Network Monitoring Using Traffic Dispersion Graphs (TDGs)

Marios Iliofotou

Joint work with:

Prashanth Pappu (Cisco), Michalis Faloutsos (UCR), M. Mitzenmacher (Harvard), Sumeet Singh(Cisco) and George Varghese (UCSD)

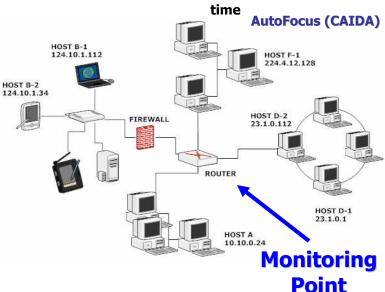

UC Riverside, Computer Science and Engineering Department

© 2006-2007

-

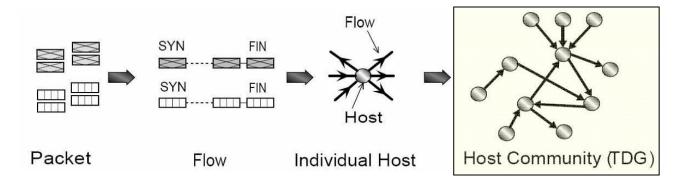
Introduction


- Task of Network Monitoring/Management: know your network.
 - Detect attacks, spot abnormalities
 - Get informed about changes in traffic trends
 - Adjust bandwidth allocation (rate limit or block flows etc.)



- 'Finer' granularity: Packets
 - Bytes/sec, pkts/sec, etc.
- Flows, aggregating a set of packets
 - Flow records summaries (Cisco NetFlow)
 - Flows/second
 - Heavy Hitters (Top 10 Flows)
- Individual Hosts that send packets
 - Top hosts in number of pkts, flows etc.
- Payload inspection (Packet or Flow Level)

- Set of interacting hosts (Graph) (who is talking to whom?)
 - Gives new source of information.

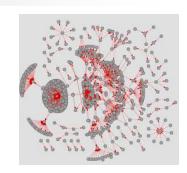


- From a Monitoring Level Perspective
 - Flows: aggregate a set of related packets
 - Hosts: aggregate a set of related flows (belong to the host)
 - TDGs: aggregate a set of related hosts

- Contribution: In this work, we propose TDGs as a way to
 - Monitor/Analyze and Visualize Network Traffic

Related Work

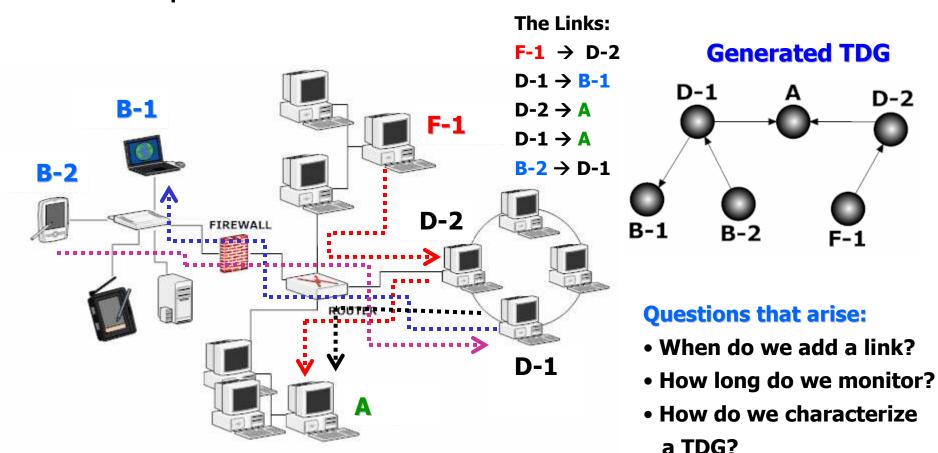
- Related work using host interactions
 - Ellis et al. in ACM WORM 2004. Try to detect the tree-like structure of a self propagating code (worm detection).
 - Complicated link predicates (worm spread signature)
 - Spread of communication, depth, fan-out
 - (*) Only on worm detection, enterprise networks
 - Xie et al. in ICNP 2006. Internet Forensic Analysis.
 - Backward random walk
 - Post-mortem analysis → identify patient zero (origin of the attack)
 - Aiello et al. in PAM 2005.Communities of Interest in Data Networks.
 - Grouping of hosts based on their interaction patterns
 - Popularity and Frequency
 - Karagianis et al. in ACM SIGCOMM 2006. BLINC.
 - Operates at the Host aggregation Level
 - Profile the users, and subsequently classify their flows
 - E.g., a host with many longed lived connections that carry large amount of data and uses different ports for each flow is labeled as p2p



Outline

- Introduction
- Related Work

- Exploration using TDG Visualizations
- Quantifying TDGs using graph metrics
 - Translate visual intuition into quantitative measures
- Future Work and Conclusions



D-2

Traffic Dispersion Graphs (TDGs)

Example of a TDG Formation Process

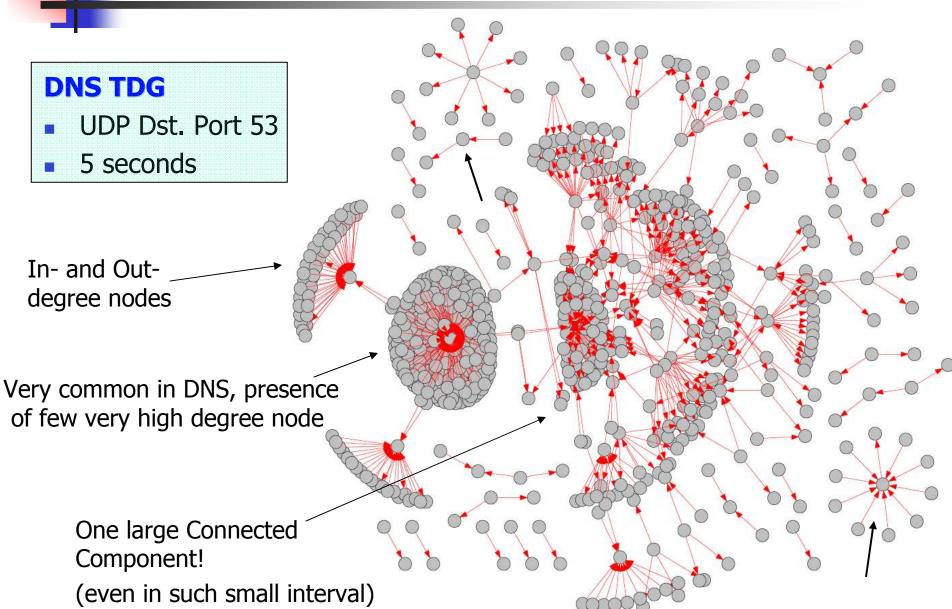
Generating a TDG

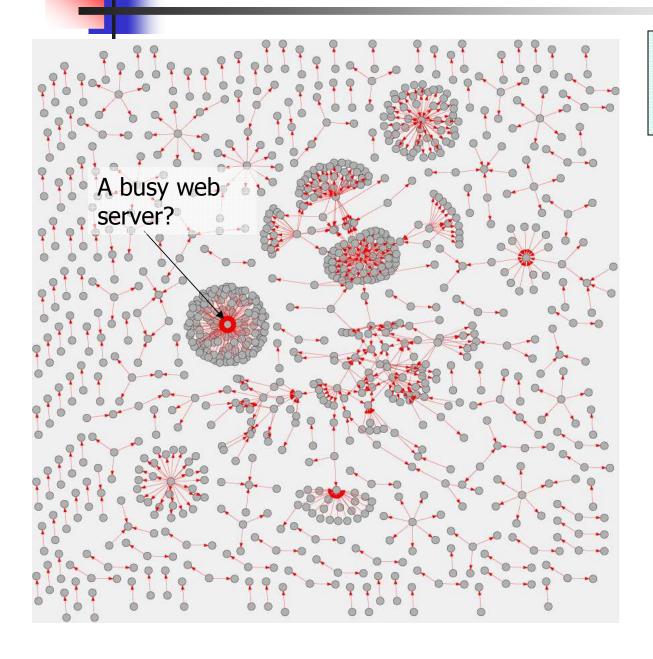
- What are the steps for generating a TDG?
 - Select a monitoring point (e.g., central router, backbone link)
 - 2. Select an "edge filter". Very important operation!
 - Edge Filter = "What constitutes an edge in the graph?"
 - E.g., TCP SYN Dst. Port 80
 - For a packet that satisfies the edge filter, derive the **link**
 - srcIP → dstIP
 - 4. Collect the set of produced links within a **time interval**
 - E.g., 300 seconds (5 minutes)
 - 5. Gather all the links and generate a Graph.
 - This is the TDG for the particular "edge filter" and observation interval selected
- Observation: TDGs are formed by the online addition of links
 - Dynamic Graphs
- Why do we use edge filters?
 - Try to isolate specific communities of interacting hosts (filter out "noise")
 - E.g., a part of a peer-to-peer overlay (**filter-out** everything else)
 - Ask questions (query) the network
 - E.g., how does the graph of all the nodes that send packets having the payload signature "BitTorrent" looks like?

Edge Filtering Operation

- We can have many TDGs depending on the "edge filter"
 - Examples of Edge Filters:
 - a) number of pkts/bytes exchanged
 - b) any combination of L3 and L4 header features
 - TCP with SYN flag set and dst port 25
 - c) sequence of packets (e.g., TCP 3-way handshake)
 - d) Payload properties DPI
 - e.g., use as edges all the packets that match a particular content signature
- In this work we focus on studying port-based TDGs
 - UDP ports we generate an edge based on the first matching packet
 - e.g., on UDP packet with destination port 53 to get the "DNS TDG"
 - TCP we add a directed edge on a TCP SYN packet for the corresponding destination port number (thus, we know the initiator)
 - e.g., port 80 for the HTTP TDG, port 25 for SMTP TDG etc.

Experiments


- We will show that even these simple edge filters work
 - They can isolate various communities of nodes
 - Specific interactions corresponding to known application
 - Those applications that operate on the monitored port (e.g., port 53 \rightarrow DNS)
- We conducted experiments using various real traffic traces
 - Typical duration = 1 hour
 - OC48 from CAIDA (22 million flows, 3.5 million IPs)
 - Abilene Backbone for NLANR (23.5 million flows, 6 million IPs)
 - WIDE Backbone (5 million flows, 1 million IPs)
 - Access links traces (University of Auckland) + UCR traces were studied but not shown here (future work)


- Introduction
- Related Work
- Defining TDGs
- Exploration using TDG Visualizations
- Quantifying TDGs using graph metrics
 - Degree Distribution, Component Sizes, etc.
- Future Work and Conclusions

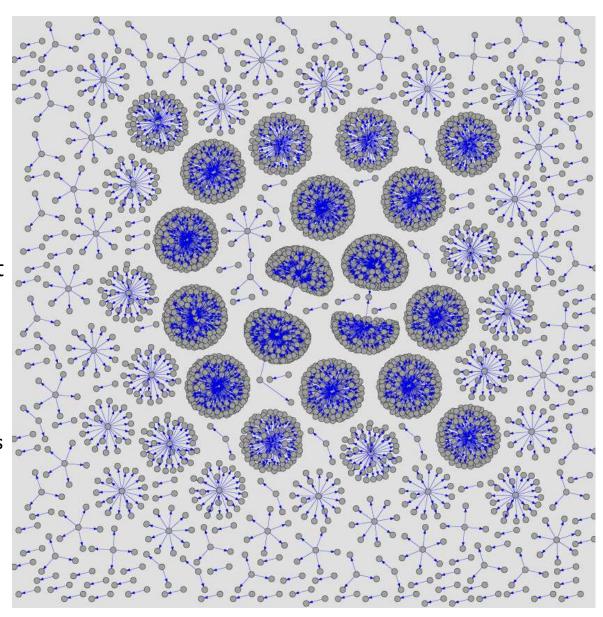
TDG Visualization (DNS)

TDG Visualization (HTTP)

HTTP TDG

- TCP SYN Dst. Port 80
- 30 seconds

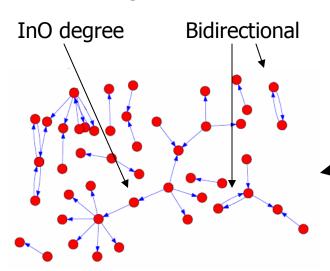
Observations

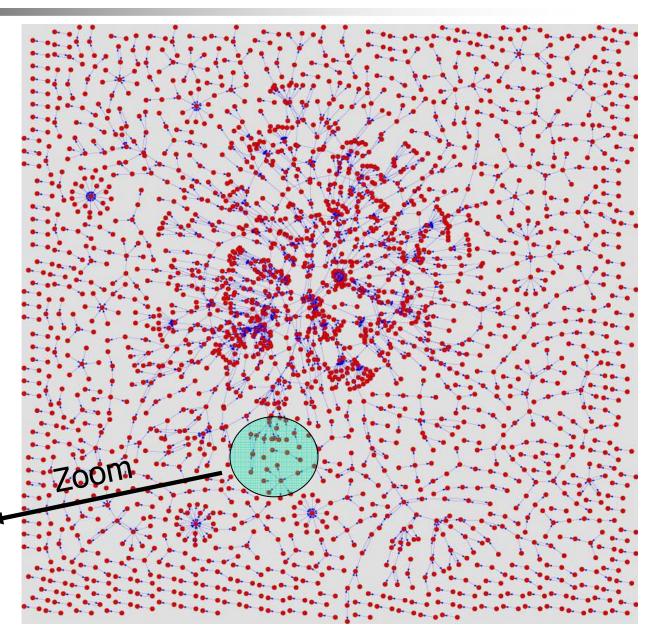

- There is <u>not</u> a large connected component as in DNS
- Clear roles
 - very few nodes with inand-out degrees)
 - Web proxies?
- Many disconnected components

TDG Visualization (Slammer Worm)

Slammer Worm

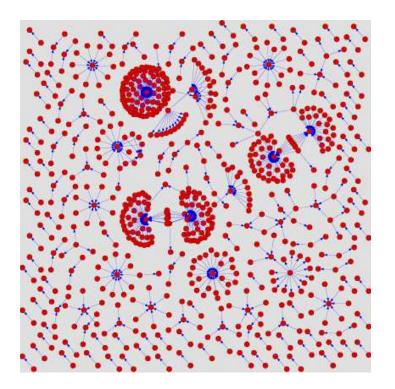
- UDP Dst. port 1434
- 10 seconds
- About:
 - Jan 25, 2003.
 MS-SQL-Server 2000 exploit
 - Trace: April 24th
- Observations (Scanning Activity)
 - Many high out-degree nodes
 - Many disconnected components
 - The majority of nodes have only in-degree
 - Nodes being scanned

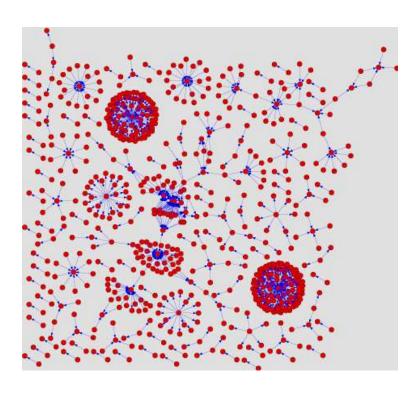

TDG Visualizations (Peer-to-Peer)


WinMX P2P App

- UDP Dst. Port 6257
- 15 sec

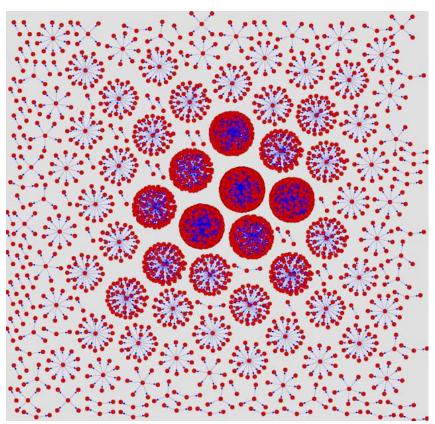
Observations

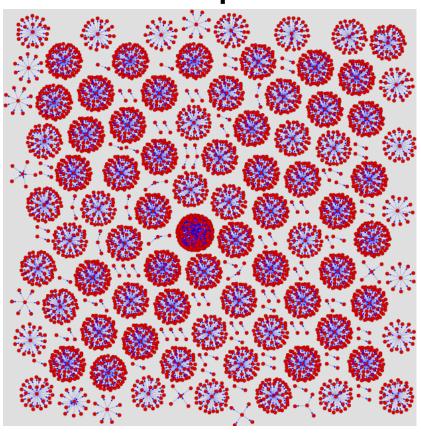

- Many nodes with inand-out degree (InO)
- One large connected component
- Long chains



How can we Visualize compare TDGs?

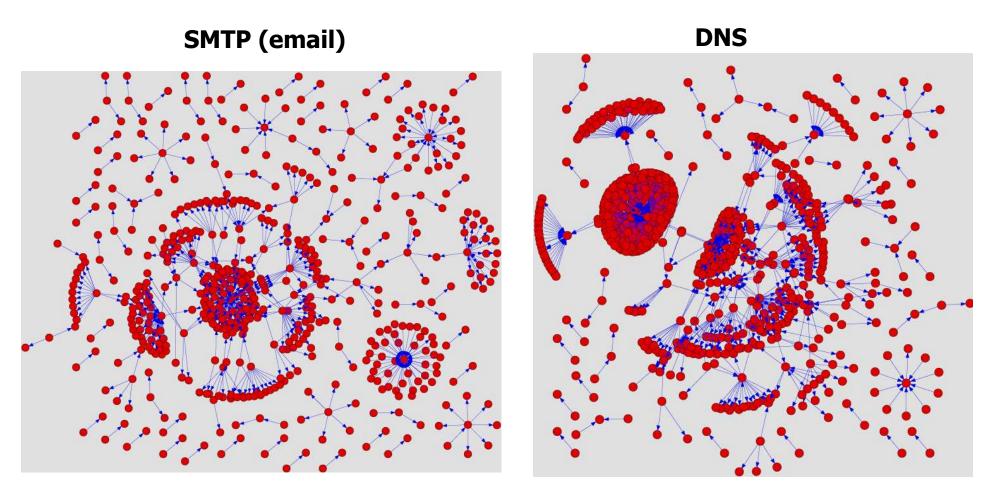
Web: https

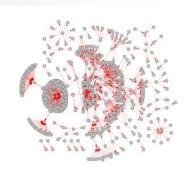

Web: port 8080



How can we Visualize compare TDGs?

Random IP range scanning activity?

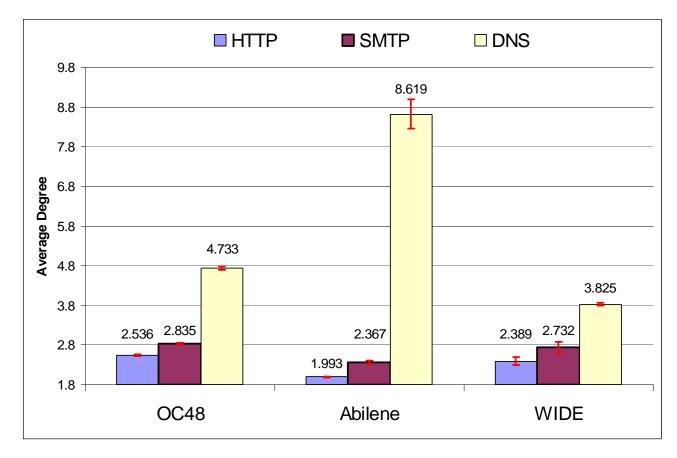

Slammer: port 1434 NetBIOS: port 137


How can we Visualize compare TDGs?

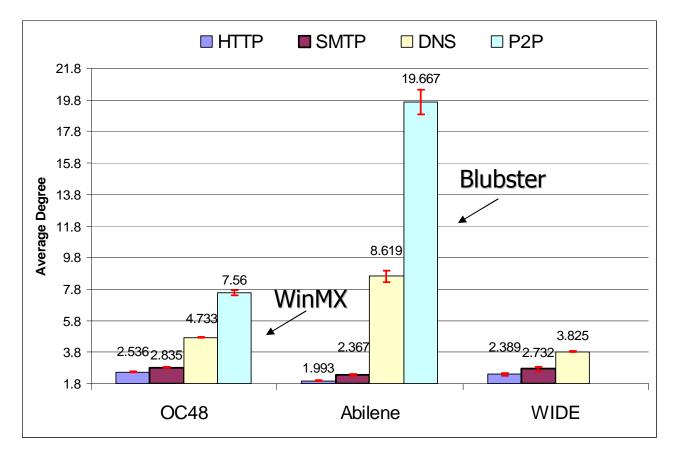
• Today none of the current monitoring tools provide this dimension of traffic monitoring

Outline

- Introduction
- Related Work
- Defining TDGs
- Exploration using TDG Visualizations
- Quantifying TDGs using Graph Metrics
- Future Work and Conclusions

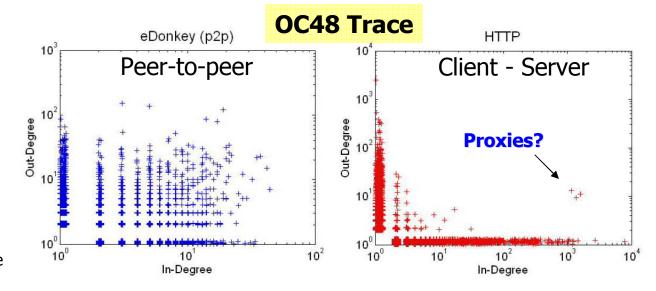


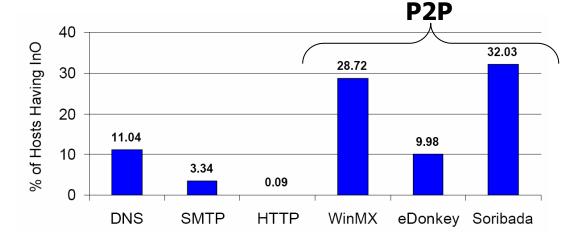
- What we have seen so far: "Visualization is useful by itself"
 - However, it requires a human operator
- Next Step?
 - It is important to translate visual intuition into quantitative measures
- To achieve this, we use a series of graph metrics
 - Goal: Quantitatively characterize TDG properties.
 - Average Degree, degree distribution, component size distribution etc.
- For evaluating and testing our metrics we used real network traffic traces
 - Backbone (OC48 @ CAIDA, WIDE Backbone, Abilene Network)
 - All traces are 1 hour long and monitor millions of hosts.
- Methodology: Each TDG is generated within a 300 sec interval
 - Presented values are averaged over the 12 disjoint 300 sec intervals of the 1h trace
 - Note: We can always choose to ignore directivity for metrics such as the
 - popularity (distinct IPs with which a node is connected)
 - component distribution etc.



- Average Degree: On average how many neighbors each node has.
 - High average degree in TDG usually indicates collaboration
 - e.g., p2p apps, online gaming overlays
- Stability of TDG metrics over time!
 - Small Std Div.

- Average Degree: On average how many neighbors each node has.
 - High average degree in TDG usually indicates collaboration
 - e.g., p2p apps, online gaming overlays
- Stability of TDG metrics over time!
 - Small Std Div.

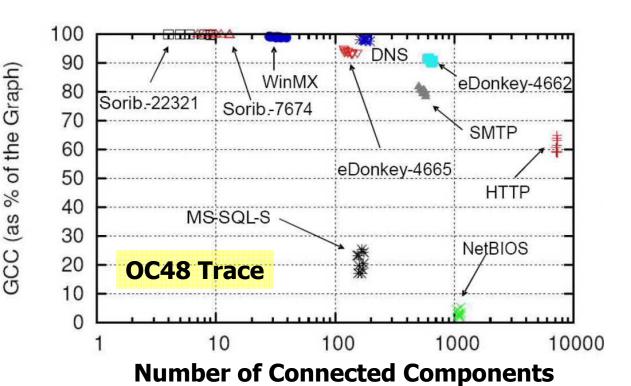

 <u>Directionality</u>: The percentage of nodes with only in-edges (sinks), only out-edges (sources) OR both in-and-out edges (<u>InO</u>).


Very useful metric:

- Collaborating communities have
 - High InO → Act both as clients and server
- Heavy scanning activity
 - High % of only-in-edges (?)
 - IPs being scanned
- Client server TDGs have
 - very low InO, and
 - balanced percentages
 - only in-degree (~%20) OR
 - only out-degree nodes (~80%)
 - Usually we have more clients than servers.

Example (InO)

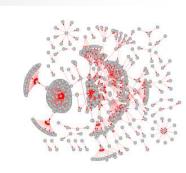
- eDonkey Vs HTTP
 - TCP SYN pkts are used in both
- The presence of nodes with both in- and out- degrees (InO).
 - Can be used to discriminate between p2p and clientserver application.
- If the % of nodes with InO increases for some port, it can be used as an indication that a p2p app is tunneling traffic under that port.


Component Size Distribution

- In general TDGs can be disconnected graphs
 - There is no (undirected) path between every pair on nodes in the graph
- The component size distribution captures the % of node that belong to a particular component size
- Giant Connected Component (GCC): Is the size of the largest connected subgraph in a TDG, measured as the % of nodes belonging to that component.
 - Collaborative communities are found to have one large GCC
- The size of GCC & total # of disconnect components
 - Has stability over time
 - Captures intrinsic characteristics of the underlining application

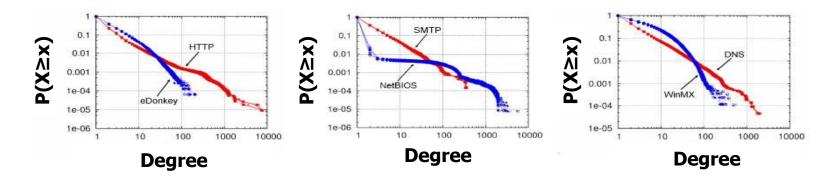
Monitoring Example (Gcc)

- Monitor the top 10 ports
 number in number of flows.
- Scatter Plot:
 - GCC Vs number of connected components.
 - Stability over Time!
- Peer-to-peer
 - large GCC > 90%
- Ms-sql-s, NetBIOS
 - Suspicious activity
 - Many disconnected
 - Small GCC (we would have a large GCC if there was one large scanner)



- Soribada
 - UDP port 22321
 - UDP port 7674
- WinMX
 - UDP port 6257

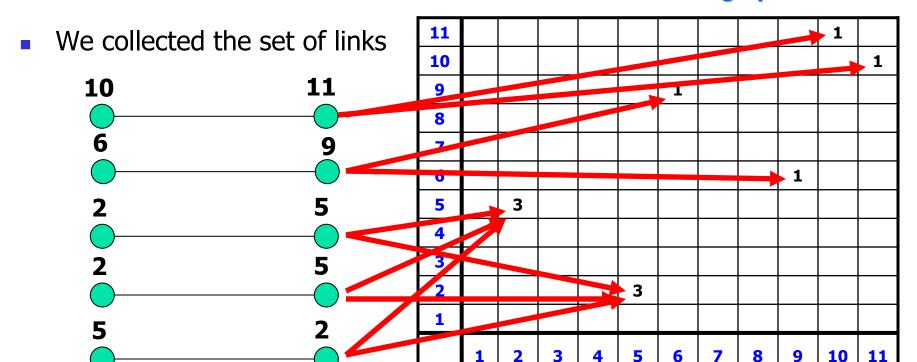
- eDonkey
 - TCP port 4662
 - UDP port 4665
- NetBIOS
 - UDP port 137
- MS-SQL-S
 - TCP por 1433


Outline

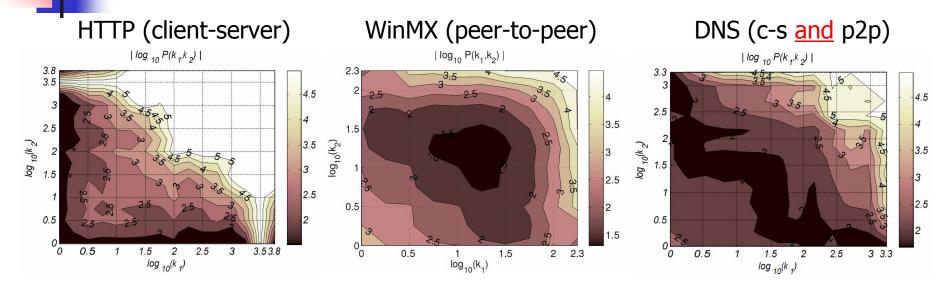
- Introduction
- Related Work
- Defining TDGs
- Exploration using TDG Visualizations
- Quantifying TDGs using Graph Metrics
 - Scalar Metrics
 - Non-scalar Metrics
- Future Work and Conclusions

Degree Distribution

- The degree distributions show heavy tailed behavior
 - Some distribution can be closely modeled with power-laws (HTTP, DNS).
- P2P communities tend to have many medium degree nodes (degree 4 to 30).
 - HTTP and DNS have few nodes with very high degrees.
 - High variability (stdv/avg): HTTP=16, DNS=6. WinMX=1.6, eDonkey=1.8.


NetBIOS:

 Scanning activity !! 98% of nodes have degree of one, few nodes with very high degree → scanners

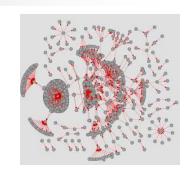

Joint Degree Distribution (JDD)

Note: Not all the links of the graph are shown!

- The matrix is Symmetric
- P(k₁,k₂), probability that a randomly selected edge connects nodes of degrees k₁ and k₂
 - Normalized by the total Number of links

Joint Degree Distribution (JDD)

Contour plots


- x-axis: Degree of the node on the one end of the link (logarithmic scale due to high variability)
- y-axis: Degree of the other node (logarithmic scale due to high variability)

Observations:

- HTTP: low degree client to low to high degree servers
 - One end of the link has low degree and the other has low-to-high
- WinMX: medium degree nodes are connected
- DNS: sings of both client server and peer-to-peer behavior
- Top degree nodes are not directly connected
 - White regions at the top right corner

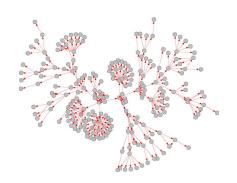
Outline

- Introduction
- Related Work
- Defining TDGs
- Exploration using TDG Visualizations
- Quantifying TDGs using graph metrics
- Conclusions

- New way of looking at traffic, that offers:
 - Nice visualization that can enhance intuition
 - We only used general graph visualizations (GraphViz)
 - More application specific tools could be developed
 - Graphs that have information
 - Can be used to describe the interaction of the captured node
 - P2P, client-server, scanning activity?
 - Stability over time
 - It can be used to trigger alarms
 - Potentially, we can derive thresholds to classify TDGs

Future Directions

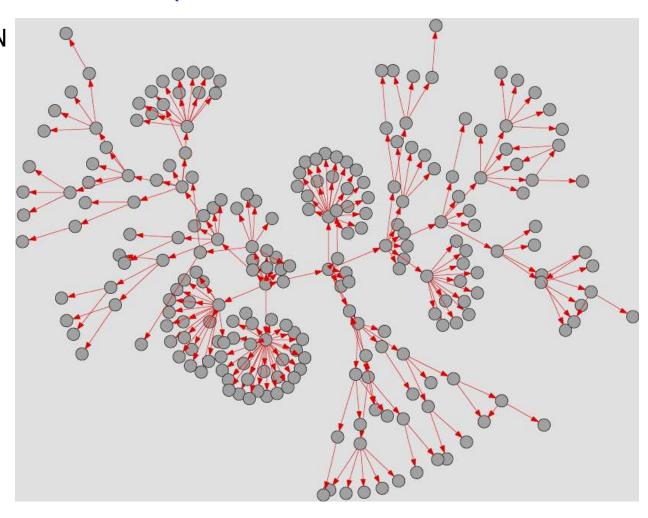
- Develop of a s/w Monitoring Tool, which uses TDGs
- From TDGs can we reveal underline application?
 - Which are the best metrics?
 - Which are the thresholds for this metrics?
- How are TDG features change over time.
 - E.g., within 24 period.
 - A week?
 - Months
 - 107 days (WIDE Backbone trace)
 - Years (historical traces, WIDE Backbone 7 years of trace collection)
 - Can we capture features of the evolution of applications
- Effect of the observation point
 - Backbone Vs Assess Link Vs Enterprise central router


"Network Monitoring Using Traffic Dispersion Graphs"

- Marios Iliofotou, P. Pappu, M. Faloutsos, M. Mitzenmacher, S. Singh, G. Varghese
- Internet Measurement Conference (IMC 2007)

Thank You!

Questions/Discussion


Additional Monitoring Example

Spread of Blaster Worm

- Honeypot trace in a LAN (@ UCSD)
 - Blaster Worm spread emulation

Observations:

- Tree-like structure (Ellis et al.)
- High Depth
 - Max = 8
 - Avg = 4.4
- InO = 21%!

