The 31st Annual IEEE International Conference on Computer Communications: Mini-Conference

SubFlow: Towards Practical Flow-Level Traffic
Classification

Guowu Xief, Marios Iliofotou*, Ram Keralapura®, Michalis Faloutsos! and Antonio Nucci*
TUniverSity of California Riverside, {xieg, michalis}@cs.ucr.edu
*Narus, Inc., {miliofotou, rkeralapura, anucci}@narus.com

Abstract—Many research efforts propose the use of flow-
level features (e.g., packet sizes and inter-arrival times) and
machine learning algorithms to solve the traffic classification
problem. However, these statistical methods have not made the
anticipated impact in the real world. We attribute this to two
main reasons: (a) training the classifiers and bootstrapping the
system is cumbersome, (b) the resulting classifiers have limited
ability to adapt gracefully as the traffic behavior changes. In
this paper, we propose an approach that is easy to bootstrap and
deploy, as well as robust to changes in the traffic, such as the
emergence of new applications. The key novelty of our classifier is
that it learns to identify the traffic of each application in isolation,
instead of trying to distinguish one application from another. This
is a very challenging task that hides many caveats and subtleties.
To make this possible, we adapt and use subspace clustering, a
powerful technique that has not been used before in this context.
Subspace clustering allows the profiling of applications to be
more precise by automatically eliminating irrelevant features. We
show that our approach exhibits very high accuracy in classifying
each application on five traces from different ISPs captured
between 2005 and 2011. This new way of looking at application
classification could generate powerful and practical solutions in
the space of traffic monitoring and network management.

I. INTRODUCTION

Identifying the flows generated by different applications is
of major interest for network operators. For Internet Service
Providers (ISPs), identifying traffic allows them to differentiate
the QoS for different types of applications, such as voice and
video. Moreover, it enables them to control high-bandwidth
and non-interactive applications, such as peer-to-peer (P2P).
For enterprise networks, it is very important for administrators
to know what happens on their network: what services users
are running, which application is dominating their traffic,
etc. Traffic classification is also important for securing the
network. In fact, even traditional protocols are often used as
means to control attacks, such as the use of IRC as C&C for
botnets. Overall, traffic classification is the first step in building
network intelligence.

In this paper, our goal is to develop a practical traffic
classification approach, which should be: (a) easy to use,
and (b) effective, in terms of accuracy. To the best of our
knowledge, no such solution exists today. First, most deployed
solutions rely heavily on payload-based or deep packet in-
spection (DPI) techniques. However, these techniques have
several limitations, as they fail to classify encrypted traffic
and raise privacy concerns. In addition, it is often desirable
to classify traffic that is summarized in the form of flow
records or packet headers. Second, port-based classification
has severe limitations, as many applications randomize their
ports and cannot detect new applications. Third, flow-level
machine learning (ML) approaches have been proposed as an

978-1-4673-0775-8/12/$26.00 ©2012 |EEE

alternative to the expensive and cumbersome DPI methods.
These methods use flow-level properties, such as packet sizes
and timing information, to classify traffic. However, despite
significant research efforts [14], [1], [12], these methods have
not made the anticipated impact in the real world.

The contribution of our work is twofold:

(a) We study and document the limitations of existing
flow-level ML solutions. ML approaches are grouped into
two categories: supervised and semi-supervised solutions.
Methods from both groups require a set of known flows
to train/bootstrap the classifier. Typically, the training data
are provided by a DPI classifier. In a nutshell, supervised
methods train a ML algorithm to distinguish flows among a
predefined set of applications. This has two key disadvantages:
(1) it is often very hard to know all applications in the
network a priori and train for them; and (ii) the classification
performance degrades significantly when new applications
emerge. Intuitively, if an algorithm learns to distinguish A
from B, it is very hard to deal with a new class C. Semi-
supervised solutions overcome this limitation by utilizing
clustering techniques and do not explicitly learn to distinguish
A from B. Unfortunately, these methods suffer from what
is known as the curse of dimensionality. Standard feature
selection methods used before [12], [9], are supervised and,
therefore, have the same limitations explained before. As we
show in §II in more detail, these challenges significantly affect
the accuracy of existing solutions, both supervised and semi-
supervised.

(b) We propose a new approach, SubFlow, that operates un-
like any previous ML classifier: It learns the intrinsic statistical
fingerprint of each application in isolation. In other words, our
method learns to identify class A and then class B, instead of
trying to distinguish A from B. Second, in order to address the
curse of dimensionality, we utilize subspace clustering, which
has never been used in the context of traffic classification
before. Using our technique, our classifier extracts the key
features of each application and ignores the features that are
not useful. This is a very attractive property given the fact
that one feature can be great for identifying application A,
but be useless in identifying application B. Our approach has
the following key advantages, which effectively address the
limitations of previous methods: (i) bootstrapping is easier
and practical, as we demonstrate in the rest of this paper;
(i1) our approach is robust and adaptable to change, such as
the appearance of new protocols, or the evolving behavior of
existing applications.

2541



11 Training with BT [0 Training without BT

100
80
60
40
20

0

Precision (%)

HTTP SMTP MSN EDONKEY

Fig. 1. The per-protocol precision when (a) BT is used in training, and (b)
BT is not used for training, for a traditional multi-class classifier.

II. PROBLEM DEFINITION AND LIMITATIONS OF
PREVIOUS METHODS

Traffic classification problem: We define an application
class (referred to as application throughout the paper) as an
application-level protocol with a distinct documented behavior
in terms of communication exchanges, control packets, etc.
With this definition, our application classes distinguish be-
tween: SMTP, MSN, BitTorrent, Gnutella, POP3, etc. More-
over, the application is often referred to as the label or the class
of the flow. The task of a flow-level traffic classifier is to iden-
tify the applications that generate flows in a network, without
relying on payload information. In the paper we consider uni-
directional flows defined by the five-tuple: {Source IP, Source
Port, Destination IP, Destination Port, and Protocol}. Given
that in the backbone one of the two directions is often missing
(e.g., due to routing asymmetry), using uni-directional flows
allows the classifier to be deployed anywhere in the network.

Statistical flow-level features: Flow-level classifiers utilize
statistical information of a flow to make a prediction. Each
feature represents one dimension in the feature vector of a
flow. Throughout this paper, we use the terms feature and
dimension in the same context. For this work, we have
collected a number of key features that are also used by
others [14], [12]. We used the exact size and the inter-arrival
time (IAT) of the first six packets of the flow. In addition, we
use the average, max, min, and standard deviation values of
packet sizes and IATs over the entire flow. Intuitively, the exact
size of the first packets captures the protocol behaviors during
the initiation of the protocol interaction. The IAT is a good
indicator of real-time applications such as VoIP or Video.

The performance of previous supervised ML flow-level
classifiers degrades when new applications appear: We ver-
ified this observation using a large set of real-world data and
different supervised classifiers proposed in the literature [9],
such as nearest neighbors, logistic regression, decision trees,
support vector machines (SVM), and Bayesian networks. We
used the WEKA implementation of the algorithms with their
default parameters as in [9]. Here, we show an example
using data from Asia-3!, where we try to classify five pro-
tocols, namely: HTTP, SMTP, EDONKEY, BitTorrent (BT),
and MSN. From all the supervised algorithms we used, the
Bayesian Networks gave the best results; therefore, here we
only present results from this algorithm. Our experimental
methodology is the same as in all the experiments in the paper
and is explained in detail in §IV-A.

"More details on the specific trace is given in §IV.

Our goal is to compare the performance of the Bayesian
Network classifier when: (a) all five protocols are included
during training, and (b) when one or more of the protocols is
not used for training. With (b), we simulate the senario where
a new application appears (i.e., the one not used for training).
For testing the classifier, we always use all the flows from all
protocols, even from those excluded from training. In Figure 1,
we compare the percentage of correctly classified flows (a.k.a.
precision) of HTTP, SMTP, eDonkey, and MSN when (a)
BT is included in training and (b) when BT is not used
for training. From the figure, we see that when the training
set consists of all five protocols, the precision approximates
100%. Unfortunately, when the classifier does not take BT
into consideration, it mistakenly reports the traffic of BT as
MSN. In fact, 35% of MSN traffic is now erroneous. We
repeated the same experiment excluding protocols other than
BT from training with qualitatively similar results. Moreover,
we observed that the more protocols we exclude from training,
the worse these classifiers performs.

Semi-supervised solutions perform less accurate than
their supervised counterparts. We repeated the same
experiment with BitTorrent as explained above, using two
semi-supervised algorithms, namely k-means and DBSCAN.
Both algorithms were used before for traffic classification [3].
Overall, we observed that clustering algorithms are less ac-
curate than their supervised counterparts (approximately by
10 — 20% in our experiment). In addition, their performance
also degrades when applications are not used during training.
In fact, if BT is excluded from training, the precisions of MSN
and eDonkey drop by 20% and 10%, respectively.

Conclusions: Previous supervised ML flow-level algo-
rithms are designed to effectively distinguish between a prede-
fined set of classes. Unfortunately, when a new class appears
the trained decision boundaries do not perform as well. This
is what we have seen happening in the example of Figure 1.
Regarding semi-supervised algorithms, even though they do
not suffer from this limitation, we found them to perform
less accurate than their supervised counterparts. An in-depth
explanation of the differences between supervised and semi-
supervised solutions is an interesting topic on its own, but is
out of the scope of this work. For the purpose of our study, we
identify one key limitations of semi-supervised solutions. The
presence of irrelevant features leads to what is known as the
curse of dimensionality. Simply put, the dilemma is that each
application is captured best by different features, but if we use
all these features together in a single feature space, they are
too many, and the classification performance degrades. As we
explain in §V, popular feature selection techniques are “multi-
class” and therefore inherit the same limitation as traditional
multi-class supervised classifiers.

III. SUBFLOW: TRAFFIC CLASSIFICATION USING
SUBSPACE CLUSTERING

In this section, we present our SubFlow classifier. First, we
give a basic overview in §III-A. Then, we explain the details
of our subspace clustering method in §III-B.

2542



A. Overview of SubFlow

Our classifier executes two different processes: (a) the
generation of signatures, and (b) the classification of incoming
flows. Here we give an overview of the two processes.

1) Signature generation process: During training, our
classifier generates a set of signatures for each application.
In what follows, we only provide the basic operations of the
subspace clustering. All the algorithmic details are described
in the next subsection §III-B.

Input: A set of flows F' that belong to the same application
and a full set of features S. Each flow f € F is represented as
an |S|-dimensional vector of numerical values.

Output: One or more pairs of flows and subspaces (F;, S;),
such that F; C F'and S; C S. S; reports relevant features for the
flows in F;. This essentially projects the initial |.S|-dimensional
flows, to an |S;|-dimensional subspace with |S;| € (1...|S]).
A feature subspace may contain more than one cluster com-
prising of different flows. That is, when S, =S, F, N F}, = 0.
Also, a flow can belong to clusters in different subspaces. That
is, feF,, f€F,, but Su #S,.

A signature is in fact a set of flows F; and a corresponding
feature space .S; returned by the subspace clustering algorithm.
For each signature (Fj, S;), the flows in F; meet a given cluster
criterion (i.e., they are very close to each other) when projected
into the feature subspace S;.

2) Classification process: During classification, a new flow
is tested for a match over all the signatures for all applications.
Essentially, each signature is a binary classifier that reports
either match or not. We next present the process in more detail.

Testing a signature for a match: When a new flow is
tested over a specific signature (F;, S;), it is first project to .S;
and then compared with the flows in F;. The distance between
flows is calculated using the standard Euclidean distance. The
distance to the closest flow is set to be the distance of the test
flow to signature (F;, S;). If the test flow is within a predefined
radius () is reported as a match. Essentially, each signature is
a fixed-radius nearest neighbor classifier with |.S;| dimensions
and |F;| points. The fixed radius guarantees the signatures are
specific enough to match the flows of the application without
matching flows of other applications. It is not fair to use the
same fixed radius for all subspaces, since from the Euclidean

distance formula d = \/ Zjls’l (zr — yr)? we see that the

larger |.S;] is, the larger the distance will become, even if the
distance of each individual dimension remains small. We use
the basic scaling factor of 4/|S;| to remedy this. Therefore,
if the one dimensional radius we use in our classifier is r it
means that the value becomes r; = /|.S;|-r for signature i. We
refer to the region covered by the radius of all the points of the
signature as its region of interest. We evaluate our algorithm
over different radius (r) values in the next section.
Classifying a flow: Our SubFlow classifier contains a
number of binary classifiers. Each binary classifier corre-
sponds to one application signature (F;,S;). Assume that
at a specific point in time we have n binary classifiers,
X ={x1,x2,...,x,}. Any new flow that reaches the SubFlow
classifier is processed by each of the n binary classifiers.
Each binary classifier replies with a t rue or false and the
distance (d). Therefore, the outcome is: (a) an n-dimensional

boolean vector L = {l1,ls,...,1,,} where the variable I; cap-
tures the label given by the binary classifier ¢, i.e., where [; = 1
iff ; labels the flow true, otherwise [; = 0; and (b) an n-
dimensional vector D={dy, da, ..., d,}, where the variable d;
captures the distance of the test flow to signature 7. Now, since
an application can be associated to multiple signatures, it may
be mapped to more than one binary classifier. To keep track of
the mapping between binary classifiers and applications, we
introduce a new vector called M, where M (i) = App if the
binary classifier ¢ is from the application App.

The final decision on whether the flow should be labelled as
App or Unknown is made by executing the following algorithm
that use vectors L, D, and M:

1) Add all 4, where L(i) = true, to the response set R.

2) If |R| =0, reply as “Unknown” since no binary classifier
gave a label for the flow. Else if |R| = 1, reply as
M (k), where R = {k} since only one binary classifier
labeled the flow. Else if |R| > 1, reply as M (k), where
k€ R and Vi € R,i # k,|S;| < |Sg|. That is, if
more than one classifier labels the flows, the classifier
from higher dimensional signature is chosen because it
is more specific.

B. Details of subspace clustering

As we mentioned before, the input to our algorithm is a set
of flows F' that belong to a single application, over a feature
set S. Our subspace clustering algorithm takes the following
basic steps:

1) A standard clustering algorithm is used to find the so
called base clusters in each dimension s € S. Essentially,
we cluster all the flows in F' in each 1D-space s€.S.

2) Base clusters from different dimensions are then merged
together to form higher dimensional subspaces. In order
for base clusters to be merged, we require them to have
a large ratio of common flows. Merging base clusters
results in subspaces of dimensionality d€ (2, ..., |5]).

3) To find the clusters in each subspace, we project all the
flow in F' to each subspace S;. Then, we use a standard
clustering algorithm to find the clusters in each subspace.

Additional implementation details: All the features are
normalized using the standard z-score algorithm, defined as
ZTnorm = (x — p)/o, where p and o are the mean and
standard deviation of the feature calculated over the training
data. During the cluster merging phase, in order for two bass
clusters to be merged at step 2, we required that the number
of common flows between them is at least 50% of the number
flows of the smaller of the two base clusters (we try different
ratios and find the results are similar). Finally, it is often the
case that a large cluster, say, C; has high overlap to two (or
more) other clusters, say, Cy and Cs, but the overlap of CoNC's
is very small. The design choice of FIRES is to always split
the larger base cluster into two smaller disjoint base clusters
(C11, C12). In our implementation, we split a large cluster if
and only if the new base clusters are larger than the average
size of all base clusters. In our current implementation, we
identify base clusters using DBSCAN [4] as FIRES.

2543



IV. EVALUATION

Datasets: We use five full packet traces (headers and pay-
load) from different ISPs collected between 2005 to 2011. The
ISPs are distributed across different geographic locations: three
are in Asia, one in South America, and one in North America.
We will refer to them them as Asia-1, Asia-2, Asia-3, SouthA,
and NorthA in the paper. The traces Asia-1, Asia-2, Asia-3,
and SouthA capture residential traffic from the customers of
the ISPs as well as transient traffic. The trace from NorthA is
from a cellular service provider and contains traffic from only
mobile devices, such as laptops and smart phones with high
speed data plans. Overall, our data traces are collected from a
diverse set of network links, over different time periods, with
different users, applications, and characteristics.

Extracting the ground truth labels of flows: The ground
truth of a flow refers to its generating application. We extract
the ground truth for our experiments, using a DPI classification
techniques similar to those used in [8], [17]. Our traces contain
traffic from the following applications: HTTP, SMTP, POP3,
MSN, BitTorrent, eDonkey, Gnutella, Telnet, Samba (SMB),
IMAP, XMPP, Yahoo IM, SSH, and FTP. The total number of
unlabeled flows corresponds to 20% of the traffic. Typically,
DPI labels a large number of flows as unknown because
of either encrypted payload or incomplete signatures. This
highlights the benefit of our algorithm, where its performance
is not affected by the presence of unknown applications.

A. Experimental methodology and evaluation metrics

For evaluating our classifier, we split each trace into two
parts. we use a fraction of the flows for training and the
other disjoint fraction for testing. For training the classifier, we
consider applications with more than 1,000 flows. We believe
the number is small enough for collecting training data and
large enough for extracting good signatures. The applications
which have no enough flows (<1,000) are not included in
training data, but included for testing the classifier. In what
follows, we repeat all experiments ten times and just report
the average values over all runs since the variations in different
runs is very small (< 1%). In all our experiments, we generate
signatures for uni-directional flows. This allows us to extract
different signatures from the client to server interaction, as
well as from the server to the client. When we compare our
classification predictions with the ground truth, we look at
the labels we gave for both directions of the flow. If one
direction was found to be unknown, we give it the label of its
reverse direction if it exists. If the labels from two directions
are different, we report the flow as unknown.

Evaluating the new application detection rate: With
these experiments we aim to evaluate the accuracy of our
classifier in detecting novel traffic. That is, when we classify
the traffic of an application that we did not include in training,
we want its traffic to be reported as unknown. For example, if
the classifier does not have a signature for, say, BitTorrent (BT)
the classifier should report all BT traffic as “unknown.” Since
BT was not known to the classifier before, it effectively rep-
resents a new application. Therefore, New App; = %
We use the following methodology. We exclude from trairfing
one application at a time. Then, we observe how the classifier

reports the flows of the “new” application (i.e., the NewApp
rate for that application). We summarize this behavior by
averaging the New App; over all the applications ¢ in the trace.

In addition to NewApp rate we use the following perfor-
mance metrics:

Coverage is the number of flows that were actually given
a prediction (i.e., not labeled as “unknown”), divided by
the total number of flows in the trace. It is also known as
“completeness.”

Accuracy on covered set is the number of correctly classified
flows divided by the total number of predicted flows. That is,

accuracy on covered = W True positives for an
application i (T'P;), is the number of flows correctly classified
as 1. False positives for ¢ (F'F;), is the number of flows from

other applications misclassified as <.

‘ I1 Accuracy on covered set[!1 Coverage [ NewApp ‘
100 T T T T T
80 -
60 -
40 —
20 -

%

SouthA  Asia-1 Asia-2  Asia-3  NorthA

Fig. 2. The overall accuracy and coverage and NewApp rate for all five
traces using the default configuration.

B. Experimental results

We evaluate the performance of our algorithm under differ-
ent configurations. We used one trace to explore the different
configurations and then finalize these parameters for all the
other traces in all our experiments. Our subspace algorithm
uses DBSCAN to generate the base clusters (see §III). The
DBSCAN algorithm has two parameters, the distance (¢) and
minimum points (minPts) [4]. Since we already have ¢ to
denote the maximum allowed distance between flows, we also
assign the radius r of the region of interest to have the same
value. Therefore, in all our experiments » = . In addition,
our classifier allows us to control its precisions by excluding
signature of low dimensionality. Intuitively, using only one or
two features to make a signature, increasing the probability
of matching flows from other applications. We refer to the
minimum allowed dimension of a signature as minDim.

Parameter sensitivity: To understand the the parameter
sensitivity, we study the overall accuracy of our classifier by
varying e, minPts, and minDim over a large range of values.
We observed that our classification is significantly affected by
small variations of these parameters. More results are omitted
due to space limitations. For the remaining of the paper, we
use the following as our default configuration: min Pts=10,
e = 1074, and minDim = 4. We use the Asia-3 trace to
study these parameters and to select a good configuration for
our classifier. We then apply the same configuration to the
remaining four traces.

Classification performance: We show the overall per-
formance of SubFlow over all five traces using the default
configuration in Figure 2. Event though we choose our pa-
rameters using the Asia-3 trace, we see from the figure that

2544



the performance is very good over all five traces. Specifically,
we see that SubFlow achieves high accuracy (> 98%), high
NewApp rate (>97%), and good coverage (> 75%) over traces
with a diverse traffic composition. The high NewApp rate
shows that our method can successfully report traffic from
applications not included in training as unknown in all traces.

V. RELATED WORK

Over the last years, there have been many paper presenting
different machine learning algorithms for solving the traffic
classification problem. We refer the interested reader to a
survey [14] that covers the majority of popular techniques. In
what follows, we present the most representative supervised
and semi-unsupervised ML methods proposed in the literature.

Supervised ML algorithms include naive Bayes classifier,
nearest neighbors, decision trees, logistic regression, neural
network and support vector machines [12], [9], [16], [2].
Features are selected manually or using supervised feature
reduction algorithms like Correlation-Based Filter in [12], and
regression techniques [2]. Such supervised feature selection
techniques inherit the same limitations as supervised learning
algorithms in handling new applications.

Semi-supervised algorithms explored in traffic classification
include AutoClass, Expectation Maximization (EM), K-means,
DBSCAN and more [3], [1]. Semi-supervised algorithms
group flows into different clusters according to statistical
information without a priori information about traffic mix.
Moreover, as we explain in §II, semi-supervised techniques
do not perform as well as their supervised counterparts. This
is because uncovering clusters in high dimensional data is
challenging because of the curse of dimensionality.

Other classification approaches are based on the behavior
of end-hosts. BLINC [8], [18] classifies flows based on
the number of connections created by different hosts. The
label granularity from some of these approaches [18] are
coarser than ours. In addition, host-based approaches, such as
BLINC [8] do not perform well at the backbone [9]. All the
traces we used here are from backbone networks and SubFlow
performed very well. In [7], the proposed algorithm identifies
traffic from known applications that try to evade detection. The
algorithm uses a graph-based solutions and does not report
unknown traffic. It therefore suffers from the same limitation
as the other supervised approaches. Finally, the novel solution
proposed in [17] utilizes information from Internet to profile
IP addresses. As reported in [17], this approach gives very
small recall for P2P applications.

Subspace clustering and one-class classification: The
FIRES [11] algorithm is one of the many existing subspace
clustering techniques. such as, SUBCLU, FIRES, and IN-
SCY [13]. At the same time, the problem of building a
classifier using only positive samples is not new in the data
mining community. The problem is often refer to as one-class
classification, or novelty detection [6]. We believe that how
we define the traffic classification problem here, will open the
way for new research efforts to investigate the effectiveness
of different, subspace clustering and one-class classifiers in
addressing the problem.

VI. SUMMARY AND CONCLUSIONS

The goal of this work is to develop an application classifier
that would be relevant in practice. As our first contribution, we
identify the factors that limit the practicality of the majority of
the existing methods, especially focusing on Machine Learning
techniques. For example, we see that the introduction of
BitTorrent without prior training, decreases the accuracy of
detecting MSN traffic by more than 30%. As our second
contribution, we propose SubFlow, a different approach to ap-
plication classification leveraging a subspace clustering tech-
nique. The key novelty is that our approach learns the intrinsic
statistical fingerprint of each application in isolation, which
deviates from typical supervised classification approaches. We
show that SubFlow has a lot of promise. We stress-test the
capabilities of our approach in a series of experiments with
five different backbone traces. SubFlow performs very well
with minimal manual intervention: it identifies traffic of an
application with very high accuracy, on average higher than
95%, and can detect new applications successfully.

REFERENCES

[1] L. Bernaille, R. Teixeira, and K. Salamatian. Early application identifi-
cation. In 2006 ACM CoNEXT conference. ACM, 2006.

[2] T. En-Najjary, G. Urvoy-Keller, M. Pietrzyk, and J. Costeux.
Application-based feature selection for internet traffic classification. In
22nd International Teletraffic Congress (ITC). IEEE, 2010.

[3] J. Erman, A. Mahanti, M. Arlitt, I. Cohen, and C. Williamson. Semi-
supervised network traffic classification. In ACM SIGMETRICS. ACM,
2007.

[4] M. Ester, H. Kriegel, J. Sander, and X. Xu. A density-based algorithm for
discovering clusters in large spatial databases with noise. In Proceedings
of the 2nd International Conference on Knowledge Discovery and Data
mining, volume 1996, pages 226-231. Portland: AAAI Press, 1996.

[5] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I. Witten. The weka data mining software: an update. ACM SIGKDD
Explorations Newsletter, 11(1):10-18, 2009.

[6] K. Hempstalk and E. Frank. Discriminating against new classes:
One-class versus multi-class classification. In Advances in Artificial
Intelligence, pages 325-336. Springer, 2008.

[71 M. Iliofotou, B. Gallagher, T. Eliassi-Rad, G. Xie, and M. Faloutsos.
Profiling-By-Association: a resilient traffic profiling solution for the
Internet backbone. In ACM CoNEXT, 2010.

[8] T. Karagiannis, K. Papagiannaki, and M. Faloutsos. BLINC: Multi-level
Traffic Classification in the Dark. In ACM SIGCOMM, 2005.

[9] H. Kim, K. Claffy, M. Fomenkov, D. Barman, M. Faloutsos, and K. Lee.
Internet Traffic Classification Demystified: Myths, Caveats, and the Best
Practices. In ACM CoNEXT, 2008.

[10] R. Kohavi and G. John. Wrappers for feature subset selection. Artificial
intelligence, 97(1-2):273-324, 1997.

[11] H. Kriegel, P. Kroger, M. Renz, and S. Wurst. A generic framework for
efficient subspace clustering of high-dimensional data. In Fifth [EEE
International Conference on Data Mining,. IEEE, 2005.

[12] A. Moore and D. Zuev. Internet Traffic Classification Using Bayesian
Analysis Techniques. In ACM SIGMETRICS, 2005.

[13] E. Muller, S. Gnnemann, I. Assent, and T. Seidl. Evaluating clustering
in subspace projections of high dimensional data. Proceedings of the
VLDB Endowment, 2(1):1270-1281, 2009.

[14] T. T. T. Nguyen and G. Armitage. A Survey of Techniques for Internet
Traffic Classification using Machine Learning. IEEE Communications
Surveys and Tutorials, 4th edition, Mar. 2008.

[15] L. Parsons, E. Haque, and H. Liu. Subspace clustering for high
dimensional data: a review. ACM SIGKDD Explorations Newsletter,
6(1):90-105, 2004.

[16] M. Pietrzyk, J. Costeux, G. Urvoy-Keller, and T. En-Najjary. Chal-
lenging statistical classification for operational usage: the adsl case. In
Proceedings of the 9th ACM IMC, pages 122—135. ACM, 2009.

[17] I. Trestian, S. Ranjan, A. Kuzmanovic, and A. Nucci. Unconstrained
endpoint profiling (Googling the Internet). In ACM SIGCOMM, 2008.

[18] K. Xu, Z. Zhang, and S. Bhattacharyya. Profiling Internet Backbone
Traffic: Behavior Models and Applications. In ACM SIGCOMM, 2005.

2545



