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Introduction

� Task of Network Monitoring/Management: know your network.

� Detect attacks, spot abnormalities 

� Get informed about changes in traffic trends

� Adjust bandwidth allocation (rate limit or block flows etc.)

� Network traffic as seen at a router

� ‘Finer’ granularity: PacketsPackets

� Bytes/sec, pkts/sec, etc.

�� FlowsFlows, aggregating a set of packets

� Flow records summaries (Cisco NetFlow)

� Flows/second

� Heavy Hitters (Top 10 Flows)

� Individual HostsHosts that send packets

� Top hosts in number of pkts, flows etc.

�� Payload inspectionPayload inspection (Packet or Flow Level)

�� New DimensionNew Dimension: What we also see? 

� Set of interacting hosts (Graph) (who is talking to whom?)

� Gives new source of information.

MonitoringMonitoring

PointPoint

time

b
p
s

Traditional Network Traditional Network 

DataData

AutoFocusAutoFocus (CAIDA)(CAIDA)
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Introduction

� From a Monitoring Level Perspective

� Flows: aggregate a set of related packets

� Hosts: aggregate a set of related flows (belong to the host) 

� TDGs: aggregate a set of related hosts 

�� ContributionContribution: In this work, we propose TDGs as a way to

� Monitor/Analyze and   Visualize Network Traffic
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Related Work

� Related work using host interactions

� Ellis et al. in ACM WORM 2004. Try to detect the tree-like structure of a 

self propagating code (worm detection).

� Complicated link predicates (worm spread signature)

� Spread of communication, depth, fan-out

� (*) Only on worm detection, enterprise networks

� Xie et al. in ICNP 2006. Internet Forensic Analysis. 

� Backward random walk

� Post-mortem analysis � identify patient zero (origin of the attack)

� Aiello et al. in PAM 2005.Communities of Interest in Data Networks.

� Grouping of hosts based on their interaction patterns 

� Popularity and Frequency

� Karagianis et al. in ACM SIGCOMM 2006. BLINCBLINC. 

� Operates at the Host aggregation Level

� Profile the users, and subsequently classify their flows

� E.g., a host with many longed lived connections that carry large amount of data and 

uses different ports for each flow is labeled as p2p
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Outline

� Introduction

� Related Work

�� Defining Defining TDGsTDGs

� Exploration using TDG Visualizations

� Quantifying TDGs using graph metrics

� Translate visual intuition into quantitative measures

� Future Work and Conclusions
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Traffic Dispersion Graphs (TDGs)

� Example of a TDG Formation Process

Generated TDGGenerated TDG

Questions that arise:Questions that arise:

• When do we add a link?

• How long do we monitor?

• How do we characterize 

a TDG?

BB--11

BB--22

FF--11

AA

D-1

D-2

The Links:

F-1 ���� D-2

D-1 ���� B-1

D-2 ���� A

D-1 ���� A

B-2 ���� D-1
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Generating a TDG

� What are the steps for generating a TDG?

1. Select a monitoring point (e.g., central router, backbone link)

2. Select an “edge filter”. Very important operation!

� Edge Filter = “What constitutes an edge in the graph?”

� E.g., TCP SYN Dst. Port 80

3. For a packet that satisfies the edge filter, derive the link

� srcIP � dstIP

4. Collect the set of produced links within a time interval

� E.g., 300 seconds (5 minutes)

5. Gather all the links and generate a Graph. 

� This is the TDG for the particular “edge filter” and observation interval selected

� Observation: TDGs are formed by the online addition of linksonline addition of links

� Dynamic Graphs 

� Why do we use edge filters?

� Try to isolate specific communities of interacting hosts (filter out “noise”)

� E.g.,  a part of a peer-to-peer overlay (filterfilter--outout everything else)

� Ask questions (query) the network

� E.g., how does the graph of all the nodes that send packets having the 

payload signature “BitTorrent” looks like? 
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Edge Filtering Operation

� We can have many TDGs depending on the “edge filter”

� Examples of Edge Filters: 

� a) number of pkts/bytes exchanged    

� b) any combination of L3 and L4 header features

� TCP with SYN flag set and dst port 25 

� c) sequence of packets (e.g., TCP 3-way handshake) 

� d) Payload properties DPI 

� e.g., use as edges all the packets that match a particular content signaturecontent signature

� In this work we focus on studying portport--based based TDGsTDGs

�� UDPUDP ports we generate an edge based on the first matching packet 

� e.g., on UDP packet with destination port 53 to get the “DNS TDG”

�� TCPTCP we add a directed edge on a TCP SYN packet for the corresponding 

destination port number (thus, we know the initiator) 

� e.g., port 80 for the HTTP TDG, port 25 for SMTP TDG etc.
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Experiments

� We will show that even these simple edge filters work

� They can isolate various communities of nodes

� Specific interactions corresponding to known application 

� Those applications that operate on the monitored port (e.g., port 53 � DNS)

� We conducted experiments using various real traffic traces

� Typical duration = 1 hour

� OC48 from CAIDA (22 million flows, 3.5 million IPs)

� Abilene Backbone for NLANR (23.5 million flows, 6 million IPs)

� WIDE Backbone (5 million flows, 1 million IPs)

� Access links traces (University of Auckland) + UCR traces were studied but 

not shown here (future work) 
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Outline

� Introduction

� Related Work

� Defining TDGs

� Exploration using TDG Visualizations

� Quantifying TDGs using graph metrics

� Degree Distribution, Component Sizes, etc.

� Future Work and Conclusions
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TDG Visualization (DNS)

DNS TDGDNS TDG

� UDP Dst. Port 53

� 5 seconds

Very common in DNS, presence
of few very high degree node

In- and Out-
degree nodes

One large Connected 
Component!

(even in such small interval)
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TDG Visualization (HTTP)

HTTP TDGHTTP TDG

� TCP SYN Dst. Port 80

� 30 seconds

Observations

� There is not a large 

connected component as 

in DNS

� Clear roles 

� very few nodes with in-

and-out degrees)

� Web proxies?

� Many disconnected 

components

A busy web 
server?
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TDG Visualization (Slammer Worm)

Slammer WormSlammer Worm

� UDP Dst. port 1434

� 10 seconds 

� About:

� Jan 25, 2003. 

MS-SQL-Server 2000 exploit

� Trace: April 24th

� Observations 

(Scanning Activity)

� Many high out-degree nodes

� Many disconnected components

� The majority of nodes have 

only inonly in--degreedegree

� Nodes being scanned
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TDG Visualizations (Peer-to-Peer)

WinMX P2P App

� UDP Dst. Port 6257

� 15 sec

Observations

� Many nodes with in-

and-out degree (InO)

� One large connected 

component

� Long chains

Zoom

InO degree Bidirectional
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How can we Visualize compare TDGs?

Web: https Web: port 8080
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How can we Visualize compare TDGs?

Slammer: port 1434 NetBIOS: port 137

Random IP range scanning activity?Random IP range scanning activity?
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How can we Visualize compare TDGs?

SMTP (email) DNS

• Today none of the current monitoring tools provide this dimension of traffic monitoring
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Outline

� Introduction

� Related Work

� Defining TDGs

� Exploration using TDG Visualizations

� Quantifying TDGs using Graph Metrics

� Future Work and Conclusions
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Graph Metrics on TDGs

� What we have seen so far: “Visualization is useful by itself”

� However, it requires a human operator

� Next Step? 

� It is important to translate visual intuition into quantitative measures

� To achieve this, we use a series of graph metrics

� Goal:  Quantitatively characterize TDG properties.

� Average Degree, degree distribution, component size distribution etc.

� For evaluating and testing our metrics we used real network traffic traces 

� Backbone (OC48 @ CAIDA, WIDE Backbone, Abilene Network)

� All traces are 1 hour long and monitor millions of hosts.

� Methodology: Each TDG is generated within a 300 sec interval300 sec interval

� Presented values are averaged over the 12 disjoint 300 sec intervals of the 1h trace

� Note: We can always choose to ignore directivity for metrics such as the 

� popularity (distinct IPs with which a node is connected)

� component distribution etc.
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Graph Metrics on TDGs

� Average Degree: On average how many neighbors each node has.

� High average degree in TDG usually indicates collaboration 

� e.g., p2p apps, online gaming overlays

�� StabilityStability of TDG 

metrics over time ! 

� Small Std Div.
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Graph Metrics on TDGs
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� Average Degree: On average how many neighbors each node has.

� High average degree in TDG usually indicates collaboration 

� e.g., p2p apps, online gaming overlays

�� StabilityStability of TDG 

metrics over time ! 

� Small Std Div.

WinMXWinMX

BlubsterBlubster
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Graph Metrics on TDGs

� Directionality: The percentage of nodes with only in-edges 

(sinks),  only out-edges (sources) OR both in-and-out edges (InO). 

Very useful metric:

� Collaborating communities have 

�� High High InOInO � Act both as clients and server

� Heavy scanning activity

� High % of onlyHigh % of only--inin--edges (?) edges (?) 

� IPs being scanned

� Client server TDGs have 

� very low InO, and 

� balanced percentages 

� only in-degree (~%20) OR

� only out-degree nodes (~80%)

� Usually we have more clients than servers.
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Example (InO)

� eDonkey Vs HTTP

� TCP SYN pkts are used in 

both

� The presence of nodes with 

both in- and out- degrees 

(InO).

� Can be used to discriminate 

between p2p and client-

server application. 

� If the % of nodes with InO

increases for some port, it 

can be used as an indication 

that a p2p app is tunneling 

traffic under that port.

Peer-to-peer Client - Server

Proxies? Proxies? 

OC48 Trace

P2P
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Component Size Distribution

� In general TDGs can be disconnected graphs

� There is nono (undirected) path between every pair on nodes in the graph

� The component size distribution captures the % of node that belong to a 

particular component size

� Giant Connected Component (GCC): Is the size of the largest connected 

subgraph in a TDG, measured as the % of nodes belonging to that 

component. 

� Collaborative communities are found to have one large GCC

� The size of GCC & total # of disconnect components

� Has stability over time

� Captures intrinsic characteristics of the underlining application 
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Monitoring Example (Gcc)

� Monitor the top 10 ports

number in number of flows.

� Scatter Plot: 

� GCC Vs number of 

connected components.

�� Stability over Time!Stability over Time!

� Peer-to-peer

� large GCC > 90%

� Ms-sql-s, NetBIOS

� Suspicious activity

� Many disconnected

� Small GCC (we would have a 

large GCC if there was one 

large scanner)

� Soribada

� UDP port 22321

� UDP port 7674

� WinMX

� UDP port 6257

� eDonkey

� TCP port 4662

� UDP port 4665

� NetBIOS

� UDP port 137

� MS-SQL-S

� TCP por 1433

OC48 Trace

Number of Connected Components
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Outline

� Introduction

� Related Work

� Defining TDGs

� Exploration using TDG Visualizations

� Quantifying TDGs using Graph Metrics

� Scalar Metrics

� Non-scalar Metrics

� Future Work and Conclusions
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Degree Distribution
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� The degree distributions show heavy tailed behavior

� Some distribution can be closely modeled with powerpower--lawslaws (HTTP, DNS)(HTTP, DNS).

� P2P communities tend to have many medium degree nodes (degree 4 to 30).

� HTTP and DNS have few nodes with very high degrees. 

� High variability (stdv/avg): HTTP=16, DNS=6. WinMX=1.6, eDonkey=1.8.

� NetBIOS:

� Scanning activity !! 98% of nodes have degree of one, 

few nodes with very high degree � scanners
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Joint Degree Distribution (JDD)

� We collected the set of links

� The matrix is Symmetric

� P(k1,k2), probability that a randomly selected edge connects nodes of 
degrees k1 and k2

� Normalized by the total Number of links
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Note: Not all the links of the graph are shown!Note: Not all the links of the graph are shown!
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Joint Degree Distribution (JDD)

� Contour plots

� x-axis: Degree of the node on the one end of the link (logarithmic scale due to high variability)

� y-axis: Degree of the other node (logarithmic scale due to high variability)

� Observations:

� HTTP: low degree client to low to high degree servers

� One end of the link has low degree and the other has low-to-high

� WinMX: medium degree nodes are connected

� DNS: sings of both client server and peer-to-peer behavior

� Top degree nodes are not directly connected 

� White regions at the top right corner 

HTTP (client-server) WinMX (peer-to-peer) DNS (c-s and p2p)



30

Outline

� Introduction

� Related Work

� Defining TDGs

� Exploration using TDG Visualizations

� Quantifying TDGs using graph metrics

� Conclusions
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Conclusions

� New way of looking at traffic, that offers:

� Nice visualization that can enhance intuition

� We only used general graph visualizations (GraphViz)

� More application specific tools could be developed

� Graphs that have information 

� Can be used to describe the interaction of the captured node

� P2P, client-server, scanning activity?

� Stability over time

� It can be used to trigger alarms 

� Potentially, we can derive thresholds to classify TDGs
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Future Directions

� Develop of a s/w Monitoring Tool, which uses TDGs

� From TDGs can we reveal underline application?

� Which are the best metrics?

� Which are the thresholds for this metrics?

� How are TDG features change over time. 

� E.g., within 24 period.

� A week?

� Months

� 107 days (WIDE Backbone trace)

� Years (historical traces, WIDE Backbone 7 years of trace collection)

� Can we capture features of the evolution of applications

� Effect of the observation point

� Backbone VsVs Assess Link VsVs Enterprise central router
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TDG - Publication

�� ““Network Monitoring Using Traffic Dispersion GraphsNetwork Monitoring Using Traffic Dispersion Graphs””

� Marios Iliofotou, P. Pappu, M. Faloutsos, M. Mitzenmacher, S. Singh, G. Varghese

� Internet Measurement Conference (IMC 2007)



Thank You!

Questions/Discussion
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Additional Monitoring Example

� Honeypot trace in a LAN 

(@ UCSD)

� Blaster Worm spread 

emulation

� Observations:

� Tree-like structure 

(Ellis et al.)

� High Depth

� Max = 8

� Avg = 4.4

� InO = 21% !

Spread of Blaster WormSpread of Blaster Worm


