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Abstract

This paper proposes a novel non-parametric technique for clustering net-
works based on their structure. Many topological measures have been in-
troduced in the literature to characterize topological properties of networks.
These measures provide meaningful information about the structural proper-
ties of a network, but many networks share similar values of a given measure
[1]. Furthermore, strong correlation between these measures occur on real-
world graphs [2], so that using them to distinguish arbitrary graphs is difficult
in practice [3].

Although a very complicated way to represent the information and the
structural properties of a graph, the graph spectrum [4] is believed to be a
signature of a graph [5]. A weighted form of the distribution of the graph
spectrum, called the weighted spectral distribution (WSD), is proposed here
as a feature vector. This feature vector may be related to actual structure in
a graph and in addition may be used to form a metric between graphs; thus
ideal for clustering purposes.

To distinguish graphs, we propose to rely on two ways to project a
weighted form of the eigenvalues of a graph into a low-dimensional space.
The lower dimensional projection, turns out to nicely distinguish different
classes of graphs, e.g. graphs from network topology generators [6, 7, 8],
Internet application graphs [9], and dK-random graphs [10]. This technique
can be used advantageously to separate graphs that would otherwise require
complex sets of topological measures to be distinguished [9].
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Graph metrics

1. Introduction

Graphs offer a very versatile means of representing patterns and rela-
tionships between entities in many different fields of engineering and science.
Significant research has focused on the development of techniques and algo-
rithms to facilitate the identification of patterns or structures within individ-
ual graphs [11] and to quantify the characteristics of such graphs [1]. These
measures provide meaningful information about the structural properties of a
graph, but many graphs share similar values of a given measure [1]. Further-
more, strong correlation between these measures occur on real-world graphs
[2], so that using some of them to distinguish arbitrary graphs is difficult
in practice [3]. Thus a key problem in clustering of graphs is the selection
of an appropriate feature vector. The technique presented here proposes a
universal feature vector methodology based on a graph metric.

Another way to represent the information and the structural properties of
a graph is through the graph spectrum [4]. The spectrum of a graph is often
compared to a signature of a graph [5]. Important strutural properties can be
captured with the graph spectrum, e.g., its robustness through the algebraic
connectivity [12] or the speed at which propagation occurs on it through the
spectral radius [13]. However, all of these techniques use particular parts of
the spectrum (the first k eigenvalues for example) while ignoring the rest of
the information.

In this paper, we aim to distinguish between graphs with different struc-
tural properties, without having to make assumptions about which properties
actually characterize best the graphs under study. This is a difficult task but
as will be shown with appropriate weighting the entire spectrum may be used
to represent the structure of a graph. In addition, this strutural representa-
tion may be used to construct a metric and so has many desirable properties
which measures do not. Specfically a metric defines consistent distances
between graphs and is thus ideally suited to clustering. Given consistent dis-
tances between objects allows well known projections onto lower-dimensional
spaces. In this paper we demonstrate this with the lower dimensional projec-
tions; random projection (RP) and multi-dimensional scaling (MDS). Indeed,
in the example applications shown the separation is such that it can be seen
clearly in a 2-3 dimensional space. Clustering this data is then an easy task.
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The example applications are: graphs produced by network topology gen-
erators [6, 7, 8], Internet application graphs [9], and dK-random graphs [10].
Our methodology can be used advantageously to discriminate between graphs
that would otherwise require complex sets of topological measures to be
clearly distinguished [9].

The rest of this paper is structured as follows. In Section 2 we present the
related work. Section 3 explains the theoretical background on the weighted
spectral distribution, random projections and multi-dimensional scaling. We
provide applications of our technique in Section 4, and conclude in Section 5.

2. Related work

Most of the related work for this paper comes from image analysis. In this
area, the use of clustering algorithms on multiple graphs has been applied
to the problem object identification and the related tasks of image match-
ing or clustering and image indexing in large databases. In [14], the use of
continuous time quantum walks, an extension of the classical random walk,
applied to an auxiliary graph constructed from two graphs which are to be
matched is proposed. A similarity measure is calculated based on a set of
probabilities derived from the interference patterns associated with the two
graphs and combined with information on edge consistency. The algorithm
was evaluated using both synthetic data and by completing a clustering anal-
ysis using a graph representation of a database of images of objects viewed
from different perspectives. Multi-Dimensional Scaling (MDS) is used as a
method of visualising the performance of the proposed algorithm with this
database of object images.

The use of graph spectral analysis techniques for image clustering is ex-
amined in [15]. Various parameters derived from the eigendecomposition
of the adjacency matrix are used to form representative feature vectors for
individual graphs. Wilson et. al. [16] describes a further enhancement on
this approach based on the spectral decomposition of the Laplacian of the
graph. A feature vector formed from the coefficients of the elementary sym-
metric polynomial of the spectral matrix of the Laplacian was proposed due
to the fact that it offered a feature vector which was invariant under permuta-
tion of the row indices. PCA, MDS and Locality Preserving Project (LPP)
techniques were used to illustrate that the resultant feature vectors from
graphs representing images of three dimensional objects and image bound-
aries exhibited well defined clustering behaviour. However, one issue with
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such spectral approaches is the need to complete a complete eigendecompo-
sition of either the adjacency matrix or some derivation thereof. While this
is feasible for graphs with a relatively small number of nodes (as is typical in
image analysis problems), it is not a tractable solution for graphs with large
numbers of nodes, as encountered in many complex network domains. The
WSD presented in this paper also uses the spectrum of the graph Laplacian.
However, in contrast to Wilson et. al. [16] we first show how that by weight-
ing the spectrum appropriately a metric of graph structure can be formed.
This metric forms the basis for graph clustering as compared to the feature
vectors used in [16] (which are not metrics but graph measures).

Interest in the topic of clustering graphs is far more sporadic outside
the field of image analysis. Some research in the area exists in the fields
of chemo-informatics and bio-informatics, where graphs represent molecules,
and the number of sample graphs may be high. Maggiora and Shanmuga-
sumdaram [17] provide a high-level insight into the use of graph clustering
as a candidate technique for comparing molecular structures during the pro-
cess of drug discovery and development. In their work, the clustering of
graph-based representations of the structure of molecules is presented as
one of several different feature abstraction and machine learning techniques
that have been proposed for investigating molecular similarities in the field
of chemo-informatics. In a more general setting, another significant con-
tribution is made in Reforgiato et al. [18] which describes an application
independent approach to the problem of clustering of graphs. The proposed
approach utilises a number of different algorithms, based on identifying im-
portant sub-graph structures, to implement a flexible framework in which a
clustering analysis can be carried out on any form of graph based dataset.
The authors evaluated the performance of their proposed framework by ap-
plying it to the task of clustering a chemical [19] and a biological (i.e. RNA)
based dataset and by comparing the resultant clustering performance with
other non-graph based clustering algorithms.

3. Theoretical background

The weighted spectral distribution (WSD) is a graph metric based on the
normalised Laplacian matrix of a graph. It can be used for comparing the
difference in structure between two or more graphs. The metric depends
on looking at the distribution of random walk cycles of length N (where N
is a parameter of the transform) and how they are distributed across the
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graph. The technique was first introduced in [20] and further details may be
found therein. In this paper we extend this technique in two ways. Firstly,
we demonstrate how the WSD may be combined with lower dimensional
projection for graph clustering. Secondly, we refine the WSD so that the
bins selected for the distribution target the data; in the original paper the
technique assumes a uniform bin size.

Specifically, define a graph, G = (V,E), to be a collection of vertices, V ,
and undirected edges, E, with number of vertices |V | = M . The adjacency
matrix of this graph, A, is a symmetric matrix with zeros along the diagonal
(no self loops) and with:

A(G)(u, v) =

{

1, if u, v are connected

0, if u, v are not connected
(1)

The Normalised Laplacian L associated with a graph G = (V,E) is con-
structed from A by normalising the entries of A by the node degrees of A
as

L(G) = I − D−1/2AD−1/2 (2)

where D is a diagonal matrix of the degree of A, D =
∑

i Ai,j. Expressing L
using the eigenvalue decomposition,

L(G) =
∑

i

λieie
T
i (3)

where ei and λi are the eigenvalues and eigenvectors of L resp 1 the WSD is
based on the following theorem from [20]:

Theorem 3.1. The eigenvalues, λi, of the normalised Lapacian matrix for

an undirected network are related to the random walk cycle probabilities as:

∑

i

(1 − λi)
N =

∑

C

1

du1
du2

. . . duN

(4)

where N is the length of the random walk cycles (Equation (4) is valid
for each of N = 2, 3, ....), dui

is the degree of node ui and u1 . . . uN denotes
a path from node u1 of length N ending at node uN , i.e. an N -cycle. For

1These are in general different from the eigenpairs of the walk Laplacian.
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a proof see [20]. C is a set which contains all the nodes which are part of a
random walk cycle in a graph; the set enumerates the walks2. Theorem 3.1
states that the probability of taking a random walk of length N that returns
to the original node, is directly related to the weighted eigenvalues of L.
This probability is the ’local structure’ of a node, i.e. its local connectivity.
Noting that the λi are unique 3 to a graph it can be seen that the WSD
gives a ”thumbprint” for the structure of a graph. As shown in [20] this can
be used for estimating the parameters of a topology generator that produce
graphs which are close (in the WSD sense) to the target graph.

The eigenvalues λ0, . . . , λn−1 represent the strength of projection of the
matrix onto the basis elements. This may be viewed from a statistical point
of view [21] where each λieie

T
i may be used to approximate A(G) with ap-

proximation error inversely proportional to 1 − λi. However, for a graph,
those nodes which are best approximated by λieie

T
i in fact form a cluster of

nodes. This is the basis for spectral clustering, a technique which uses the
eigenvectors of L to perform clustering of a dataset or graph [22]. The first
(smallest) non-zero eigenvalue and associated eigenvector are associated with
the main clusters of data. Subsequent eigenvalues and eigenvectors can be as-
sociated with cluster splitting and also identification of smaller clusters [23].
Typically, there exists what is called a spectral gap in which for some k
and j, λk ≪ λk+1 ≈ 1 ≈ λj−1 ≪ λj. That is, eigenvalues λk+1, . . . , λj−1

4

are approximately equal to one and are likely to represent links in a graph
which do not belong to any particular cluster. It is then usual to reduce the
dimensionality of the data using an approximation based on the spectral de-
composition. However, our technique deviates from clustering: the approach
proposed here is aimed at representing the global structure of a graph, e.g.,
the presence or absence of many small clusters (but not with their specific

location), which is essentially the spread of clustering across the graph. This
information is contained in all the eigenvalues of the spectral decomposition.

The number of N -cycles is related to many graph properties. The number
of 2-cycles is just (twice) the number of edges and the number of 3-cycles

2For example, a graph with 3 cycles and with N = 4 would result in C containing 3
elements, each containing 4 labels. Note: C is not easy to generate in general and is never
actually calculated in practice.

3This is not strictly true but the proportion of co-spectral graphs is thought to be
insignificant.

4i.e., the eigenvalues at the centre of the spectrum.
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is (six times) the number of triangles. Hence
∑

i (1 − λi)
3 is related to the

well known clustering coefficient (as discussed in [20]). An important graph
property is the number of 4-cycles. A graph which has the minimum number
of 4-cycles, for a graph of its density, is quasi-random, i.e., it shares many
of the properties of random graphs, including, typically, high connectivity,
low diameter, having edges distributed uniformly through the graph, and so
on. This statement is made precise in [24] and [25]. For regular graphs, (4)
shows that the sum

∑

i (1 − λi)
4 is directly related to the number of 4-cycles.

In general, the sum counts the 4-cycles with weights: for the relationship
between the sum and the quasi-randomness of the graph in the non-regular
case, see the more detailed discussion in [26, Chapter 5]. The right hand side
of (4) can also be seen in terms of random walks. A random walk starting at
a vertex with degree du will choose an edge with probability 1/du and at the
next vertex, say v, choose an edge with probability 1/dv and so on. Thus the
probability of starting and ending randomly at a vertex after N steps is the
sum of the probabilities of all N -cycles that start and end at that vertex. In
other words exactly the right hand side of (4).

The left hand side of Equation (4) provides an interesting insight into
graph structure. The right hand side is the sum of normalised N -cycles
whereas the left hand side involves the spectral decomposition. We note in
particular that the spectral gap is diminished because eigenvalues close to
one are given a very low weighting compared to eigenvalues far from one.
This is important as the eigenvalues in the spectral gap typically represent
links in the network that do not belong to any specific cluster and are not
therefore important parts of the larger structure of the network.

We now formally define the weighted spectrum as the normalised sum of
N -cycles as

W (G,N) =
∑

i

(1 − λi)
N (5)

However, calculating the eigenvalues of a large (even sparse) matrix is com-
putationally expensive. In addition, the aim here is to represent the global

structure of a graph and so precise estimates of all the eigenvalue values are
not required. Thus, the distribution5 of eigenvalues is sufficient. In this pa-
per the distribution of eigenvalues f(λ = k) is estimated using pivoting and

5The eigenvalues of a given graph are deterministic and so distribution here is not
meant in a statistical sense.
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Sylvester’s Law of Inertia to compute the number of eigenvalues that fall in
a given interval. To estimate the distribution we use K bins6. A measure
of the graph can then be constructed by considering the distribution of the
eigenvalues as

ω(G,N) =
∑

k∈K

(1 − k)Nf(λ = k) (6)

where the elements of ω(G,N) form the weighted spectral distribution:

WSD : G → ℜ|K|{k ∈ K : ((1 − k)Nf(λ = k))} (7)

In addition, a metric can then be constructed from ω(G) for comparing
two graphs, G1 and G2. This takes the quadratic norm between two WSD’s
as:

ℑ(G1, G2, N) =
∑

k∈K

(1 − k)N(f1(λ = k) − f2(λ = k))2 (8)

where f1 and f2 are the eigenvalue distributions of G1 and G2 and the distri-
bution of eigenvalues is estimated in the set K of bins ∈ [0, 2]. Equation (8)
satisfies all the properties of a metric (see [20]). For a simple worked example
we refer to reader to [20] Section IV.

3.1. Bin selection based on equalised weightings

The original WSD proposed using a uniform bin size [20]. However, for a
given number of bins, this may not provide the best resolution. It is desirable
to have a greater resolution at those points which provide more information
at the cost of lower resolution elsewhere. As the weighting in the WSD is
polynomial, a uniform bin size does not achieve this. The aim of this section
is to assign bins in the WSD given a particular value of N such that the sum

of the weighting in each bin is equal. The weighting in the WSD may be
expressed as:

w(x) = (1 − x)N (9)

where w(x) is the weight applied to an eigenvalue at x. In order to equalise
the power within each of the K bins we require that:

∫ ki+1

ki

w(x)dx =

∫ kj+1

kj

w(x)dx ∀i, j (10)

6The selection of these bins is considered below.
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Figure 1: Integral of w(x) = (1 − x)4 and bin locations. (M = 2000).

i.e. the weight in bin i ∈ ki, ki+1 should be equal to the weight in bin
j ∈ kj, kj+1. Equation 10 may be solved by a simple integration followed by
solving the roots of the equation7. The equalised bins for N = 4 and K = 50
are shown in Figure 1. Note how the weight assigned in each bin is uniform
(i.e. on the y-axis), given the non-uniform bins on the x-axis. Intuitively,
the bins should target the most important points in the spectral distribution:
those closest to 0 and 2. This is indeed the case as seen in Figure 1. An
example of the WSD for a graph using uniform bins and equalised bins is
shown in Figure 2. There are 71 bins in each plot. Note how the two WSD’s
are similar. However, the bins with equalised weightings contains more detail
in the region of high amplitude while the uniform bins waste effort sampling
at points of less importance, i.e. around the spectral gap at 1.

It was found that the clustering resulting from equalised bins gives much
improved results, and is therefore used in the remainder of this paper.

3.2. Lower Dimensional Projection

The WSD produces a mapping from ℜM×M 7−→ ℜ|K| where |K| = 71 bins
are used in the examples in this paper. However, a 71 dimensional space is
still too large to effectively visualise clustering across graphs. In this section,

7The roots of a polynomial of order 4 or higher cannot be expressed rationally and so
are not presented here.
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Figure 2: Example of detail in WSD captured by equalised bins compared with uniform
bins.

we introduce two commonly used techniques to map the WSD into a lower
dimension: Random Projection (RP) and Multi-Dimensional Scaling (MDS).

Specifically, given C different graphs the aim is to seek a mapping from
their WSD’s into an l dimensional space: ℜC×|K| 7−→ ℜC×l where l << |K|.
Typically l = 2 or 3 makes visual inspection possible. Note that the methods
used are parameter-free and so a natural clustering of the data is sought,
as opposed to a supervised method which applies a mapping learned from
training data.

3.2.1. Random Projection

Random projection [27] is a technique often used in compressed sensing,
in which a high dimensional matrix is reduced to a low dimensional matrix
by multiplying the data by a random matrix as:

Z = XT (11)

where Z ∈ RC×l is the projected data matrix, X ∈ RC×|K| are the WSD’s of
the C graphs, T ∈ R|K|×l is the random projection matrix where each of the
elements of T are drawn from a Gaussian distribution T ∼ N(0, 1). As the
rows of T are normally distributed independent variables, their correlation
is zero in expectation and so they form (in expectation) orthogonal vectors.
In addition the norm of the vector is 1 and so T forms a reduced basis in the
original data.
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3.2.2. Multi-Dimensional Scaling

MDS [28] is a well-known technique which maps distances between objects
onto a reduced dimensional space. An intuitive example involves taking the
distance matrix commonly shown in the bottom corner of many road maps
and using it to reconstruct the map itself. Unlike random projection, the
technique uses the distance between the graphs here defined in terms of the
metric introduced in Equation 8, ℑ(G1, G2, N). First, a dissimilarity matrix,
R, is constructed as:

R(i,j) =

{

ℑ(Gi, Gj, N) if i 6= j

0 if i = j
(12)

The goal of MDS is to find a set of vectors Z1, Z2, ...Z|K| that incrementally
approximate the distance in the dissimilarity matrix. Specifically, we wish
to minimise the distance between the projected vectors and the orignal data
as:

C = min
Z1,Z2,...Z|K|

∑

i<j

(‖Zi − Zj‖ − R(i,j))
2 (13)

where C is the cost function to be minimised. The minimisation in this
paper is performed using numerical optimisation based on the eigenvector
decompostion of R [29]. Typically, the first and second vectors, Z1 and Z2

are sufficient to allow visualisation of clustering within the data. In the
sequel, we denote by WSD+RP and WSD+MDS the random projection and
multi-dimensional scaling techniques, respectively.

4. Applications

This Section provides some real-world examples of the use of the proposed
technique. We examine three scenarios using the WSD as a feature vector
and then project this feature vector into 2/3-D showing the clear separation
of the different classes of objects. Specifically, the three examples, chosen
from the areas of computer networking, are:

• Network topology generators: Existing topology generators rely on very
different rules to build graphs. We show that the generated graphs can
be clustered in a low dimensional space. This makes it possible to
distinguish the different graph structures that are sampled by these
generators.
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• Network application identification: Graphs constructed from the inter-
action of nodes using the same application can be distinguished with
our techniques. Previous work required multiple metrics, identified
through manual inspection in order to classify applications [9].

• Orbis based topologies and the dK-series: dK-series were introduced in
[10] to capture degree correlations in real-world graphs. The resulting
topology generator, called Orbis, creates subsets of graphs embedded
according to the dK-series paradigm. We show that the graphs gener-
ated by Orbis are much more similar than previously thought and this
is caused by a strong implicit prior on the graph structures generated.

4.1. Topology generator projections

The aim of this section is to demonstrate how the WSD+RP may be
used to distinguish between topology generators. A topology generator is a
set of rules which are used to build up a synthetic graph. For example, the
Waxman topology generator first generates M nodes distributed uniformly
on a square and then connects points according to probability:

p(u, v) = αe−βhu,v (14)

where p(u, v) is the probability of connecting nodes u and v, α and β are
parameters of the generator and hu,v is the Euclidean distance between u
and v on the square. The AB and GLP topology generators are based on
preferential attachment while the INET model is based on a complex model
for how connections are formed in the Internet (see [30] for more details).

For each type of topology generator a family of WSD’s may be generated
by varying the parameters of the generator. The aim at this point is to show
that these WSD families map onto different curves for different topology
generators. The WSD’s generated by an AB model should not correspond
to any of those of the GLP model or the Waxman model, etc.. We begin by
sampling from the family of WSD’s for each topology generator. Specifically
we generate 100 topologies of each using random parameters. 71 bins are
used in this experiment, resulting in a data matrix of 400 WSD’s (4 topology
generators) of size 400× 71. Figure 3 shows these families of WSD’s side by
side. Note, it is not immediately clear from Figure 3 that these WSD’s do in
fact map to different points (clusters) in the 71 dimensional space.

The next stage is to reduce the dimension of this data to 400 × 2, so
as to be able to visualize the clustering in the data. As we only need any
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Figure 3: The WSD’s for 4 types of topology generator are shown above. The figures are
separated for clarity, i.e. the WSD’s for the GLP model are artificially moved downward
by −0.006 (M = 2000).

projection that separates the data classes (generators), not specifically an
optimal projection, the RP technique is used.
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Figure 4: 2-D projection of topology generator graphs. Note the x and y axis are not
relevant, only the separation of points. (M = 2000).

Figure 4 shows the projection of the sampled families onto 2 dimensions
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using random projections. This Figure may be thought of as a 2-D represen-
tation of ’structural space’ in which a greater separation of points represents
a greater separation of the corresponding graph sturctures.

The first thing to note about Figure 4 is that most of the Waxman WSD’s
lie well outside the range of the figure. This is to be expected as Waxman
topologies differ significantly from the others. Second, the actual units of
the graph are irrelevant: only the separation of the points is meaningful.
At the right of the graph (around (0, 0)), there is a clustering in which the
GLP, AB and Waxman models all overlap. This occurs at low parameter
values when the graphs contain few links and are therefore difficult to dis-
tinguish. The GLP and AB graphs are very close for a large section of the
families. This occurs as GLP is similar in structure to AB but not equal. In
order to demonstrate this, a Support Vector Machine (SVM) [31] was used
to determine the boundary between the the AB class and the GLP class.
The decision boundary is shown in Figure 4 as a solid black line. Note the
boundary value is irrelevant outside of the training range. As can be seen,
the boundary separates the two classes efficiently, with an 11% false classifi-
cation rate. The Inet models generate a different cluster of projections which
is shown in Figure 4. We conclude that our technique is able to empirically
distinguish different generated topological structures.

4.2. Network application identification

Traffic monitoring setup. The traffic traces used in this work are col-
lected from an OC48 optical link of the Metromedia Fiber Network (MFN)
backbone in San Jose, CA. The data was provided to CAIDA [32] by the
WAND Research Group (University of Waikato, New Zealand) using an
OC48 DAG interface card. The data used in our experiments are from the
08/14/2002; between 09:00 - 10:00AM and 11:00-12:00PM. Over this time
period, the captured traffic contains on average close to 500K flows (TCP
and UDP) in every five minute interval. The overall volume of data approx-
imates 1 TByte of raw IP packets. Several traces from MFN are publicly
available by CAIDA [32].

Representative sample. Our experience with traffic graphs [33, 9, 34,
35] showed that the MFN traces are a representative sample of a large Tier-
1 backbone link. Other locations we studied in the past [33, 9] include
data from the Palo Alto Internet eXchange (PAIX) and Internet2 (Abilene)
backbones collected over different times of the day, different days of the
week, and over several years. Using publicly available traces [32] allows other

14



researchers to extend and verify our findings and contributions. All traces
are IP-anonymized and contain traffic from both directions of the link.

Flow processing details. Throughout this paper we group packets into
flows using the standard method based on the five tuple {SrcIP, SrcPort,
DstIP, DstPort, Protocol}. For a TCP flow, we generate a directed edge
starting from the node that sent the SYN packet. For the UDP flows, we create
a directed edge starting from the sender of the first packet. To establish the
ground truth for flows (e.g., eDonkey, Web, etc.), we use a combination
of signature- and port-based traffic classifiers [9, 34, 35, 36]. The monitor
used for collecting the MFN trace captured 44 bytes for each packet, which
includes IP and TCP/UDP headers and an initial 4 bytes of payload for
some packets. Approximately 40% of the flows are classified using standard
payload-based signature matching techniques as used in [37, 38, 34, 35] and
for the remaining flows we used the port-based classifier from CoralReef [36],
which performs very well for the MFN data as observed in [9].

On the upper left plot of Figure 5, we observe a rather clean separation
between the projections of the graphs belonging to different applications.
Some overlap exists between some applications, e.g. Gnutella and eDonkey
or SSH and MP2P. Overlap between WINMX and MP2P or eDonkey and
Gnutella are expected, as the communication patterns generated by these
P2P applications are similar. However, as can be seen in Figure 5, the
separation increases as we include a third dimension.

To investigate further, the data was split evenly into two randomly se-
lected groups; a training set and a test set. The training set was then used to
train a classifier using standard discriminant analysis [39]. It was found that
overall there was a 14% misclassification error. More specifically the confu-
sion matrix is shown is Table 1. In this matrix, entry i, j is the proportion
of class i objects that are misclassified as class j. Ideally, this matrix should
have 1 along the diagonal. Note also that the sum of any row is equal to 1
(i.e. 100%). Also note that the entry for i, j is not necessarily the same as
j, i. The diagonal and interesting values are shown in bold font.

From Table 1 it can be seen that 22% of the Gnutella graphs have prob-
lems being distinguished from the E-Donkey graphs (the reverse is not true).
This is expected given the similarity of their communication patterns. In ad-
dition, 22% of FTP graphs are misclassified as HTTPS, and 13% as MP2P.
We expect FTP graphs to be similar to HTTPS since both protocols have
similar graph sizes and both protocols are based on the client-server archi-
tecture, with low degree nodes (clients) being connected with high degree
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Figure 5: A 3-D plot of the application graphs mapped using WSD+RP. The upper left
plot shows the x-y plane (i.e. first two dimensions); subsequent plots show differing angles
of view.

Table 1: Confusion matrix for Internet applications.

Donkey Fast FTP Gnutella HTTP HTTPS MP2P SSH SMTP WINMX
Donkey 0.96 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00

Fast 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FTP 0.00 0.00 0.67 0.00 0.00 0.20 0.13 0.00 0.00 0.00

Gnutella 0.22 0.02 0.00 0.74 0.00 0.00 0.00 0.00 0.02 0.00
HTTP 0.00 0.00 0.06 0.00 0.91 0.03 0.00 0.00 0.00 0.00

HTTPS 0.00 0.03 0.03 0.00 0.00 0.94 0.00 0.00 0.00 0.00
MP2P 0.00 0.00 0.04 0.00 0.07 0.00 0.89 0.00 0.00 0.00

SSH 0.00 0.00 0.03 0.00 0.00 0.06 0.31 0.60 0.00 0.00
SMTP 0.17 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.78 0.00

WINMX 0.00 0.00 0.00 0.00 0.00 0.00 0.22 0.00 0.04 0.74
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hosts (servers). 31% of the SSH graphs are misclassified as MP2P. 17% of
the SMTP graphs are misclassified as eDonkey. Also, SMTP and eDonkey
were also confused in [34] and [9], because of the similarity in the architecture
of the two applications. While we leave it for further work to study the exact
reasons for these misclassifications, we expect that the limited dimensionality
of the projections, as well as the similarity of the static graph structures are
the two most important reasons for the misclassifications.

4.3. Orbis and dK-series.

The Orbis topology generator [10] is based on the configuration model

developed by Bollobas in [40]. The configuration model constructs a topology
with a given degree distribution. First a list of edges is constructed, with
both ends of the edge unlabeled. The edges are then assigned node labels,
at random, to satisfy the required degree distribution. For example, a given
degree distribution may require one node with degree 2 and one node with
degree 3, etc. The first node is assigned to two of the, as of yet, unlabeled
edges and then the second node to 3 of the edges and so on. At the end, all
the edges are labeled at both ends and these are connected to form the final
graph. For the Orbis topology generator, this process may be taken to the
next level by considering the joint degree distribution: the probability that
a node of degree k, say, is connected to a node of degree j. This is achieved
by an adjustment to the configuration model in which the labeling of edges
requires the satisfaction of the joint degree distribution rather than being
simply random (see [10] for more details).

Note that the degree distribution is implicitly given as a marginal of the
joint degree distribution. Likewise the average degree is implicitly specified in
the degree distribution. In the Orbis terminology, these form the dK series in
which we may express graphs as subsets of each other: 0K is the set of graphs
with average degree, k̄; 1K is the set of graph with degree distribution, p(k);
2K are the set of graphs with joint degree distribution p(k, j); 3K and higher
elements of the series represent higher order cumulants. In [10], it is proposed
that dK ⊂ (d − 1)K · · · ⊂ 2K ⊂ 1K ⊂ 0K as shown diagrammatically in
Figure 6.

The aim of this section is to generate 100 8 from 0K, 1K and 2K topolo-
gies each, and then map these into two dimensions using the WSD+MDS;

8This number was found to be sufficient as can be seen by the clustering in Figure 9.
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Figure 6: WSD of dK-series graphs. (Note: this figure is a recreation of Figure 2 from [41]).

essentially sampling the areas of Figure 6. The first stage involves generating
a (any) model with a specific joint degree distribution. For this we used an
AB model with 3000 nodes and parameters [0.3,0.1]. This creates a relatively
dense AB graph with a power law degree distribution and connections based
on preferential attachment (see [42] for more details). The joint degree dis-
tribution, degree distribution and average degree of this topology are then
used to generate the 300 graphs using Orbis. Figure 7 shows the resulting
300 WSD’s of these graphs. As can be seen in Figure 7, three distinct WSD
patterns are produced.

Figure 8 shows the 2-D projection of these 300 WSD’s using MDS. The
first thing to note is that the 0K, 1K and 2K models form distinct clusters
in the 2-D plane; this is not the expected result 9. The reason for this unex-
pected clustering can be understood through the examination of the degree
distributions of the 0k models (see Figure 9). The average, µp(k), and the
standard deviation, σp(k) of the 100 0K and the 100 1K degree distributions
is shown in Figure 9. The degree distribution of the 0K models is highly

9The expected result is to have the 0K projections (i.e. dots) spread across a large area
with the 1K projections somewhere within that area and the 2K projections inside the 1K
area.
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Figure 8: 2-D MDS Projection of dK-series graphs.

concentrated around the mean degree, k̄, 10 while that of the 1K models is
power-law (this is not obvious in a linear plot). In addition, the distributions
themselves are highly concentrated around their means, i.e. σp(k) is relatively

10This is because the 0K graphs are Erdos-Renyi graphs which are well known to have
a concentrated degree distribution.
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small. In summary, while it is possible that a 0K model would produce a
topology with power-law distribution, the probability is vanishingly small.
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Figure 9: Degree distribution of 0K and 1K graphs with confidence intervals.

A similar situation arises with the 1K and 2K graphs: the chance of a 1K
model generating a 2K model with the same joint degree distribution is again
extremely small. This can be seen from the lack of overlap in their projections
in Figure 8. The key problem with this approach is that the mechanism used
to generate the 0K model does not result in degree distributions which are
picked uniformly from the set of all degree distributions.

Likewise, the 1K graphs do not have joint degree distributions uniformly
sampled from the set of possible joint degree distributions. In summary, while
the three sets in Figure 6 do exist, the current mechanism only generates a
very small region of those sets in practice. The Orbis generator therefore
does not sample uniformly graphs as would be suggested from Figure 6 (Note:
there is a discussion in the Conclusion of the consequences).

The key problem identified is that while Figure 6 is strictly true the
topology’s are not generated uniformly in the sample space. In fact the
0K model effectively places a very tight prior on the distribution of degree
distributions in the 0K graphs. That is, the 0K graphs have a concentrated
degree distribution; they should be completely random (no prior). One way
to circumvent this would be to sample a degree distribution randomly from a
distribution of degree distributions such that the average degree satisfies the
specified one. This could then be used to generate a 1K model. The problem
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here of course is that this approach requires using a dK+1 model to generate
a dK topology. As the highest known practical topology generator is a d2
generator this restricts the topologies to d1.

5. Conclusions

Graphs offer a very versatile means of representing patterns and rela-
tionships between entities in many different fields of engineering and science.
In this paper, we have proposed a technique to distinguish between graphs
with different structural properties, without having to make assumptions
about which properties actually characterize best the graphs under study.
Our technique consists projections of a weighted graph spectrum onto lower-
dimensional spaces, through random projections (RP) and multi-dimensional
scaling (MDS).

We showed that these two projections (RP and MDS) turn out to be
able to distinguish different types of graphs: from synthetic ones produced
by topology generators to real ones resulting from the interactions between
nodes participating in specific applications. Throughout these applications,
we demonstrate that our technique can be used advantageously to discrimi-
nate between graphs that would otherwise require complex sets of topological
measures to be clearly distinguished, e.g., [9].

The WSD+MDS technique presented may have many future applications
in the growing area of real-world graph analysis from dynamic visualisation
of graph structural changes to evolution of graph based systems and identi-
fication of undesirable structural regions for graphs (for example in network
security).
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