Example. For each integer $n \geq 1$ we define a tree T_n, recursively, as follows. T_1 consists of only a single node. For $n \geq 2$, T_n is obtained from three copies of $T_\lceil n/2 \rceil$ and two additional nodes, by connecting them as follows:

Note that in this example $n/2$ is rounded up, not down as in the homework problem.

So T_1 is a single node. Below we show T_2, T_3, T_4 and T_5. For clarity, each recursive subtree is shown within a shaded region.

Here is T_2. It is constructed from 2 new nodes and 3 copies of T_1:

Here is T_3 and T_4. They are constructed from 2 new nodes and 3 copies of T_2:

Here is T_5. It is constructed from 2 new nodes and 3 copies of T_3: