
Online Competitive Algorithms for Maximizing
Weighted Throughput of Unit Jobs

Yair Bartal1, Francis Y. L. Chin2, Marek Chrobak3, Stanley P. Y. Fung2,
Wojciech Jawor3, Ron Lavi1, Jǐŕı Sgall4, and Tomáš Tichý4

1 Institute of Computer Science, The Hebrew University of Jerusalem, Israel.
yair,tron@cs.huji.ac.il

2 Department of Computer Science and Information Systems, The University of
Hong Kong, Hong Kong. chin,pyfung@csis.hku.hk

3 Department of Computer Science, University of California, Riverside, CA 92521.
marek,wojtek@cs.ucr.edu

4 Mathematical Institute, AS CR, Žitná 25, CZ-11567 Praha 1, Czech Republic.
sgall,tichy@math.cas.cz

Abstract. We study an online scheduling problem for unit-length jobs,
where each job is specified by its release time, deadline, and a nonnegative
weight. The goal is to maximize the weighted throughput, that is the
total weight of scheduled jobs. We first give a randomized algorithm
RMix with competitive ratio of e/(e − 1) ≈ 1.582. Then we consider
s-bounded instances where the span of each job is at most s. We give
a 1.25-competitive randomized algorithm for 2-bounded instances, and
a deterministic algorithm Edfα, whose competitive ratio on s-bounded
instances is at most 2 − 2/s + o(1/s). For 3-bounded instances its ratio
is φ ≈ 1.618, matching the lower bound.
We also consider 2-uniform instances, where the span of each job is 2.
We prove a lower bounds for randomized algorithms and deterministic
memoryless algorithms. Finally, we consider the multiprocessor case and
give an 1/(1 − (M

M+1
)M)-competitive algorithm for M processors. We

also show improved lower bounds for the general and 2-uniform cases.

1 Introduction

Network protocols today offer only the ‘best-effort service’, the term – misnomer,
in fact – that describes the most basic level of service that does not involve firm
guarantees for packet delivery. Next-generation networks, however, will provide
support for differentiated services, to meet various quality-of-service (QoS) de-
mands from the users. In this paper we consider an online buffer management
problem that arises in such QoS applications.

In the bounded delay buffer problem [8, 1], packets arrive and are buffered at
network switches. At each integer time step, one packet is sent along the link.
Each packet is characterized by its QoS value, which can be thought of as a
benefit gained by forwarding the packet. Network switches can use this value
to prioritize the packets. Each packet has a deadline that indicates the latest

time when a packet can be sent. In overload conditions, some packets will not be
sent by their deadline, do not contribute to the benefit value, and can as well be
dropped. The objective is to maximize the total value of the forwarded packets.

It is easy to see that this buffer management problem is equivalent to the
following unit-job scheduling problem. We are given a set of n unit-length jobs,
with each job j specified by a triple (rj , dj , wj) where rj and dj are integral
release times and deadlines, and wj is a non-negative real weight. One job can
be processed at each integer time. The goal is to compute a schedule for the
given set of jobs that maximizes the weighted throughput or gain, that is the
total weight of the jobs completed by their deadline.

In this paper we focus on the online version of this problem, where each
job arrives at its release time. At each time step, an online algorithm needs to
schedule one of the pending jobs, without the knowledge of the jobs released
later in the future. An online algorithm A is called R-competitive, if its gain on
any instance is at least 1/R times the optimum (offline) gain on this instance.
The smallest such value R is called the competitive ratio of A. The competitive
ratio is commonly used as a performance measure for online algorithms, and we
adopt this measure in this paper.

For unit jobs, some restrictions on instances have been proposed in the lit-
erature [8, 1, 5]. In s-bounded instances, the span of the jobs (defined as the
difference between the deadline and the release time) is at most s, and in s-
uniform instances the span of each job is exactly s. In the context of QoS buffer
management, these cases correspond to QoS situations in which the end-to-end
delay is critical and only a small amount of delay is allowed at each node [8].

The unit-job scheduling problem is related to another scheduling problem
which also arises from QoS applications. In metered-task model [2, 6], each job is
specified by four real numbers: release time, deadline, processing time (not neces-
sarily unit), and weight. Preemptions are allowed. Unlike in classical scheduling,
even non-completed jobs contribute to the overall gain. Specifically, the gain of
a job is proportional to the amount of it that was processed.

Past work. A naive greedy algorithm that always schedules the heaviest job is
known to be 2-competitive [8, 7]. No better algorithm, deterministic or random-
ized, is known for the general case. For the deterministic case, a lower bound of
φ ≈ 1.618 was shown in [1, 5, 7]. In the randomized case, [5] give a lower bound
of 1.25. (The proof in [5] was for metered tasks, but it carries over to unit jobs.)
Both of those lower bounds apply even to 2-bounded instances.

For the 2-bounded case, a φ-competitive algorithm was presented in [8]. De-
terministic algorithms for 2-uniform instances were studied by [1], who estab-
lished a lower bound of 1

2 (
√

3 + 1) ≈ 1.366 and an upper bound of
√

2 ≈ 1.414.
In [8], a version of the buffer management problem was studied in which the

output port has bandwidth M (that is, M packets at a time can be sent). This
corresponds to the problem of scheduling unit-time jobs on M processors. In
[8] a lower bound of 4− 2

√
2 was presented that applies even to the 2-bounded

model. For the 2-uniform case, a lower bound of 10/9 was given.

Our results. First, we give a randomized algorithm with competitive ratio e/(e−
1) ≈ 1.582, which is the first algorithm for this problem with competitive ratio
below 2. Our algorithm has been inspired by the techniques developed in [6].

For 2-bounded instances, we give a 1.25-competitive randomized algorithm,
matching the known lower bound from [5].

We also give a deterministic algorithm Edfα whose competitive ratio on 3-
bounded instances is φ = 1.618, matching the lower bound. This result extends
previous results from the literature for 2-bounded instances [8], and it provides
evidence that a φ-competitive deterministic algorithm might be possible for the
general case. For 4-bounded instances, Edfα is

√
3 ≈ 1.732 competitive, and for

s-bounded instances it is 2 − 2/s + o(1/s) competitive. However, without the
restriction on the span, it is only 2-competitive.

For 2-uniform instances, we prove a lower bound of 4 − 2
√

2 ≈ 1.172 for
randomized algorithms, improving the 10/9 bound from [8]. In the deterministic
case, we prove a lower bound of

√
2 ≈ 1.414 on algorithms that are memo-

ryless and scale-invariant (that is, the algorithm’s decision is invariant under
multiplying all weights of pending jobs by a constant.) This matches the previ-
ously known upper bound in [1]. We remark that all competitive algorithms for
unit-job scheduling in the literature are memoryless and scale-invariant.

Finally, we study the multiprocessor case, M |online-time, pj = 1, rj |
∑

j wjUj

in Graham’s notation, that corresponds to the buffer management problem in
which the output port has bandwidth M , meaning that it can send M packets
at a time. We give a 1/(1 − (M

M+1)M)-competitive algorithm for the case of M
processors. For randomized algorithms, we also show improved lower bounds of
1.25 for the general and 4− 2

√
2 ≈ 1.172 for the 2-uniform cases.

In addition to those results, we introduce a new algorithm called Balβ ,
where β is a parameter, and we analyze it in several cases. On 2-uniform in-
stances, Bal√2/2 is

√
2-competitive, matching the bound from [1]. On 2-bounded

instances, Balβ is φ-competitive (and thus optimal) for two values of β ∈
{2− φ, φ− 1}. It is also φ-competitive for 3-bounded instances. Although we
can show that Balβ cannot be φ-competitive in general, we conjecture that for
some values of β its ratio is better than 2.

Our results show the power of randomization for the problem of scheduling
unit jobs. For the general version, our randomized algorithm outperforms all
deterministic algorithms, even on the special case of span 2. For span 2, we give
a tight analysis of the randomized case, showing a surprisingly low competitive
ratio of 1.25, compared to 1.618 in the deterministic case.

2 Preliminaries

As we noted in the introduction, the QoS buffer management problem is equiv-
alent to the unit-job scheduling problem. We will henceforth use scheduling ter-
minology in this paper. We number the jobs 1, 2, . . . , n. Each job j is specified by
a triple (rj , dj , wj), where rj and dj are integral release times and deadlines, and
wj is a non-negative real weight. To simplify terminology and notation, we will

often use the weights of jobs to identify jobs. Thus, we will say “job w” meaning
“the job with weight w”. A schedule S specifies which jobs are executed, and
for each executed job j it specifies an integral time t when it is scheduled, where
rj ≤ t < dj . Only one job can be scheduled at any given time step. The through-
put or gain of a schedule S on instance I, denoted gainS(I), is the total weight
of the jobs in I that are executed in S. Similarly, if A is a scheduling algorithm,
gainA(I) is the gain of the schedule computed by A on I. The optimal gain on
I is denoted by opt(I). We say that an instance is s-bounded if dj − rj ≤ s for
all jobs j. Similarly, an instance is s-uniform if dj − rj = s for all jobs j. The
difference dj − rj is called the span of a job j. A job i is pending in schedule S
at t if ri ≤ t < di and i has not been scheduled before t.

We often consider offline (canonical) earliest-deadline schedules. In such
schedules, the job that is scheduled at any time t is chosen (from the ones that
are executed in the schedule) as the pending job with the earliest deadline. Any
schedule can easily be converted into an earliest-deadline schedule by rearranging
its jobs. Jobs with the same deadline are ordered by decreasing weights. (Jobs
with equal weights are ordered arbitrarily, but consistently by all algorithms.)

We often view the behavior of an online algorithm A as a game between
A and an adversary. Both algorithms schedule jobs released by the adversary
who tries to maximize the ratio opt(I)/gainA(I). In most of the proofs we give
a potential function argument by defining a potential function Φ that maps all
possible configurations into real numbers. At each time step, an online algorithm
and the adversary execute a job. The proofs are based on the following lemma.

Lemma 1. Let A be an online algorithm. Let Φ be a potential function that is 0
on configurations with no pending jobs, and at each step satisfies R ·∆gainA ≥
∆adv+∆Φ, where ∆Φ represents the change of the potential, and ∆gainA, ∆adv
represent A’s and the adversary gain in this step. Then A is R-competitive.

The lemma above applies to randomized algorithms as well. In that case,
however, ∆gainA and ∆Φ are the expected values of the corresponding quantities,
with respect to the algorithm’s random choices at the given step.

In some proofs we use a different approach called charging. In a charging
scheme, the weight of each of the jobs in the adversary schedule is charged to a
job, or several jobs, in our schedule, in such a way that each job in our schedule
is charged at most R times its weight. If such a charging scheme exists, it implies
that our algorithm is R-competitive.

As discussed in the introduction, our problem is related to the metered-task
model. Consider the discrete metered-task model, in which jobs have integral re-
lease times, deadlines and processing lengths, and the algorithm can only switch
jobs at integral times. (In [5] this model is called non-timesharing.) Then:

Theorem 1. The unit-job scheduling problem with a single processor is equiva-
lent to the single processor discrete metered-task model. The unit-job scheduling
problem with M processors is a special case of the M -processor discrete metered-
task model (assuming jobs are migratory); they are equivalent when, in addition,
all jobs in the metered-task model are of unit length.

The continuous version of the metered-task model [2, 6, 5] bears some resem-
blance to the randomized case of unit-job scheduling, although it is not clear
whether the results from the former model can be automatically translated into
results for the latter model. One may attempt to convert a deterministic al-
gorithm D for metered tasks into a randomized R algorithm for unit jobs, by
setting the probability of R executing a given job j to be equal to D’s fraction of
the processor power devoted to j. It is not hard to see, however, that, in general,
the expected gain of R will not be the same as the gain of D.

3 Randomized Algorithm RMix

In this section we give the first randomized algorithm for scheduling unit jobs
with competitive ratio smaller than 2.

Algorithm RMix. At each step, we inductively select a sequence of pending
jobs h1, . . . , hk as follows: (i) h1 is the heaviest job, (ii) hi+1 is the heaviest
job j such that wj > wh1/e and dj < dhi

; if such j does not exist, we set
k = i. In case of ties, prefer jobs with earlier deadlines. Denote vi = whi for
i = 1, . . . , k and vk+1 = wh1/e. The algorithm executes job hi with probability
δi = ln(vi)− ln(vi+1). (Note that

∑k
i=1 δi = ln v1 − ln vk+1 = 1.)

Theorem 2. Algorithm RMix is e
e−1 ≈ 1.582-competitive.

Proof. At a given time step, let X be the set of pending jobs in RMix, and
let Y be the set of pending jobs in the adversary schedule that the adversary
will schedule in the future. We assume that the adversary schedule is canonical
earliest-deadline.

Define the potential Φ =
∑

i∈Y−X wi. Job arrivals and expirations cannot
increase the potential as these jobs are not in Y −X: the arriving job is always
in X and the expiring job is never in Y by the definition of Y . So we only
need to analyze how the potential changes after job execution. Consider a given
time step. Using the notation from the algorithm, the expected gain of RMix
is ω =

∑k
i=1 δivi. Thus, by Lemma 1, denoting by j the job scheduled by the

adversary, it sufficient to prove that wj + ∆Φ ≤ e
e−1ω.

Assume that j ∈ Y ∩X. Inequality ln x ≤ x− 1 for x = vi+1/vi implies that,
for any i ≤ k,

vi − vi+1 ≤ vi(ln vi − ln vi+1) = δivi . (1)

We have wj ≤ v1 as j ∈ X. Let p ∈ {1, . . . , k + 1} be the largest index such that
wj ≤ vp. By the assumption that the adversary schedule is earliest-deadline, we
know that he will not execute any hi, i = p, . . . , k, in the future, so these are not
in Y . The expected increase of Φ is then at most

∑p−1
i=1 δivi. So, using vk+1 = v1/e

and (1), we have wj + ∆Φ ≤ vp +
∑p−1

i=1 δivi = e
e−1 (vp − vk+1) + 1

e−1 (v1 −
vp) +

∑p−1
i=1 δivi = e

e−1

∑k
i=p(vi − vi+1) + 1

e−1

∑p−1
i=1 (vi − vi+1) +

∑p−1
i=1 δivi ≤

e
e−1

∑k
i=p δivi + 1

e−1

∑p−1
i=1 δivi +

∑p−1
i=1 δivi = e

e−1ω.
The easy case when j ∈ Y −X is omitted.

4 An Optimal Randomized Algorithm for 2-Bounded
Instances

In this section we give a 1.25-competitive randomized algorithm for 2-bounded
instances. This matches the lower bound from [5], and thus completely resolves
this case.

Algorithm R2b. Define pab = 1 if a ≥ b and pab = 4a
5b otherwise. Let qab = 1−pab.

Let a and b denote the heaviest jobs of span 1 and span 2, respectively, released
at this time step. If the currently pending job is x, let u = max(x, a). Execute u
with probability pub and b with probability qub.

Theorem 3. Algorithm R2b is 1.25-competitive.

Proof. Without loss of generality, we can assume that at each step (except last)
exactly one job of span 1 is issued. All jobs of span 1 except the heaviest one can
be simply ignored; if no job is issued, we treat it as a job of weight 0. Similarly,
we can assume that at each step (except last) exactly one job of span 2 is issued.
This can be justified as follows: If, at a given time t, the optimum schedule
contains a job of span two released at t, we can assume that it is the heaviest
such job. A similar statement holds for Algorithm R2b. Thus all the other jobs
of span 2 can be ignored in this step, and treated as if they are issued with span
1 in the following time step.

First note that pab satisfies the following properties for any a, b ≥ 0.

5paba ≥ 4a− b (2)
5(paba + qabb) ≥ 4b (3)

5paba + 2qabb ≥ 4a (4)
5paba + 2qabb ≥ b . (5)

Algorithm R2b is memoryless and randomized, so its state at each step is
given by a pair 〈x, s〉, where x is the job of span 2 issued in the previous step,
and s is the probability that x was executed in the previous step (i.e., no job is
pending). Denote t = 1− s the probability that x is pending.

Denoting by z ∈ {0, x} the pending job of the adversary, the complete
configuration at this step is described by a triple 〈x, s, z〉. Let Φxsz denote
the potential function in the configuration 〈x, s, z〉. We put Φxs0 = 0 and
Φxsx = 1

4x ·max(5s− 1, 3s).
Consider one step, where the configuration is 〈x, s, z〉, two jobs a, b are issued,

of span 1 and span 2, respectively. The new configuration is 〈b, s′, z′〉, where
s′ = sqab + tqx′b, x′ = max(a, x), and z′ ∈ {0, b}. Using Lemma 1, we need to
show that for each adversary move:

R ·∆gainR2b − Φbs′z′ + Φxsz ≥ ∆adv (6)

where ∆gainR2b is the expected weight of a job scheduled by R2b and ∆adv the
weight of the job scheduled by the adversary.
Case 1: Adversary schedules b. Then Φxsz ≥ 0, ∆adv = b, z′ = 0, and Φbs′z′ = 0.
For a fixed value of u in the algorithm, the expected gain of the algorithm is

pubu+ qubb and (3) implies 5
4 (pubu+ qubb) ≥ b. By averaging over u ∈ {a, x′} we

get R ·∆gainR2b ≥ b, which implies (6).
Case 2: Adversary does not schedule b. Then z′ = b, Φbs′z′ = 1

4b·max(5s′−1, 3s′),
∆gainR2b = s′b+ spaba+ tpx′bx

′. Substituting into (6), it is enough to prove that

min(b, 2s′b) + 5spaba + 5tpx′bx
′ + 4 · Φxsz ≥ 4 ·∆adv . (7)

Case 2.1: Adversary schedules a. Then ∆adv = a ≤ x′ and Φxsz ≥ 0. For the
first term of the minimum, we use (2) twice and get b + 5spaba + 5tpx′bx

′ =
s(b + 5paba) + t(b + 5px′bx

′) ≥ 4sa + 4tx′ ≥ 4a. For the second term of the
minimum, we use (4) twice and get 2s′b+5spaba+5tpx′bx

′ = s(5paba+2qabb)+
t(5px′bx

′ + 2qx′bb) ≥ 4sa + 4tx′ ≥ 4a

Case 2.2: Adversary schedules z = x. It must be the case that x′ = x ≥ a, as
otherwise the adversary would prefer to schedule a. We have ∆adv = x.

If x ≥ b, then pxb = 1. We use 4Φxsz = 4Φxsx ≥ (5s − 1)x and obtain
5tpxbx + 4Φxsz ≥ 5tx + 5sx− x = 4x, which implies (7).

It remains to consider the case x < b. Using (2), (5) and (4) we obtain
b + 5tpxbx ≥ b + t(4x − b) = 4tx + sb and 2s′b + 5spaba + 5tpxbx = s(2qabb +
5paba) + t(2qxbb + 5pxbx) ≥ sb + 4tx. Together with with 4Φxsz = 4Φxsx ≥ 3sx
and x < b this implies min(b, 2s′b)+5spaba+5tpxbx+4Ψxsz ≥ 4tx+sb+3sx ≥ 4x
and (7) follows.

5 Deterministic Algorithm for s-Bounded Instances

The 2-bounded (deterministic) case is now well understood. A φ-competitive
algorithm was given in [1], matching the lower bound from [8, 7]. In this section,
we extend the upper bound of φ to 3-bounded instances. For the general case,
the best known competitive ratio for deterministic algorithm is 2, [8, 7].

We define two algorithms. They both use a real-valued parameter α and β and
they are both φ-competitive for 3-bounded instances for an appropriate value of
the parameter. In this section, h always denotes the heaviest pending job. The
first algorithm schedules a relatively heavy job with the smallest deadline. The
idea of the second algorithm is to balance the maximum gain in the next step
against the discounted projected gain in the following steps, if no new jobs are
issued. A plan (at time t) is an optimal schedule of jobs pending at time t. A
plan can be computed by iteratively scheduling pending jobs, from heaviest to
lightest, at their latest available slots. We conjecture that Bal is better than
2-competitive for general instances.
Algorithm Edfα: Execute the earliest-deadline job with weight ≥ αwh.
Algorithm Balβ: At each step, execute the job j that maximizes wj +βπj , where
πj is the total weight of the plan in the next time step, if j is executed in the
current step. (In a case of a tie, the algorithm chooses the earliest-deadline job,
and if there are several, the heaviest one among those.)

We establish the following facts about Balβ . All positive results can be
shown using Lemma 1. In the following x and y are pending jobs of Balβ and
the adversary, respectively.

• Let β ∈ {φ− 1, 2− φ}, where φ ≈ 1.618 is the golden ratio. Then Balβ is
φ-competitive for 2-bounded instances. For β = 2−φ = 1−1/φ, the function
Φ = [y − x]+ can be used as potential, where [z]+ = max(z, 0); for β = φ−1,
use Φ = max(x, y)− φx.

• Bal√2/2 is
√

2−competitive for 2-uniform instances (this is the best ratio
for memoryless algorithms, as discussed in Section 6). The proof uses the
potential Φ = (

√
2− 1)[y − 2x +

√
2(y − x)+].

• Balφ−1 is φ−competitive for 3-bounded instances and is not φ−competitive
for 8-bounded instances. The proofs are omitted.

Theorem 4. Edfφ−1 is φ-competitive for 3-bounded instances.

Proof. We fix a canonical earliest-deadline adversary schedule A. Let E be the
schedule computed by Edfφ−1. We use the following charging scheme: Let j be
the job scheduled by the adversary at time t. If j is executed in E before time
t, charge j to its copy in E. Otherwise, charge j to the job in E scheduled at t.

Fix some time step t, and let f be the job scheduled in E at time t. Let also
h be the heaviest pending job in E at time t. By the definition of Edfφ−1, f is
the earliest-deadline job with wf ≥ (φ− 1)wh = wh/φ. Denote also by j the job
scheduled in A at time t.

Job f receives at most two charges: one from j and one from itself, if f is
executed in A at some later time. Ideally, we would like to prove that the sum
of the charges is at most φwf . It turns out that in some cases this is not true,
and, if so, we then show that for the job g scheduled by E in the next step, the
total of all charges to f and g is at most φ(wf + wg). Summing over all such
groups of one or two jobs, the φ-competitiveness of Edfφ−1 follows.

If f receives only one charge, it is at most φwf : If this charge is from f , it is
trivially at most wf . If the charge is from j (not scheduled before t in E), then
j is pending at t in E and thus wj ≤ wh ≤ φwf , by the definition of Edfφ−1.
In this case the group consist of a single job and we are done.

It remains to handle the case when f receives both charges. Since in A job j
is before f , we have dj ≤ df (and for dj = df , the tie is broken in favor of j) But
at time t, Edfφ−1 chooses f , so j is not eligible for execution by Edfφ−1, that is
wj < (φ−1)wh. If wf = wh, then f is charged at most wf +wj ≤ (1+φ−1)wh =
φwf , and we have a group with a single job again.

Otherwise, wf < wh and the adversary does not schedule f at time t, hence
df ≥ t + 2. By the rule of Edfφ−1, dh > df . As the span is bounded by 3,
it has to be the case that dh = t + 3 and df = t + 2. Thus the adversary
schedules f at time t + 1. The weight of the job g scheduled at time t + 1
in E is wg ≥ (φ − 1)wh, as h 6= f is still pending in E. Furthermore, g gets
only the charge from itself, as the adversary at time t + 1 schedules f which is
charged to itself. The total weight of the jobs charged to f and g is thus at most
wj + wf + wg ≤ (φ− 1)wh + wf + wg ≤ 3

2 (wf + wg), since both wh and wf are
at least (φ− 1)wh. In this case we have a group of two jobs.

Extending the idea in the proof above easily yields an upper bound of 2 −
Θ(1/s) on the competitive ratio of Edfα on s-bounded instances.

Table 1. Comparison of the upper bounds for Edf and Gap

s 2 3 4 5 6 7 10 20 ∞
Edfα 1.618 1.618 1.732 1.769 1.791 1.813 1.856 1.917 2

Gap 1.618 1.755 1.819 1.857 1.881 1.899 1.930 1.965 2

Theorem 5. For each s ≥ 4, algorithm Edf1/λs
is λs-competitive for s-bounded

instances, where λs is the unique non-negative solution of equation

(2− λs)(λ2
s + bs

3
cλs + s− 2− 2bs

3
c) = λ2

s − λs .

We get λ4 =
√

3 ≈ 1.732. For larger s, the equation is cubic. It can be verified
that 2 − 2

s ≤ λs ≤ 2 − 1
s , and in the limit for s → ∞, λs = 2 − 2/s + o(1/s).

Some numerical values are given in Table 1.
Recall that, by Theorem 1, results for discrete metered tasks can be applied

to unit-job scheduling. Here we describe two such results. We say that a pending
job i dominates another pending job j if di ≤ dj and wi > wj . A pending job
is dominant if no other pending job dominates it. In [4], the authors considered
the case of the metered-task model when there are at most s dominant jobs at
each time, and proposed an online algorithm Gap for this case. In s-bounded
instances there can be at most s pending dominant jobs at any time. Thus, the
results from [4] imply that:

Theorem 6. Gap is rs-competitive for s-bounded instances, where rs is the
unique positive real root of the equation rs = 1 + r

−1/(s−1)
s .

We can show that rs = 2 − Θ(1
s). Table 1 gives a comparison of Edfα

(with α = 1/λs) and Gap. Edfα has a smaller competitive ratio for s-bounded
instances, but Gap can also be applied to the more general set of instances that
have at most s dominant jobs at any time. Gap can also be slightly modified
to give the same performance without knowing the value of s in advance. In [3],
an algorithm Fit was given for the discrete metered-task model. Its competitive
ratio is better than 2 when the importance ratio, that is the ratio of maximum
to minimum job weights, is at most ξ. By Theorem 1, we have:

Theorem 7. Fit is (2− 1/(dlg ξe+ 2))-competitive for unit-job scheduling.

6 2-Uniform Instances

We first prove a lower bound of 4 − 2
√

2 ≈ 1.172 on the competitive ratio of
randomized algorithms. This improves a lower bound of 10/9 from [8].

Theorem 8. No randomized algorithm can be better than (4−2
√

2)-competitive
for 2-uniform instances.

Proof. We use Yao’s minimax principle [9], by showing a distribution on in-
stances that forces each online algorithm A to have ratio at least 4− 2

√
2.

We will generate an instance randomly. Fix a large integer n and let a =√
2+1 and p = 1/a =

√
2− 1. Each instance consists of stages 0, 1, . . ., where in

stage j we have three jobs: two jobs j, j′ of weight aj issued at time 2j and one
job j′′ of weight aj+1 issued at time 2j + 1. After each stage j ≤ n, we continue
with probability p or stop with probability 1− p. After stage n, at time 2n + 2,
we issue two jobs of weight an+1, and stop.

Fix a deterministic online algorithm A. We compute the expected gain of A
and the adversary in stage j ≤ n, conditioned on stage j being reached. At time
2j, A executes a job of weight aj (it has no choice), say j. If it executes j′′ at
time 2j+1, its gain in stage j is aj +aj+1 = (1+a)aj = (2+

√
2)aj . If it executes

j′, its gain is either 2aj +aj+1 or 2aj , depending on whether we stop, or continue
generating more stages. Thus its expected gain is (1−p) · (2aj +aj+1)+p ·2aj =
(2 +

√
2)aj , same as in the previous case. Since the probability of reaching this

stage is pj , the contribution of this stage to A’s expected gain is 2 +
√

2.
We now calculate the adversary gain in stage j. If we stop, the adversary

gains 2aj + aj+1, otherwise he gains aj + aj+1, so his expected gain is (1− p) ·
(2aj + aj+1) + p · (aj + aj+1) = aj(2 − p + a) = 4aj . Thus the contribution of
this stage to the adversary’s gain is 4.

Summarizing, for each step, except the last one, the contributions towards
the expected value are 2 +

√
2 for A and 4 for the adversary independent of j.

The contributions of stage n + 1 are different, but also constant. So the overall
ratio will be, in the limit for n →∞, the same as the ratio of the contributions
of stages 0, . . . , n, which is 4/(2 +

√
2) = 4− 2

√
2, as claimed.

Deterministic algorithms for 2-uniform instances were studied in [1], where an
upper bound of

√
2 was given. As we show below, it is not possible to beat ratio√

2 with any deterministic memoryless, scale-invariant algorithm. We define an
online algorithm A to be memoryless if its decision at each step depends only
on the pending jobs. Due to space constraints the proof of the following theorem
is omitted.

Theorem 9. No deterministic memoryless algorithm can achieve competitive
ratio better than

√
2 for 2-uniform instances.

7 The Multiprocessor Case

The greedy 2-competitive algorithm [8, 7] applies to both uniprocessor and mul-
tiprocessor cases. For M processors we give an algorithm with competitive ratio
(1−(M

M+1)M)−1, showing that the competitive ratio improves with a larger num-
ber of processors. When M → ∞ this ratio tends to e/(e − 1) ≈ 1.58, beating
the φ ≈ 1.618 bound for M = 1 [5]. The basic idea of our algorithm is sim-
ilar to algorithm Mixed [5] and our randomized algorithm RMix. We divide
the processing effort between M processors, such that each processor works on
the earliest-deadline job with weight above a certain threshold. This threshold

decreases geometrically for each processor. If no job is above the threshold, we
select the heaviest remaining job, and reset the threshold to the weight of this
job. Throughout this section let β = M/(M + 1), R = (1− (M

M+1)M)−1.

Algorithm DMix-M . Let X be the set of pending jobs at a time t. The algorithm
chooses jobs h1, . . . , hM as shown below and schedules them for execution.

i← 1;
repeat

g← heaviest job in X − {h1, ..., hi−1} ; hi← g ; j← i;
repeat

i← i + 1;
f ← earliest-deadline job in X − {h1, ..., hi−1} with wf ≥ βi−jwg;
if f exists then hi← f ;

until f does not exist

Fix a time step t. Denote vi = whi
for all i. Normalize the weights so that

v1 = 1. We call those hi selected in the outer repeat loop g-jobs. We only prove
the case of two g-jobs, and leave the complete proof to the full paper. Suppose the
g-jobs are h1 and hk, 1 < k ≤ M . By the choices of DMix-M , we have vi ≥ βi−1

for i ∈ {1, 2, ..., k − 1}, vk < βk−1, and vi ≥ vkβi−k for i ∈ {k + 1, ...,M}.

Lemma 2. (i) (k − 1) + (M − k + 1)vk ≤ R ·
(∑k−2

i=0 βi + vk

∑M
i=k βi−k

)
.

(ii) Mβp−kvk +
∑p

i=1 vi ≤ R ·∑M
i=1 vi for any positive integer p ∈ {k, ..., M}.

Theorem 10. DMix-M is (1− (M
M+1)M)−1-competitive for M processors.

Proof. (Sketch.) For a given input instance, let D be a schedule of DMix-M
and A the adversary schedule. As usual, we assume that A is canonical earliest-
deadline. Fix a time step t. Let

H= {h1, ..., hM}, the jobs executed by DMix-M , at time t,
J = the set of M jobs executed by the adversary at time t,
X= the pending jobs of DMix-M at time t,
Y = the pending jobs of the adversary at time t that will be executed at time t

or later.

For a set of jobs I, let w(I) =
∑

i∈I wi denote the total weight of I. Define the
potential function Φ = w(Y −X). By Lemma 1, it is thus sufficient to show that
w(J) + ∆Φ ≤ R · w(H).

Job arrivals and expirations cannot increase the potential. So we only need
to analyze how the potential changes after job executions. The change in the
potential due to the adversary executing the jobs in J is −w(J − X), as the
jobs in J −X contribute to the current potential but will not contribute in the
next step. A job hi executed by DMix-M does not contribute to the potential
in the current step, but if hi ∈ Y − J , then, in the next step, hi will be pending
in A but not in D, so it will contribute to the new potential. Thus the change
due to DMix-M executing the jobs in H is w(H ∩ Y − J). We conclude that

∆Φ = −w(J −X) + w(H ∩ Y − J). Therefore, in order to prove the theorem it
is sufficient to show that w(J ∩X) + w(H ∩ Y − J) ≤ R · w(H).
Case 1: H ∩ Y − J = ∅. Jobs j ∈ J ∩ X must have weight at most 1, at most
k − 1 of them can have weights larger than vk, since otherwise DMix-M would
choose the g-jobs differently. Thus, using Lemma 2, we get: w(J ∩X) + w(H ∩
Y − J) ≤ (k − 1) + (M − k + 1)vk + 0 ≤ R ·

(∑k−2
i=0 βi + vk

∑M
i=k βi−k

)
≤

R ·
(∑k−1

i=1 vi +
∑M

i=k vi

)
= R · w(H).

Case 2: The remaining case will be presented in the full version of the paper.

The lower bound proofs in [5] and Theorem 8 can easily be generalized to
the multiprocessor case, improving the bounds in [8] (4 − 2

√
2 for the general

case and 10/9 for the 2-uniform case):

Theorem 11. No deterministic or randomized algorithm can be better than 5/4-
competitive, for any number of processors M . No deterministic or randomized
algorithm can be better than 4−2

√
2-competitive, for 2-uniform instances on any

number of processors M .

Acknowledgements M. Chrobak and W. Jawor were supported by NSF grants

CCR-9988360 and CCR-0208856. J. Sgall and T. Tichý were partially supported by

Institute for Theoretical Computer Science, Prague (project LN00A056 of MŠMT ČR)

and grant 201/01/1195 of GA ČR. M. Chrobak, W. Jawor, J. Sgall and T. Tichý were

partially supported by cooperative grant KONTAKT-ME476/CCR-9988360-001 from

MŠMT ČR and NSF. F. Y. L. Chin and S. P. Y. Fung were supported by an RGC

research grant.

References

1. N. Andelman, Y. Mansour, and A. Zhu. Competitive queueing policies for QoS
switches. In Proc. of the 14th ACM-SIAM SODA, pages 761–770, 2003.

2. E.-C. Chang and C. Yap. Competitive online scheduling with level of service. In
Proc. 7th COCOON, pages 453–462. Springer, 2001.

3. F. Y. L. Chin and S. P. Y. Fung. Online scheduling with partial job values and
bounded importance ratio. In Proc. of ICS, pages 787–794, 2002.

4. F. Y. L. Chin and S. P. Y. Fung. Improved competitive algorithms for online
scheduling with partial job values. 9th COCOON, to appear, 2003.

5. F. Y. L. Chin and S. P. Y. Fung. Online scheduling for partial job values: does
timesharing or randomization help? Algorithmica, to appear, 2003.

6. M. Chrobak, L. Epstein, J. Noga, J. Sgall, R. van Stee, T. Tichy, and N. Vakhania.
Preemptive scheduling in overloaded systems. In Proc. of 29th ICALP, pages 800–
811, 2002.

7. B. Hajek. On the competitiveness of online scheduling of unit-length packets with
hard deadlines in slotted time. In CISS, 2001.

8. A. Kesselman, Z. Lotker, Y. Mansour, B. Patt-Shamir, B. Schieber, and M. Sviri-
denko. Buffer overflow management in QoS switches. In Proc. of the 33rd STOC,
pages 520–529, 2001.

9. A. Yao. Probabilistic computations: Towards a unified measure of complexity. In
Proc. of the 18th FOCS, pages 222–227, 1977.

