CS/MATH 111 SPRING 2015
Final Test

- The test is 2 hours and 30 minutes long, starting at 8:00AM and ending at 10:30AM
- There are 8 problems on the test. Each problem is worth 10 points.
- Write legibly. What can’t be read won’t be credited.
- Calculators are not allowed.
- **Before** you start:
 - Make sure that your final has all 8 problems
 - Put your name and your student ID on each page
Problem 1: For each pseudo-code below, give the number of letters printed as a function of n, using the Θ-notation. For the first three programs give a recurrence and its solution. For the last two programs, give the solution and a brief justification (at most 20 words).

<table>
<thead>
<tr>
<th>Pseudo-code</th>
<th>Solution and recurrence or justification</th>
</tr>
</thead>
</table>
| **procedure** PrintAs(n)
 if $n > 1$ then
 print("A")
 PrintAs($n/3$) | |
| **procedure** PrintBs(n)
 if $n > 1$ then
 for $j ← 1$ to $4n$
 do print("B")
 PrintBs($n/3$)
 PrintBs($n/3$) | |
| **procedure** PrintCs(n)
 if $n > 1$ then
 for $j ← 1$ to n^2
 do print("C")
 for $i ← 1$ to 5 do
 PrintCs($n/2$) | |
| **procedure** PrintDs(n)
 for $j ← 1$ to n do
 $k ← 1$
 while $k < n$ do
 print("D")
 $k ← 2k$ | |
| **procedure** PrintEs(n)
 for $i ← 1$ to n^2 do
 for $j ← 1$ to $2n$ do
 print("E") | |
Problem 2: (a) Explain how the RSA cryptosystem works by filling in the table below.

<table>
<thead>
<tr>
<th>Initialization</th>
<th>Determine (p, q,) and (n):</th>
<th>Formula for (\phi(n)):</th>
<th>Determine (e) and (d):</th>
<th>Public and secret keys:</th>
</tr>
</thead>
</table>

Encryption: | | **Decryption:** |

(b) Below you are given five choices of parameters \(p, q, e, d \) of RSA. For each choice tell whether these parameters are correct\(^1\) (write YES/NO). If yes, give an encoding of \(M = 3 \). If not, give a brief justification (at most 10 words).

<table>
<thead>
<tr>
<th>(p)</th>
<th>(q)</th>
<th>(e)</th>
<th>(d)</th>
<th>correct?</th>
<th>justify if not correct / encode (M = 3) if correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>27</td>
<td>13</td>
<td>55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>5</td>
<td>5</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>3</td>
<td>67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>11</td>
<td>5</td>
<td>27</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^1\)To clarify, correctness refers to whether these parameters satisfy the conditions in the algorithm.
Problem 3: (a) Give a complete statement of Fermat’s Little Theorem.

(b) Use Fermat’s Little Theorem to compute the following values. In the second example, show your work.

\[35^{130} \text{ rem } 131 = \]

\[3^{14074} \text{ rem } 71 = \]
Problem 4: For each $n \geq 0$ we define a binary tree T_n as follows. T_0 is a single node and T_1 is also a single node. For $n \geq 2$, T_n is obtained by creating two new nodes and adding copies of T_{n-1} and T_{n-2} as their subtrees, as in the picture below on the left:

The picture on the right shows tree T_3 (with subtrees T_2 and T_1 marked).

Let A_n be the number of leaves in T_n. (For example, $A_0 = A_1 = 1$, $A_2 = 3$ and $A_3 = 7$, as can be seen in the picture above.) Give a formula for A_n. You need to show your work, all steps. First, give a recurrence equation with a brief justification. Then solve this recurrence. At each step explain what you are computing.
Problem 5: The Duggars are about to buy t-shirts for their 19 children, one for each. They need

- at least 2 blue t-shirts,
- at least 5 red t-shirts,
- at least 1 pink t-shirt, and
- at least 2 and not more than 10 yellow t-shirts.

How many different choices of t-shirt colors satisfy these requirements?
Problem 6: (a) Give Euler’s inequality for planar graphs, and use it to show that the graph below is not planar.

(b) Determine which of the following two graphs are planar. Justify your answer and show your work.
Problem 7: Use induction to prove that $\sum_{k=1}^{n} k^3 = \frac{1}{4}n^2(n + 1)^2$ for all integers $n \geq 1$.
Problem 8: We have a set of $2n$ players in a chess tournament, where $n \geq 1$. Let $f(n)$ be the number of ways to divide them into pairs for the first round of the tournament. Prove that

$$f(n) = \frac{(2n)!}{2^n n!}.$$

For example, consider the case when $n = 2$, that is have four players. Let's call them A, B, C, D. There are three possible pairings: (AB, CD), (AC, BD), and (AD, BC). This agrees with the formula, because $f(2) = (2 \cdot 2)!/(2^2 \cdot 2!) = 4!/(4 \cdot 2) = 3$.

Hint: One way to approach this is to derive a recurrence equation for $f(n)$ and then prove that the above formula is its solution. Another way is to show a relation between pairings and permutations of the players.