Network Monitoring Using
Traffic Dispersion Graphs (TDGSs)

Marios Iliofotou

Joint work with:

Prashanth Pappu (Cisco), Michalis Faloutsos (UCR), M. Mitzenmacher
(Harvard), Sumeet Singh(Cisco) and George Varghese (UCSD)

UC Riverside, Computer Science and Engineering Department
© 2006-2007

Introduction

= Task of Network Monitoring/Management: know your network.

Detect attacks, spot abnormalities

Get informed about changes in traffic trends
Adjust bandwidth allocation (rate limit or block flows etc.)

s Network traffic as seen at a router

(r)

‘Finer’ granularity: Packets
= Bytes/sec, pkts/sec, etc.
Flows, aggregating a set of packets
= Flow records summaries (Cisco NetFlow)
Flows/second
Heavy Hitters (Top 10 Flows)
Individual Hosts that send packets
= Top hosts in number of pkts, flows etc.

Payload inspection (Packet or Flow Level)
New Dimension: What we also see?

"'T | Traditional Network/__
B0 M ata
(2]
mU M
nﬁﬂ M I
o i i
e RN N R]
g e, T s W
time
Iri AutoFocus (CAIDA)
HOST B-1 CEa] . .
124.10.1.112 sz o= !ri‘ gg:;_i-zl,us
a. . M Ea.
e [l]'i;r -
Ij| = o HOST D-2 [[l-:—lﬂ“‘“
A=) ‘L\T' T;ff“"" } 2310412 / e\
Kl I RouTer Ir-il' ./_./
i ozt o1
: PJ_ ¥ HosTA
I ::_.'I‘-;_;.viﬁlﬂ.lﬂ.ﬂ.l‘d | .
' Monitoring
Point

= Set of interacting hosts (Graph) (who is talking to whom?)

Gives new source of information.

Introduction

= From a Monitoring Level Perspective
« Flows: aggregate a set of related packets
= Hosts: aggregate a set of related flows (belong to the host)

= TDGs: aggregate a set of related hosts

Flow
— SYN FIN \
(£ = SYN FIN - -
LT_DD]II I3 ---- {11 1THITO
Host
Packet Flow Individual Host Host Community (TDG)

= Contribution: In this work, we propose TDGs as a way to

= Monitor/Analyze and Visualize Network Traffic

Related Work

= Related work using host interactions

= Ellis et al. in ACM WORM 2004. Try to detect the tree-like structure of a
self propagating code (worm detection).

= Complicated link predicates (worm spread signature)
= Spread of communication, depth, fan-out
= (*) Only on worm detection, enterprise networks
= Xie et al. in ICNP 2006. Internet Forensic Analysis.
= Backward random walk
= Post-mortem analysis - identify patient zero (origin of the attack)

= Aiello et al. in PAM 2005.Communities of Interest in Data Networks.

= Grouping of hosts based on their interaction patterns F‘ox
Popularity and Frequency o ﬁg

« Karagianis et al. in ACM SIGCOMM 2006. BLINC.

= Operates at the Host aggregation Level
Profile the users, and subsequently classify their flows

E.g., a host with many longed lived connections that carry large amount of data and
uses different ports for each flow is labeled as p2p

SYN FIN /
Host

EER
EERIl

Packet Flow Individual Host ~ Host Community TDG)

Outline

= Defining TDGs

= EXxploration using TDG Visualizations

= Quantifying TDGs using graph metrics

= Translate visual intuition into quantitative measures

s Future Work and Conclusions

| Traffic Dispersion Graphs (TDGSs)

= Example of a TDG Formation Process

The Links:
F-1 > D-2 Generated TDG

D-1 > B-1
D-1 A _
D-25 A D-2

D-1>A

Questions that arise:

e When do we add a link?

e How long do we monitor?

e How do we characterize
a TDG?

Generating a TDG

o What are the steps for generating a TDG?
1. Select a monitoring point (e.g., central router, backbone link)

2. Select an “edge filter”. Very important operation!
. Edge Filter = “"What constitutes an edge in the graph?”
. E.g., TCP SYN Dst. Port 80

3. For a packet that satisfies the edge filter, derive the link
. srcIP - dstIP

4, Collect the set of produced links within a time interval
. E.g., 300 seconds (5 minutes)

5. Gather all the links and generate a Graph.
. This is the TDG for the particular “edge filter” and observation interval selected
o Observation: TDGs are formed by the online addition of links
8 Dynamic Graphs

o Why do we use edge filters?
8 Try to isolate specific communities of interacting hosts (filter out “noise”)
. E.g., a part of a peer-to-peer overlay (filter-out everything else)

B Ask questions (query) the network

. E.g., how does the graph of all the nodes that send packets having the
payload signature “BitTorrent” looks like?

Edge Filtering Operation

= We can have many TDGs depending on the “edge filter”

=« Examples of Edge Filters:
= a) number of pkts/bytes exchanged

= b) any combination of L3 and L4 header features
TCP with SYN flag set and dst port 25

= C) sequence of packets (e.g., TCP 3-way handshake)
= d) Payload properties DPI
e.g., use as edges all the packets that match a particular content signature

= In this work we focus on studying port-based TDGs

= UDP ports we generate an edge based on the first matching packet
= e.g., on UDP packet with destination port 53 to get the "DNS TDG"
= TCP we add a directed edge on a TCP SYN packet for the corresponding
destination port number (thus, we know the initiator)
= e.g., port 80 for the HTTP TDG, port 25 for SMTP TDG etc.

Experiments

= We will show that even these simple edge filters work

= They can isolate various communities of nodes

= Specific interactions corresponding to known application

Those applications that operate on the monitored port (e.g., port 53 > DNS)

= We conducted experiments using various real traffic traces

= Typical duration = 1 hour

= 0C48 from CAIDA (22 million flows, 3.5 million IPs)
= Abilene Backbone for NLANR (23.5 million flows, 6 million IPs)
= WIDE Backbone (5 million flows, 1 million IPs)

= Access links traces (University of Auckland) + UCR traces were studied but
not shown here (future work)

| Outline

= Exploration using TDG Visualizations
= Quantifying TDGs using graph metrics

= Degree Distribution, Component Sizes, etc.

s Future Work and Conclusions

10

11

TDG Visualization (DNS)

DNS TDG

= UDP Dst. Port 53
= 5 seconds

In-andOut- ____—
degree nodes

Very common in DNS, presence
of few very high degree node

One large Connected
Component!

(even in such small interval)

12

()] 1
© =
d
S S
%n W\cﬂ?d
o O n O u O
@ — B o 3
. c £ c g o 2
@) c aQ
<) <= O O cC w0
B o S o 9 g =
5 cl O w 9 3 9 o <
73 L O -« o = Q
DS c S-_albu d i nbn
N.M oS = O un rn_Wulum-do
> 8 B 2 2 =2 o 25 >~ a
[CR S O ¢ QO ® S £
mmo o = O <2] © 5
o F @ Q - 0 & ©O = O
E fa)
T O = m m

A~
a¥

W i
N— \. ex” ®
- i
O A M i
= a!
N
© "y
3
= e
O "¢
)

T

Slammer Worm
UDP Dst. port 1434

10 seconds

About: 71
= Jan 25, 2003. Ve

@
& " g®

MS-SQL-Server 2000 exploit wf*\ ,,
« Trace: April 24th

= Observations
(Scanning Activity)
= Many high out-degree nodes
= Many disconnected components
= The majority of nodes have
only in-degree

= Nodes being scanned

14

TDG Visualizations (Peer-to-Peer)

e ® ® e » e 4 - g8 g

St 0n U o R liesses Sl o Tyl
-'.“.“."i (L] ;’,Ql-.o’qﬁ s-hl-..’. ."-..’ ¥ e '*‘:.—" .l-.
= . L (3 L L] é k. » .
WinMX P2P App el P A A ANt Ahle g v e, e A TS tee b Atee,
...Q‘b.Of .. < ..'...i,-' A"‘”’ "":-':* ._._‘_...,-"_. .‘.o-?.l-o
L] H b o ° s -
= UDP Dst. Port 6257 sready JO K S UL U T e P ey
. .
= 15sec wad I " 1
®

Observations

= Many nodes with in-
and-out degree (InO)

= One large connected
component

= Long chains

InO degree Bidirectional

\
R

o
@

|
y

._"....l.
e o 5,

15

How can we Visualize compare TDGs?

port 8080

Web

: https

Web

L . »
* .'.a,q‘.‘ L ﬂ," .-_,_."....."
o A et WP e Pl T SO L sy
® e N N » R« s
’ r.“-c a!,p Rg W i:- U 6?’ o gy e
L i e, HUS .*, eI .) .l.*" ';._“"
] 8, g ah

¢ .

How can we Visualize compare TDGs?

Random IP range scanning activity?

NetBIOS: port 137

Slammer: port 1434

16

17

How can we Visualize compare TDGs?

SMTP (email)

e Today none of the current monitoring tools provide this dimension of traffic monitoring

Outline

= Quantifying TDGs using Graph Metrics

s Future Work and Conclusions

18

19

Graph Metrics on TDGs

= What we have seen so far: “Visualization is useful by itself”

= However, it requires a human operator

= Next Step?
= Itis important to translate visual intuition into quantitative measures

= To achieve this, we use a series of graph metrics
= Goal: Quantitatively characterize TDG properties.
= Average Degree, degree distribution, component size distribution etc.
= For evaluating and testing our metrics we used real network traffic traces
= Backbone (0OC48 @ CAIDA, WIDE Backbone, Abilene Network)
= All traces are 1 hour long and monitor millions of hosts.

= Methodology: Each TDG is generated within a 300 sec interval
= Presented values are averaged over the 12 disjoint 300 sec intervals of the 1h trace

= Note: We can always choose to ignore directivity for metrics such as the
= popularity (distinct IPs with which a node is connected)
= component distribution etc.

Graph Metrics on TDGs

= Average Degree: On average how many neighbors each node has.

= High average degree in TDG usually indicates collaboration

= €.g., p2p apps, online gaming overlays

= Stability of TDG @ HTTP B SMTP CJDNS
metrics over time ! 98
8.619
= Small Std Div. o8
7.8 -
o 658
g
o 5.8
S 4.733
Z 48-
3.825
3.8 -
- 2536 2835 2.367 2.389 2.732
1.993
iy ——
0C48 Abilene WIDE

Graph Metrics on TDGs

= Average Degree: On average how many neighbors each node has.

= High average degree in TDG usually indicates collaboration

= €.g., p2p apps, online gaming overlays

= Stability of TDG @HTTP WSMTP [ODNS OP2P
metrics over time ! 21.8 7 10,667
) 19.8 I
= Small Std Div.
17.8
15.8
3 Blubster
qg)., 13.8 /
% 11.8
o 8.619
g 98
) 7.8 - 2 - E
' =1 WIinMX
5.8 - 4.733
/ 2.367] 2.389 3825
3.8 2.536 : : 2.732
- Jz.sss 1.993 _ i
18 ——— [e
0OC48 Abilene WIDE

Graph Metrics on TDGs

= Directionality: The percentage of nodes with only in-edges
(sinks), only out-edges (sources) OR both in-and-out edges (InO).

Very useful metric:

= Collaborating communities have
= High InO - Act both as clients and server
= Heavy scanning activity
= High % of only-in-edges (?)
IPs being scanned
= Client server TDGs have
= very low InO, and

= balanced percentages
only in-degree (~%20) OR
only out-degree nodes (~80%)
Usually we have more clients than servers.

eDonkey Vs HTTP

= TCP SYN pkts are used in
both

The presence of nodes with
both in- and out- degrees
(InO).

= Can be used to discriminate

between p2p and client-

server application.

If the % of nodes with InO
increases for some port, it
can be used as an indication
that a p2p app is tunneling
traffic under that port.

Example (InO)

23

. eDonkey (p2p) OC48 Tl:ace HTTP
10 T 10 ; ’ ’ :
Peer-to-peer | Client - Server
; ¥ 10°
g ") s s B
o * ¥, 2 o2l Proxies?
: s il e g .
© 40 i i % £%§$¢*¢ f*f;* s > o
e +
§ §§£+++%+¢P +++
+ 4+ R
I R R e s
100 sl W BT T T LR e
10" 10' 10°
In-Degree In-Degree
P2P
40 A
Q 4 3203 "\
o 30 28.72
g
=
(L]
L 20
%)
3 11.04 9.98
r 10
ks 3.34 .
° 0.09
b\ D - I I I I
DNS SMTP HTTP WIinMX eDonkey Soribada

24

Component Size Distribution

= In general TDGs can be disconnected graphs
= There is no (undirected) path between every pair on nodes in the graph

= The component size distribution captures the % of node that belong to a

particular component size

= Giant Connected Component (GCC): Is the size of the largest connected

subgraph in a TDG, measured as the % of nodes belonging to that
component.
= Collaborative communities are found to have one large GCC
= The size of GCC & total # of disconnect components

= Has stability over time

= Captures intrinsic characteristics of the underlining application

25

Monitoring Example (Gcc)

100 ——FEMh—-n-rrw T

_ - -y) WO . e S, - % DNS
Monitor the top 10 ports i / \ VL,nMX '\ Y
number in number of flows. 5 79 | Sorib-22321 " sorib. 7674
@ z i 3 $
Scatter Plot: Bl e e R o &
re) Bl s cmmiommstarscnmml QDQDK@Y‘ﬂ@ﬁﬁ _________________________ .
= GCC Vs number of 2 40 = 5
connected components. 8 ap b MS‘SQL B | N
C ili ime! Q
Stability over Time 8 20 - 0C48 Trace %
Peer-to-peer 10 ferererreses R """""""""""""" """""""""""
O Il L L L L Ll l 'l I | L lllll' 1 L lllllli"“ L 1 Ll 1 51l
= large GCC > 90% 1 10 100 1000 10000
Ms-sql-s, NetBIOS Number of Connected Components
= Suspicious activity = Soribada = eDonkey
= Many disconnected = UDP port 22321 = TCP port 4662
= UDP port 4665
= Small GCC (we would have a = UDP port 7674 Por
large GCC if there was one = WIinMX = NetBlOs
arge = UDP port 137
large scanner) = UDP port 6257 MS-SQL-S

= TCP por 1433

= Quantifying TDGs using Graph Metrics

Outline

= Non-scalar Metrics

Future Work and Conclusions

26

27

Degree Distribution

1 z = : 1 g L
2 : g Y SMTP : iy

> o HTTE i ~N B1ey / 3 P~ 0.1
b oot f / = X 0.01 | i-“ X :
A N LN e /
3¢ 0.001 f 1 3¢ 0.001 | / 1 3¢
(s / = 1 "~ sopa | MNetBIOS] L oeor B
o eDonkey | o s 1 (o 8 3 i —

1e-08 | . 1205 | LA e-04

fe-06 : L J 1e-06 RS L et A Rt e 1| B P | 105]] i

1 10 100 1000 10000 1 10 100 1000 10000 i 10 100 1000 10000
Degree Degree Degree

= The degree distributions show heavy tailed behavior
= Some distribution can be closely modeled with power-laws (HTTP, DNS).

= P2P communities tend to have many medium degree nodes (degree 4 to 30).
= HTTP and DNS have few nodes with very high degrees.
= High variability (stdv/avg): HTTP=16, DNS=6. WinMX=1.6, eDonkey=1.8.

= NetBIOS:

= Scanning activity !! 98% of nodes have degree of one,

few nodes with very high degree - scanners

28

Joint Degree Distribution (JDD)

Note: Not all the links of the graph are shown!

We collected the set of links

10 11
©

QuONON O

= The matrix is Symmetric

P(ki,k2), probability that a randomly selected edge connects nodes of
degrees ki and k2

= Normalized by the total Number of links

29

Joint Degree Distribution (JDD)

HTTP (client-server) WinMX (peer-to-peer) DNS (c-s and p2p)
|log 15 Plk k) | |log, Pl k) | llog ,, P(K k)|
=] ' ' - AN
3 = :i:;‘\é‘\\i SN A N . m*°
25 \ %ﬁw Ry
s‘: 2 55\2/5\4\ I>°
o5 W

0 05 1 1.5 2 25 3 3538
logm(k1)

log i o(k 1)

= Contour plots

= X-axis: Degree of the node on the one end of the link (logarithmic scale due to high variability)
= y-axis: Degree of the other node (logarithmic scale due to high variability)
= Observations:
= HTTP: low degree client to low to high degree servers
= One end of the link has low degree and the other has low-to-high
= WinMX: medium degree nodes are connected
= DNS: sings of both client server and peer-to-peer behavior

= Top degree nodes are not directly connected
= White regions at the top right corner

Outline

Introduction

Related Work

Defining TDGs

Exploration using TDG Visualizations

Quantifying TDGs using graph metrics

Conclusions

30

Conclusions

= New way of looking at traffic, that offers:

= Nice visualization that can enhance intuition

= We only used general graph visualizations (GraphViz)

More application specific tools could be developed

=« Graphs that have information

= Can be used to describe the interaction of the captured node

P2P, client-server, scanning activity?

= Stability over time
= It can be used to trigger alarms

= Potentially, we can derive thresholds to classify TDGs

31

Future Directions

Develop of a s/w Monitoring Tool, which uses TDGs

From TDGs can we reveal underline application?
= Which are the best metrics?
= Which are the thresholds for this metrics?

How are TDG features change over time.
= E.g., within 24 period.
= A week?

= Months
= 107 days (WIDE Backbone trace)

= Years (historical traces, WIDE Backbone 7 years of trace collection)
= Can we capture features of the evolution of applications

Effect of the observation point
= Backbone Vs Assess Link Vs Enterprise central router

32

TDG - Publication

“Network Monitoring Using Traffic Dispersion Graphs”
= Marios Iliofotou, P. Pappu, M. Faloutsos, M. Mitzenmacher, S. Singh, G. Varghese

= Internet Measurement Conference (IMC 2007)

33

ey

Q‘Q @

L
Q 090P,]

A\%k{ n@»%@ i

e. S\

- QQ \v4 Q
St o %ié iidy
e N\ Pg Wer® 7o
o o . e g{;"g 2 S
- oo o , B

o g e Sy

L i g&fw] % Dp°

o) Sadotpe B, B

¢ TGETR e
a5 (?@; % & \Nove
g W Sy
é g o ¥

~
e
é

/cﬁ' o %

&7 /\\
g g

T g

Thank Youl!

Questions/Discussion

35

Additional Monitoring Example

Spread of Blaster Worm

= Honeypot trace in a LAN
(@ UCSD)

= Blaster Worm spread

emulation

= Observations:
= Tree-like structure
(Ellis et al.)

= High Depth
« Max =8
= Avg = 4.4

= InO =21%!

