Problem 1: For each pseudocode below, give the number of letters printed as a function of n, using the Θ-notation. For the first three programs give a recurrence and its solution. For the last two programs, give the solution and a brief justification (at most 20 words).

<table>
<thead>
<tr>
<th>pseudocode</th>
<th>Solution and recurrence or justification</th>
</tr>
</thead>
</table>
| **procedure** PrintAs(n)
 if $n > 1$ then
 print("A")
 PrintAs($n/3$)
 $A(n) = A(n/3) + 1$
 $A(n) = \Theta(\log n)$ |
| **procedure** PrintBs(n)
 if $n > 1$ then
 for $j \leftarrow 1$ to $4n$
 do print("B")
 PrintBs($n/3$)
 PrintBs($n/3$)
 $B(n) = 2B(n/3) + 4n$
 $B(n) = \Theta(n)$ |
| **procedure** PrintCs(n)
 if $n > 1$ then
 for $j \leftarrow 1$ to n^2
 do print("C")
 for $i \leftarrow 1$ to 5 do
 PrintCs($n/2$)
 $C(n) = 5C(n/2) + n^2$
 $C(n) = \Theta(n^{\log 5})$ |
| **procedure** PrintDs(n)
 for $j \leftarrow 1$ to n do
 $k \leftarrow 1$
 while $k < n$ do
 print("D")
 $k \leftarrow 2k$
 $D(n) = \Theta(n \log n)$
 internal loop makes $\Theta(\log n)$ iterations
 because k doubles at each step |
| **procedure** PrintEs(n)
 for $i \leftarrow 1$ to n^2 do
 for $j \leftarrow 1$ to $2n$ do
 print("E")
 $E(n) = \Theta(n^3)$
 for each of n^2 iterations of external loop
 internal loop makes $2n$ iterations |
Problem 2: (a) Explain how the RSA cryptosystem works by filling in the table below.

<table>
<thead>
<tr>
<th>Initialization</th>
<th>Determine (p, q,) and (n):</th>
<th>(p, q) are different primes and (n = pq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula for (\phi(n)):</td>
<td>(\phi(n) = (p - 1)(q - 1))</td>
<td></td>
</tr>
<tr>
<td>Determine (e) and (d):</td>
<td>(e) can be any number between 1 and (n) that is relatively prime to (\phi(n)), and (d = e^{-1} \pmod{\phi(n)})</td>
<td></td>
</tr>
<tr>
<td>Public and secret keys:</td>
<td>(P = (n, e), S = d)</td>
<td></td>
</tr>
</tbody>
</table>

Encryption: \(E(M) = M^e \pmod{n} \)
Decryption: \(D(C) = C^d \pmod{n} \)

(b) Below you are given five choices of parameters \(p, q, e, d \) of RSA. For each choice tell whether these parameters are correct\(^1\) (write YES/NO). If yes, give an encoding of \(M = 3 \). If not, give a brief justification (at most 10 words).

<table>
<thead>
<tr>
<th>(p)</th>
<th>(q)</th>
<th>(e)</th>
<th>(d)</th>
<th>correct?</th>
<th>justify if not correct / encode (M = 3) if correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>Y</td>
<td>Computing modulo 35: (3^5 = 243 = 33)</td>
</tr>
<tr>
<td>11</td>
<td>27</td>
<td>13</td>
<td>55</td>
<td>N</td>
<td>27 is not a prime</td>
</tr>
<tr>
<td>17</td>
<td>5</td>
<td>5</td>
<td>13</td>
<td>Y</td>
<td>Computing modulo 85: (3^5 = 243 = 73)</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>3</td>
<td>67</td>
<td>N</td>
<td>(p) and (q) cannot be equal</td>
</tr>
<tr>
<td>7</td>
<td>11</td>
<td>5</td>
<td>27</td>
<td>N</td>
<td>(5^{-1} \neq 27 \pmod{60})</td>
</tr>
</tbody>
</table>

\(^1\)To clarify, correctness refers to whether these parameters satisfy the conditions in the algorithm.
Problem 3: (a) Give a complete statement of Fermat’s Little Theorem.

Theorem: Let \(p \) be a prime number and \(a \in \{1, 2, ..., p - 1\} \). Then \(a^{p-1} \equiv 1 \pmod{p} \).

(b) Use Fermat’s Little Theorem to compute the following values. In the second example, show your work.

\[35^{130} \mod 131 = 1 \]

\[3^{14074} \mod 71 = 10 \]

Computing modulo 71: \(3^{14074} = 3^{14070} \cdot 3^4 = 1 \cdot 81 = 10 \).
Problem 4: For each $n \geq 0$ we define a binary tree T_n as follows. T_0 is a single node and T_1 is also a single node. For $n \geq 2$, T_n is obtained by creating two new nodes and adding copies of T_{n-1} and T_{n-2} as their subtrees, as in the picture below on the left:

![Binary tree diagram]

The picture on the right shows tree T_3 (with subtrees T_2 and T_1 marked).

Let A_n be the number of leaves in T_n. (For example, $A_0 = A_1 = 1$, $A_2 = 3$ and $A_3 = 7$, as can be seen in the picture above.) Give a formula for A_n. You need to show your work, all steps. First, give a recurrence equation with a brief justification. Then solve this recurrence. At each step explain what you are computing.

The recurrence is

$$A_n = 2A_{n-1} + A_{n-2} \quad \text{for } n \geq 2$$

$$A_0 = 1$$

$$A_1 = 1$$

Justification for the recurrence: the leaves of T_n are either the leaves of two subtrees T_{n-1} or one subtree T_{n-2}.

The characteristic equation is $x^2 - 2x - 1 = 0$. The roots are $1 + \sqrt{2}$ and $1 - \sqrt{2}$. So the general solution is

$$A_n = \alpha_1 (1 + \sqrt{2})^n + \alpha_2 (1 - \sqrt{2})^n.$$

Using the initial conditions, we get equations:

$$\alpha_1 + \alpha_2 = 1$$

$$\alpha_1 (1 + \sqrt{2}) + \alpha_2 (1 - \sqrt{2}) = 1$$

The solution is $\alpha_1 = \alpha_2 = \frac{1}{2}$. So the final solution is

$$A_n = \frac{1}{2}(1 + \sqrt{2})^n + \frac{1}{2}(1 - \sqrt{2})^n.$$
Problem 5: The Duggars are about to buy t-shirts for their 19 children, one for each. They need
- at least 2 blue t-shirts,
- at least 5 red t-shirts,
- at least 1 pink t-shirt, and
- at least 2 and not more than 10 yellow t-shirts.

How many different choices of t-shirt colors satisfy these requirements?

The answer is the number of non-negative integral solutions of
\[b + r + p + y = 19 \]
\[2 \leq b \]
\[5 \leq r \]
\[1 \leq p \]
\[2 \leq y \leq 10 \]

After eliminating lower bounds (by substitutions), this reduces to computing the number of non-negative integral solutions of
\[b + r + p + y = 9 \]
\[y \leq 8 \]

Let \(S \) be the number of all non-negative integral solutions and \(S(P) \) the number of non-negative integral solutions that satisfy condition \(P \). Then
\[S(y \leq 8) = S - S(y \geq 9) = \binom{12}{3} - \binom{3}{3} = 220 - 1 = 119. \]

So the answer is 119.
Problem 6: (a) Give Euler’s inequality for planar graphs, and use it to show that the graph below is not planar.

Euler’s inequality: In a planar graph with \(n \geq 3 \) vertices the number of edges \(m \) satisfies \(m \leq 3n - 6 \).
In this graph we have \(n = 7 \) and \(m = 16 \). These numbers do not satisfy Euler’s inequality, so \(G \) is not planar.

(b) Determine which of the following two graphs are planar. Justify your answer and show your work.

Graph \(H \) is planar. The picture below on the left shows a planar drawing of \(H \). Graph \(G \) is not planar, because it contains a sub-division of \(K_5 \), shown below on the right.
Problem 7: Use induction to prove that \(\sum_{k=1}^{n} k^3 = \frac{1}{4}n^2(n+1)^2 \) for all integers \(n \geq 1 \).

Base case: For \(n = 1 \), the left-hand side is \(\sum_{k=1}^{1} k^3 = 1 \) and the right-hand side is \(\frac{1}{4}1^2(1+1)^2 = 1 \) as well.

Inductive step: Assume that \(\sum_{k=1}^{n} k^3 = \frac{1}{4}n^2(n+1)^2 \). We want to show that this equation holds for the next value of \(n \), that is \(\sum_{k=1}^{n+1} k^3 = \frac{1}{4}(n+1)^2(n+2)^2 \). Starting from the left-hand side, and using the inductive assumption, we proceed as follows:

\[
\sum_{k=1}^{n+1} k^3 = \sum_{k=1}^{n} k^3 + (n+1)^3 \\
= \frac{1}{4}n^2(n+1)^2 + (n+1)^3 \\
= \frac{1}{4}(n+1)^2[n^2 + 4(n+1)] \\
= \frac{1}{4}(n+1)^2(n+2)^2.
\]

as needed.
Problem 8: We have a set of $2n$ players in a chess tournament, where $n \geq 1$. Let $f(n)$ be the number of ways to divide them into pairs for the first round of the tournament. Prove that

$$f(n) = \frac{(2n)!}{2^n n!}.$$

For example, consider the case when $n = 2$, that is have four players. Let's call them A, B, C, D. There are three possible pairings: (AB, CD), (AC, BD), and (AD, BC). This agrees with the formula, because $f(2) = (2 \cdot 2)!/(2^2 \cdot 2!) = 4!/4 = 3$.

Hint: One way to approach this is to derive a recurrence equation for $f(n)$ and then prove that the above formula is its solution. Another way is to show a relation between pairings and permutations of the players.

Solution 1: For $n = 1$ we have two players and one pairing, so $f(1) = 1$. Consider some $n > 1$. The last player can be paired with any of the other $2n - 1$ players. Once we choose the pairing for the last player, the remaining players can be paired in $f(n - 1)$ ways. Thus we have the recurrence

$$f(1) = 1$$

$$f(n) = (2n - 1) f(n - 1)$$

It remains to verify that the formula above satisfies this recurrence. Indeed:

$$(2n - 1) \cdot f(n - 1) = (2n - 1) \cdot \frac{(2(n - 1))!}{2^{n-1}(n - 1)!} = \frac{(2n - 1)(2n - 2)!}{2^{n-1}(n - 1)!} = \frac{2n(2n - 1)(2n - 2)!}{2^nn!} = \frac{(2n)!}{2^nn!} = f(n),$$

as claimed.

Solution 2: Consider any of the $(2n)!$ permutations of the players, say x_1, x_2, \ldots, x_{2n}. This permutation defines a pairing where each odd-numbered player is paired with the next player: $x_1x_2, x_3x_4, \ldots, x_{2n-1}x_{2n}$. However, each pairing can be obtained in many ways from this construction: in each pair the two players can be exchanged in two ways, for the total of 2^n ways, and the n pairs themselves can be obtained in any order, and there are $n!$ such orders. Therefore the number of pairings will be $(2n)!$ divided by $2^n n!$, which is exactly our formula.

Solution 3: Let’s try brute force: pick the pairs one by one. The first pair can be selected in $\binom{2n}{2} = 2n(2n-1)/2$ ways. Once we choose this pair, the second pair can be chosen in $(2n-2)(2n-3)/2$ ways, and so on. This will give us

$$\frac{2n(2n - 1)(2n - 2)...1}{2^n} = \frac{(2n)!}{2^n}$$

ways to choose the pairings. However, the n pairs in each pairing can be selected in all possible orderings, and there are $n!$ such orderings. Thus we need to divide the above value by $n!$, which gives us $f(n) = (2n)!/(2^nn!)$.

CS111 FINAL A SOLUTIONS, Spring’15, June 6.