ t 
include actual sequence numbers (i.e., non-negative integers of potentially unlimited 
size) in Alice’s frames or Bob’s acknowledgements. Instead, they include only its 
remainder, after dividing the actual sequence number by some constant, m. Under what 
conditions on m (as a function of Alice’s out-of-order sending limit, k) can we be sure 
that Alice and Bob can never misinterpret the other party’s reference to frame j, even 
though the corresponding message only contains a tag value of t ≡ j modulo m, rather 
than its actual sequence number, j? 

4.1 Alice executes a2, and must understand the acknowledgement sent by Bob. 

First, suppose the value of the acknowledgement that Alice reads from the front of the 
queue carries only the tag x ≡ b [1] modulo m, rather than the complete sequence number, 
b [1]. How can she reliably pick out Bob’s intended value, b [1], out of the (infinite) set 
of the possible interpretations for a tag value of x, i.e., 

x, (x + m), (x + 2m), …, (b [1] – m), b [1], (b [1] + m), … 

The key here is that, because of Invariant 3.4, Alice knows even before she reads it, that 
the sequence number b [1] must fall within a very narrow range: 

A ≤ b [1] ≤ A + k 

Thus, if only one of the possible interpretations for the tag value x falls within this range, 
then Bob’s intended value is obvious! But since the possible range for b [1] is an interval 
of k + 1 consecutive values, whereas the different interpretations are separated by at least 
m, Alice will be left with only one possible interpretation to choose from we require 

 

4.2 Bob executes b2, and must identify the sequence number of the frame sent by Alice. 

Now, suppose the value of the frame that Bob reads from the front of the queue carries 
only the tag x ≡ s [1] modulo m, rather than the complete sequence number, s [1]. This 
time, we can use Invariant 3.3 to show that even before he reads it, Bob knows that the 
sequence number for the first frame, s [1], must fall within a (slightly less-narrow) range: 

B – k ≤ s [1] < B + k  

m  k + 1  (4.1) 
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Thus, using a similar argument to the one in section 4.1, Alice’s intended sequence 
number will be obvious to Bob as long as we are sure that only one of the possible 
interpretations will fit within this range. This time, however, Bob’s range contains 2k 
consecutive values, so Bob will be left with only one possible interpretation to choose 
from if we require 

In the case where Bob is attempting to receive frames from Alice, there is another 
complication we need to consider. Remember that procedure b2 gives Bob the flexibility 
to receive frames out of order, and/or to withhold information about received frames from 
Alice, even though a lazy/inefficient (but still correct) implementation of Bob’s data-link 
controller might decide to accept frames only if they arrive in numerical order, or more 
generally only if they are among the first ���� as-yet unreceived frames. As a result, as long 
as Bob can determine that the sequence number for the incoming frame is not in the 
“useful”  (i.e., worth keeping) range 

B  s [1] < B + �����– 1 

he does not need to know whether the incoming frame is “useless”  because it is too old 
(i.e., s [1] < B, so Bob has already received it) or too new (i.e., s [1] > B + �����– 1, so it falls  
beyond the end of Bob’s resequencing buffer of size ����). Let’s see how this relaxation of 
the problem changes the requirements on m. 

Clearly, Bob needs to examine each incoming frame, whose actual sequence number 
could be any value in the range 

B – k,  B + k + 1, …,  B + k – 1, 

and correctly identify the sequence numbers for every “useful”  frame, i.e., those whose 
sequence numbers in the range 

B, B + 1, …, B + �����– 1 

which must be kept. The remaining sequence numbers are classified as “useless”  and the 
associated frames are simply discarded. The key to solving this problem is to recognize 
that if Alice sends the sequence numbers modulo m, then 

B – m, B + 1 – m, …, B + �����– 1 – m 

represents the most-recent previous range of sequence numbers that shares its tags with 
the “useful”  range, and  

B + m, B + 1 + m, …, B + �����– 1 + m 

represents the earliest future range of sequence numbers that shares its tags with the 
“useful”  range. Thus, if a failure occurs then one of two situations must have happened: 

1. The most-recent previous range of sequence numbers that shares its tags with the 
“useful”  range is too close, and overlaps some valid sequence numbers for “ too 
old”  frames. But this cannot happen if the largest item from the previous tag 
range is smaller than the smallest valid sequence number, i.e.,  

m  2k    (4.2) 
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B + �����– 1 – m < B – k,   

or 

k + �������� �  m. 

2. The earliest future range of sequence number that shares its tags with the “useful”  
range is too close, and overlaps some valid sequence numbers for “ too new” 
frames. But this cannot happen if the smallest item from the next tag range is 
greater than the largest valid sequence number, i.e., 

B + m > B + k – 1 

or 

m  k. 

Since the first situation generates a requirement on k that is stronger than both the second 
situation and the earlier requirement from section (4.1), our final result is that the 
sequence number modulus must satisfy 

 

where  

• k represents the limit of Alice’s ability to send frames out of order, k � 1, and 

• ��������represents the limit of Bob’s ability to receive frames out of order, 1  ��������� k. 

 

m � k + �������� (4.3) 


