Problem 1: Determine the numerical values of the expressions below:

\[1 + 2 + \ldots + 100 = 5050 \]

\[\gcd(198, 242) = 22 \]

\[163 \text{ rem } 15 = 13 \]

\[\binom{15}{4} = 1365 \]

\[\sum_{i=0}^{\infty} \left(\frac{1}{3} \right)^i = \frac{3}{2} \]

Reminders:
- \(\gcd(a, b) \) is the greatest common divisor of \(a \) and \(b \)
- \(a \text{ rem } b \) is the remainder of \(a \) modulo \(b \) (often also denoted \(a \mod b \))
Problem 2: (10 points). Let X and Y be two finite sets with cardinalities $|X| = n$ and $|Y| = m$. Complete the following sentences.

(a) X has 2^n subsets.

(b) $X \times Y$ has $n \cdot m$ elements.

(c) The number of permutations of Y is $m!$.

(d) There are m^k length-k sequences of elements from Y (with repetitions allowed).

(e) X has $\binom{n}{k}$ k-element subsets (for $0 \leq k \leq n$).
Problem 3: For each of the statements below, tell whether it is true or false.

Note: to discourage guessing, the answers will be graded as follows: correct = +2, no answer = 0, incorrect = -1.

<table>
<thead>
<tr>
<th>statement</th>
<th>T/F</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\exists x \in \mathbb{R} : x^2 + x = 2$</td>
<td>T</td>
</tr>
<tr>
<td>$\exists x \in \mathbb{R} : x^2 + x = -2$</td>
<td>F</td>
</tr>
<tr>
<td>$\forall x \in \mathbb{R} : (x^2 > 4) \implies (x > 2)$</td>
<td>F</td>
</tr>
<tr>
<td>$\forall x \in \mathbb{R} \exists y \in \mathbb{R} : xy^2 + x = 1$</td>
<td>F</td>
</tr>
<tr>
<td>$\exists x \in \mathbb{R} \forall y \in \mathbb{R} : xy^2 + 2^x = 1$</td>
<td>T</td>
</tr>
</tbody>
</table>

Reminders:

- \mathbb{R} denotes the set of real numbers.

- \forall denotes the universal quantifier ("for all") and \exists denotes the existential quantifier ("there exists").