
Network Monitoring Using
Traffic Dispersion Graphs (TDGs)

Marios Iliofotou

Joint work with:

Prashanth Pappu (Cisco), Michalis Faloutsos (UCR), M. Mitzenmacher
(Harvard), Sumeet Singh(Cisco) and George Varghese (UCSD)

UC Riverside, Computer Science and Engineering Department

© 2006-2007

2

Introduction

� Task of Network Monitoring/Management: know your network.

� Detect attacks, spot abnormalities

� Get informed about changes in traffic trends

� Adjust bandwidth allocation (rate limit or block flows etc.)

� Network traffic as seen at a router

� ‘Finer’ granularity: PacketsPackets

� Bytes/sec, pkts/sec, etc.

�� FlowsFlows, aggregating a set of packets

� Flow records summaries (Cisco NetFlow)

� Flows/second

� Heavy Hitters (Top 10 Flows)

� Individual HostsHosts that send packets

� Top hosts in number of pkts, flows etc.

�� Payload inspectionPayload inspection (Packet or Flow Level)

�� New DimensionNew Dimension: What we also see?

� Set of interacting hosts (Graph) (who is talking to whom?)

� Gives new source of information.

MonitoringMonitoring

PointPoint

time

b
p
s

Traditional Network Traditional Network

DataData

AutoFocusAutoFocus (CAIDA)(CAIDA)

3

Introduction

� From a Monitoring Level Perspective

� Flows: aggregate a set of related packets

� Hosts: aggregate a set of related flows (belong to the host)

� TDGs: aggregate a set of related hosts

�� ContributionContribution: In this work, we propose TDGs as a way to

� Monitor/Analyze and Visualize Network Traffic

4

Related Work

� Related work using host interactions

� Ellis et al. in ACM WORM 2004. Try to detect the tree-like structure of a

self propagating code (worm detection).

� Complicated link predicates (worm spread signature)

� Spread of communication, depth, fan-out

� (*) Only on worm detection, enterprise networks

� Xie et al. in ICNP 2006. Internet Forensic Analysis.

� Backward random walk

� Post-mortem analysis � identify patient zero (origin of the attack)

� Aiello et al. in PAM 2005.Communities of Interest in Data Networks.

� Grouping of hosts based on their interaction patterns

� Popularity and Frequency

� Karagianis et al. in ACM SIGCOMM 2006. BLINCBLINC.

� Operates at the Host aggregation Level

� Profile the users, and subsequently classify their flows

� E.g., a host with many longed lived connections that carry large amount of data and

uses different ports for each flow is labeled as p2p

5

Outline

� Introduction

� Related Work

�� Defining Defining TDGsTDGs

� Exploration using TDG Visualizations

� Quantifying TDGs using graph metrics

� Translate visual intuition into quantitative measures

� Future Work and Conclusions

6

Traffic Dispersion Graphs (TDGs)

� Example of a TDG Formation Process

Generated TDGGenerated TDG

Questions that arise:Questions that arise:

• When do we add a link?

• How long do we monitor?

• How do we characterize

a TDG?

BB--11

BB--22

FF--11

AA

D-1

D-2

The Links:

F-1 ���� D-2

D-1 ���� B-1

D-2 ���� A

D-1 ���� A

B-2 ���� D-1

7

Generating a TDG

� What are the steps for generating a TDG?

1. Select a monitoring point (e.g., central router, backbone link)

2. Select an “edge filter”. Very important operation!

� Edge Filter = “What constitutes an edge in the graph?”

� E.g., TCP SYN Dst. Port 80

3. For a packet that satisfies the edge filter, derive the link

� srcIP � dstIP

4. Collect the set of produced links within a time interval

� E.g., 300 seconds (5 minutes)

5. Gather all the links and generate a Graph.

� This is the TDG for the particular “edge filter” and observation interval selected

� Observation: TDGs are formed by the online addition of linksonline addition of links

� Dynamic Graphs

� Why do we use edge filters?

� Try to isolate specific communities of interacting hosts (filter out “noise”)

� E.g., a part of a peer-to-peer overlay (filterfilter--outout everything else)

� Ask questions (query) the network

� E.g., how does the graph of all the nodes that send packets having the

payload signature “BitTorrent” looks like?

8

Edge Filtering Operation

� We can have many TDGs depending on the “edge filter”

� Examples of Edge Filters:

� a) number of pkts/bytes exchanged

� b) any combination of L3 and L4 header features

� TCP with SYN flag set and dst port 25

� c) sequence of packets (e.g., TCP 3-way handshake)

� d) Payload properties DPI

� e.g., use as edges all the packets that match a particular content signaturecontent signature

� In this work we focus on studying portport--based based TDGsTDGs

�� UDPUDP ports we generate an edge based on the first matching packet

� e.g., on UDP packet with destination port 53 to get the “DNS TDG”

�� TCPTCP we add a directed edge on a TCP SYN packet for the corresponding

destination port number (thus, we know the initiator)

� e.g., port 80 for the HTTP TDG, port 25 for SMTP TDG etc.

9

Experiments

� We will show that even these simple edge filters work

� They can isolate various communities of nodes

� Specific interactions corresponding to known application

� Those applications that operate on the monitored port (e.g., port 53 � DNS)

� We conducted experiments using various real traffic traces

� Typical duration = 1 hour

� OC48 from CAIDA (22 million flows, 3.5 million IPs)

� Abilene Backbone for NLANR (23.5 million flows, 6 million IPs)

� WIDE Backbone (5 million flows, 1 million IPs)

� Access links traces (University of Auckland) + UCR traces were studied but

not shown here (future work)

10

Outline

� Introduction

� Related Work

� Defining TDGs

� Exploration using TDG Visualizations

� Quantifying TDGs using graph metrics

� Degree Distribution, Component Sizes, etc.

� Future Work and Conclusions

11

TDG Visualization (DNS)

DNS TDGDNS TDG

� UDP Dst. Port 53

� 5 seconds

Very common in DNS, presence
of few very high degree node

In- and Out-
degree nodes

One large Connected
Component!

(even in such small interval)

12

TDG Visualization (HTTP)

HTTP TDGHTTP TDG

� TCP SYN Dst. Port 80

� 30 seconds

Observations

� There is not a large

connected component as

in DNS

� Clear roles

� very few nodes with in-

and-out degrees)

� Web proxies?

� Many disconnected

components

A busy web
server?

13

TDG Visualization (Slammer Worm)

Slammer WormSlammer Worm

� UDP Dst. port 1434

� 10 seconds

� About:

� Jan 25, 2003.

MS-SQL-Server 2000 exploit

� Trace: April 24th

� Observations

(Scanning Activity)

� Many high out-degree nodes

� Many disconnected components

� The majority of nodes have

only inonly in--degreedegree

� Nodes being scanned

14

TDG Visualizations (Peer-to-Peer)

WinMX P2P App

� UDP Dst. Port 6257

� 15 sec

Observations

� Many nodes with in-

and-out degree (InO)

� One large connected

component

� Long chains

Zoom

InO degree Bidirectional

15

How can we Visualize compare TDGs?

Web: https Web: port 8080

16

How can we Visualize compare TDGs?

Slammer: port 1434 NetBIOS: port 137

Random IP range scanning activity?Random IP range scanning activity?

17

How can we Visualize compare TDGs?

SMTP (email) DNS

• Today none of the current monitoring tools provide this dimension of traffic monitoring

18

Outline

� Introduction

� Related Work

� Defining TDGs

� Exploration using TDG Visualizations

� Quantifying TDGs using Graph Metrics

� Future Work and Conclusions

19

Graph Metrics on TDGs

� What we have seen so far: “Visualization is useful by itself”

� However, it requires a human operator

� Next Step?

� It is important to translate visual intuition into quantitative measures

� To achieve this, we use a series of graph metrics

� Goal: Quantitatively characterize TDG properties.

� Average Degree, degree distribution, component size distribution etc.

� For evaluating and testing our metrics we used real network traffic traces

� Backbone (OC48 @ CAIDA, WIDE Backbone, Abilene Network)

� All traces are 1 hour long and monitor millions of hosts.

� Methodology: Each TDG is generated within a 300 sec interval300 sec interval

� Presented values are averaged over the 12 disjoint 300 sec intervals of the 1h trace

� Note: We can always choose to ignore directivity for metrics such as the

� popularity (distinct IPs with which a node is connected)

� component distribution etc.

20

Graph Metrics on TDGs

� Average Degree: On average how many neighbors each node has.

� High average degree in TDG usually indicates collaboration

� e.g., p2p apps, online gaming overlays

�� StabilityStability of TDG

metrics over time !

� Small Std Div.

1.993

2.835 2.3892.536 2.367 2.732

8.619

4.733

3.825

1.8

2.8

3.8

4.8

5.8

6.8

7.8

8.8

9.8

OC48 Abilene WIDE

A
ve

ra
g

e
D

eg
re

e
HTTP SMTP DNS

21

Graph Metrics on TDGs

1.993
2.835

7.56

2.536 2.3892.7322.367
3.825

4.733

8.619

19.667

1.8

3.8

5.8

7.8

9.8

11.8

13.8

15.8

17.8

19.8

21.8

OC48 Abilene WIDE

A
ve

ra
ge

 D
eg

re
e

HTTP SMTP DNS P2P

� Average Degree: On average how many neighbors each node has.

� High average degree in TDG usually indicates collaboration

� e.g., p2p apps, online gaming overlays

�� StabilityStability of TDG

metrics over time !

� Small Std Div.

WinMXWinMX

BlubsterBlubster

22

Graph Metrics on TDGs

� Directionality: The percentage of nodes with only in-edges

(sinks), only out-edges (sources) OR both in-and-out edges (InO).

Very useful metric:

� Collaborating communities have

�� High High InOInO � Act both as clients and server

� Heavy scanning activity

� High % of onlyHigh % of only--inin--edges (?) edges (?)

� IPs being scanned

� Client server TDGs have

� very low InO, and

� balanced percentages

� only in-degree (~%20) OR

� only out-degree nodes (~80%)

� Usually we have more clients than servers.

23

Example (InO)

� eDonkey Vs HTTP

� TCP SYN pkts are used in

both

� The presence of nodes with

both in- and out- degrees

(InO).

� Can be used to discriminate

between p2p and client-

server application.

� If the % of nodes with InO

increases for some port, it

can be used as an indication

that a p2p app is tunneling

traffic under that port.

Peer-to-peer Client - Server

Proxies? Proxies?

OC48 Trace

P2P

24

Component Size Distribution

� In general TDGs can be disconnected graphs

� There is nono (undirected) path between every pair on nodes in the graph

� The component size distribution captures the % of node that belong to a

particular component size

� Giant Connected Component (GCC): Is the size of the largest connected

subgraph in a TDG, measured as the % of nodes belonging to that

component.

� Collaborative communities are found to have one large GCC

� The size of GCC & total # of disconnect components

� Has stability over time

� Captures intrinsic characteristics of the underlining application

25

Monitoring Example (Gcc)

� Monitor the top 10 ports

number in number of flows.

� Scatter Plot:

� GCC Vs number of

connected components.

�� Stability over Time!Stability over Time!

� Peer-to-peer

� large GCC > 90%

� Ms-sql-s, NetBIOS

� Suspicious activity

� Many disconnected

� Small GCC (we would have a

large GCC if there was one

large scanner)

� Soribada

� UDP port 22321

� UDP port 7674

� WinMX

� UDP port 6257

� eDonkey

� TCP port 4662

� UDP port 4665

� NetBIOS

� UDP port 137

� MS-SQL-S

� TCP por 1433

OC48 Trace

Number of Connected Components

26

Outline

� Introduction

� Related Work

� Defining TDGs

� Exploration using TDG Visualizations

� Quantifying TDGs using Graph Metrics

� Scalar Metrics

� Non-scalar Metrics

� Future Work and Conclusions

27

Degree Distribution
P
(X
≥
x
)

P
(X
≥
x
)

P
(X
≥
x
)

Degree Degree Degree

� The degree distributions show heavy tailed behavior

� Some distribution can be closely modeled with powerpower--lawslaws (HTTP, DNS)(HTTP, DNS).

� P2P communities tend to have many medium degree nodes (degree 4 to 30).

� HTTP and DNS have few nodes with very high degrees.

� High variability (stdv/avg): HTTP=16, DNS=6. WinMX=1.6, eDonkey=1.8.

� NetBIOS:

� Scanning activity !! 98% of nodes have degree of one,

few nodes with very high degree � scanners

28

Joint Degree Distribution (JDD)

� We collected the set of links

� The matrix is Symmetric

� P(k1,k2), probability that a randomly selected edge connects nodes of
degrees k1 and k2

� Normalized by the total Number of links

10 11

6 9

2 5

1110987654321

1

32

3

4

35

16

7

8

19

110

111

2 5

5 2

Note: Not all the links of the graph are shown!Note: Not all the links of the graph are shown!

29

Joint Degree Distribution (JDD)

� Contour plots

� x-axis: Degree of the node on the one end of the link (logarithmic scale due to high variability)

� y-axis: Degree of the other node (logarithmic scale due to high variability)

� Observations:

� HTTP: low degree client to low to high degree servers

� One end of the link has low degree and the other has low-to-high

� WinMX: medium degree nodes are connected

� DNS: sings of both client server and peer-to-peer behavior

� Top degree nodes are not directly connected

� White regions at the top right corner

HTTP (client-server) WinMX (peer-to-peer) DNS (c-s and p2p)

30

Outline

� Introduction

� Related Work

� Defining TDGs

� Exploration using TDG Visualizations

� Quantifying TDGs using graph metrics

� Conclusions

31

Conclusions

� New way of looking at traffic, that offers:

� Nice visualization that can enhance intuition

� We only used general graph visualizations (GraphViz)

� More application specific tools could be developed

� Graphs that have information

� Can be used to describe the interaction of the captured node

� P2P, client-server, scanning activity?

� Stability over time

� It can be used to trigger alarms

� Potentially, we can derive thresholds to classify TDGs

32

Future Directions

� Develop of a s/w Monitoring Tool, which uses TDGs

� From TDGs can we reveal underline application?

� Which are the best metrics?

� Which are the thresholds for this metrics?

� How are TDG features change over time.

� E.g., within 24 period.

� A week?

� Months

� 107 days (WIDE Backbone trace)

� Years (historical traces, WIDE Backbone 7 years of trace collection)

� Can we capture features of the evolution of applications

� Effect of the observation point

� Backbone VsVs Assess Link VsVs Enterprise central router

33

TDG - Publication

�� ““Network Monitoring Using Traffic Dispersion GraphsNetwork Monitoring Using Traffic Dispersion Graphs””

� Marios Iliofotou, P. Pappu, M. Faloutsos, M. Mitzenmacher, S. Singh, G. Varghese

� Internet Measurement Conference (IMC 2007)

Thank You!

Questions/Discussion

35

Additional Monitoring Example

� Honeypot trace in a LAN

(@ UCSD)

� Blaster Worm spread

emulation

� Observations:

� Tree-like structure

(Ellis et al.)

� High Depth

� Max = 8

� Avg = 4.4

� InO = 21% !

Spread of Blaster WormSpread of Blaster Worm

