
Algorithms for Temperature-Aware Task
Scheduling in Microprocessor Systems

Marek Chrobak1, Christoph Dürr2, Mathilde Hurand2, and Julien
Robert3

1 Department of Computer Science, University of California, Riverside, CA 92521.
Supported by NSF grants OISE-0340752 and CCF-0729071.

2 CNRS, LIX UMR 7161, Ecole Polytechnique, France. Supported by ANR Alpage.
3 Laboratoire de l’Informatique du Parallélisme, ENS Lyon, France.

Abstract. We study scheduling problems motivated by recently devel-
oped techniques for microprocessor thermal management at the operat-
ing systems level. The general scenario can be described as follows. The
microprocessor temperature is controlled by the hardware thermal man-
agement system that continuously senses the chip temperature and auto-
matically reduces the processor’s speed as soon as the thermal threshold
is exceeded. Some tasks are more CPU-intensive than other and thus
generate more heat during execution. The cooling system operates non-
stop, reducing (at an exponential rate) the deviation of the processor’s
temperature from the ambient temperature. As a result, the processor’s
temperature, and thus the performance as well, depends on the order
of the task execution. Given a variety of possible underlying architec-
tures, models for cooling and for hardware thermal management, as well
as types of tasks, this gives rise to a plethora of interesting and never
studied scheduling problems.

We focus on scheduling real-time jobs in a simplified model for cooling
and thermal management. A collection of unit-length jobs is given, each
job specified by its release time, deadline and heat contribution. If, at
some time step, the temperature of the system is t and the processor
executes a job with heat contribution h, then the temperature at the
next step is (t+h)/2. The temperature cannot exceed the given thermal
threshold τ . The objective is to maximize the throughput, that is, the
number of tasks that meet their deadlines. We prove that in the offline
case computing the optimum schedule is NP-hard, even if all jobs are
released at the same time. In the online case, we show a 2-competitive
deterministic algorithm and a matching lower bound.

1 Introduction

Background. The problem of managing the temperature of processor sys-
tems is not new; in fact, the system builders had to deal with this challenge
since the inception of computers. Since early 1990s, the introduction of

battery-operated laptop computers and sensor systems highlighted the
related issue of controlling the energy consumption.

Most of the initial work on these problems was hardware and sys-
tems oriented, and only during the last decade substantial progress has
been achieved on developing models and algorithmic techniques for mi-
croprocessor temperature and energy management. This work proceeded
in several directions. One direction is based on the fact that the energy
consumption is a fast growing function of the processor speed (or fre-
quency). Thus we can save energy by simply slowing down the processor.
Here, algorithmic research focussed on speed scaling – namely dynam-
ically adjusting the processor speed over time to optimize the energy
consumption while ensuring that the system meets the desired perfor-
mance requirements. Another technique (applicable to the whole system,
not just the microprocessor) involves power-down strategies, where the
system is powered-down or even completely turned off when some of its
components are idle. Since changing the power level of a system intro-
duces some overhead, scheduling the work to minimize the overall energy
usage in this model becomes a challenging optimization problem.

Models have also been developed for the processor’s thermal behavior.
Here, the main objective is to ensure that the system’s temperature does
not exceed the so-called thermal threshold, above which the processor
cannot operate correctly, or may even be damaged. In this direction,
techniques and algorithms have been proposed for using speed-scaling to
optimize the system’s performance while maintaining the temperature
below the threshold.

We refer the reader to the survey by Irani and Pruhs [5], and references
therein, for more in-depth information on the models and algorithms for
thermal and energy management.

Temperature-aware scheduling. The above models address energy and
thermal management at the micro-architecture level. In contrast, the
problem we study in this paper addresses the issue of thermal manage-
ment at the operating systems level. Most of the previous work in this
direction focussed on multi-core systems, where one can move tasks be-
tween the processors to minimize the maximum temperature [9, 1, 2, 6–8,
4, 10]. However, as it has been recently discovered, even in single-core
systems one can exploit variations in heat contributions among differ-
ent tasks to reduce the processor’s temperature through appropriate task
scheduling [1, 4, 6, 7, 11]. In this scenario, the microprocessor temperature
is controlled by the hardware dynamic thermal management (DTM) sys-

tems that continuously senses the chip temperature and automatically
reduces the processor’s speed as soon as the thermal threshold (maxi-
mum safe operating temperature) is exceeded. Typically, the frequency is
reduced by half, although it can be further reduced to one fourth or even
one eighth, if needed. Once the chip cools down to below the threshold,
the frequency is increased again. In addition, the cooling system operates
non-stop, reducing the deviation of the processor’s temperature from the
ambient temperature at an exponential rate. The general accepted model
stipulates that there is a constant time T , such that after T time units,
the cooling system divided by 2 the difference between the processor’s
temperature and the ambient temperature. In this work we assume that
this constant is exactly the length of a unit length job. The general case
will be considered in the full version of this paper.

Different tasks use different microprocessor units in different ways; in
particular, some tasks are more CPU-intensive than other. As a result,
the processor’s thermal behavior – and thus the performance as well –
depends on the order of the task execution. In particular, Yang et al.
[11] point out that the accepted model for the microprocessor thermal
behavior implies that, given two jobs, scheduling the “hotter” job before
the “cooler” one, results in a lower final temperature. They take advantage
of this phenomenon to improve the performance of the OS scheduler.

With multitudes of possible underlying architectures (for example,
single- vs. multi-core systems), models for cooling and hardware thermal
management, as well as types of jobs (real-time, batch, etc.), this gives rise
to a plethora of interesting and never yet studied scheduling problems.

Our model. We focus on scheduling real-time jobs in a somewhat simpli-
fied model for cooling and thermal management. The time is divided into
unit time slots and each job has unit length. These jobs represent unit
slices of the processes present in the OS scheduler’s queue. We assume
that the heat contributions of these jobs are known. This is counterintu-
itive, but reasonably realistic, for, as discussed in [11], these values can
be well approximated using appropriate prediction methods.

In our thermal model we assume, without loss of generality, that the
ambient temperature is 0 and that the heat contributions are expressed
in the units of temperature (that is, by how much they would increase
the chip temperature in the absence of cooling). Suppose that at a certain
time the processor temperature is t and we are about to execute a job
with heat contribution h in the next time slot. In reality [11], during the
execution of this job, its heat contribution is spread over the whole slot

and so is the effect of cooling; thus, the final temperature can be expressed
using an integral function. In this paper, we use a simplified model where
we first take into account the job’s heat contribution, and then apply the
cooling, where the cooling simply reduces the temperature by half.

Finally, we assume that only one processor frequency is available.
Consequently, if there is no job whose execution does not cause a thermal
violation, the processor must stay idle through the next time slot.

Our results. Summarizing, our scheduling problem can be now formalized
as follows. A collection of unit-length jobs is given, each job j with a
release time rj , deadline dj and heat contribution hj . If, at some time
step, the temperature of the system is t and the processor executes a job
j, then the temperature at the next step is (t + hj)/2. The temperature
cannot exceed the given thermal threshold τ . The objective is to compute
a schedule which maximizes the number of tasks that meet their deadlines.

We prove that in the offline case computing the optimum schedule is
NP-hard, even if all jobs are released at the same time. In the online case,
we show a 2-competitive deterministic algorithm and a matching lower
bound.

2 Terminology and Notation

The input consists of n unit-length jobs that we number 1, 2, ..., n. Each
job j is specified by a triple (rj , dj , hj), where rj is its release time, dj is
the deadline and hj is its heat contribution. The time is divided into unit-
length slots and each job can be executed in any time slot in the interval
[rj , dj]. The system temperature is initially 0 and it changes according to
the following rules: if the temperature of the system at a time u is t and
the processor executes j then the temperature at time u+1 is (t+hj)/2.
The temperature cannot exceed the given thermal threshold τ that we
assume to be 1. Thus if (t + hj)/2 > 1 then j cannot be executed at time
u. Idle slots are treated as executing a job with heat contribution 0, that
is, after an idle slot the temperature decreases by half.

Given an instance, as above, the objective is to compute a schedule
with maximum throughput, where throughput is defined as the number of
completed jobs. Extending the standard notation for scheduling problems,
we denote the offline version of this problem by 1|ri, hi|

∑
Ui.

In the online version, denoted 1|online-ri, hi|
∑

Ui, jobs are available
to the algorithm at their release time. Scheduling decisions of the algo-
rithm cannot depend on the jobs that have not yet been released.

3 The NP-Completeness Proof

The special case of the problem 1|ri, hi|
∑

Ui, when all jobs have the same
release time and the same deadline is denoted as 1|hi|Cmax: The objective
value Cmax stands for minimizing the maximum completion time of the
jobs when there are no deadlines to respect, and the decision version of
this optimization problem is exactly deciding if there is a feasible schedule
where all jobs complete before a given common deadline.

We can show that this problem is NP-complete. Why is it interest-
ing? In fact, one common approach in designing on-line algorithms for
scheduling is to compute the optimal schedule for the pending jobs, and
use this schedule to make the decision as to what execute next. The set
of pending jobs forms an instance where all jobs have the same release
time. This does not necessarily mean that the above method cannot work
(assuming that we do not care about the running time of the online algo-
rithm), but it makes this approach much less appealing, since reasoning
about the properties of the pending jobs is likely to be very difficult.

Theorem 1. The offline problem 1|hi|Cmax is NP-hard.

Proof. The reduction is from Numerical 3 Dimensional Matching.
In the later problem we are given 3 sequences A,B, C of n non-negative
integers each and an integer m. A 3-dimensional matching is a set of
n triplets (a, b, c) ∈ A × B × C such that each number is matched ex-
actly once. The problem consists in deciding if there is a 3-dimensional
matching, such that all matches (a, b, c) satisfy a + b + c = m.

Without loss of generality, we can assume (A1) that every x ∈ A ∪
B ∪ C satisfies x ≤ m and (A2) that

∑
x∈A∪B∪C x = mn.

In this reduction we need two constants. Let be α = 1/13 and ε =
(1/8− 3α)/m > 0. We also define the function f : x 7→ α + εx.

We construct an instance to the heating problem. In total there will
be 4n + 1 jobs, and all are released at time 0 and have deadline 4n + 1.
These jobs will be of two types:

1. First we have 3n jobs that correspond to the instance of Numerical
3 Dimensional Matching.
– For every a ∈ A, there is a job of heat contribution 8f(a).
– For every b ∈ B, there is a job of heat contribution 4f(b).
– For every c ∈ C, there is a job of heat contribution 2f(c).

We call these respectively A-, B- and C-jobs.
2. Next, we have n + 1 “gadget” jobs. The first of these jobs has heat

contribution 2, and the remaining ones 1.75. We call these respectively
2- and 1.75-jobs.

2 B CAB CA B CAB CA 1.751.751.75 1.75

Fig. 1. The structure of the solution of the scheduling problem.

The idea of the construction is that the gadget jobs are so hot, that
they need to be scheduled every 4-th time unit, separating the time into
n blocks of 3 consecutive time slots each. Now every remaining job has a
heat contribution that consists in two parts. A constant part and a tiny
part depending on the instance of the matching problem. The constant
part is so large that in every block there is a single A-, B- and C-job and
they are scheduled in that order. This defines a 3-dimensional matching.
Now the gadget jobs are so hot, that they force every matching (a, b, c)
to satisfy a + b + c ≤ m. Let’s make this argument formal.

Suppose there is a solution to the matching problem. We show that
there is a solution to the heating problem. Schedule the job 2 at time 0,
and all other gadget jobs every 4th time slot. Now the remaining slots
are grouped into blocks consisting of 3 consecutive time slots. Each i-
th triplet (a, b, c) from the matching is associated to the i-th block, and
the corresponding A-,B- and C-jobs are executed in there in the order
A,B, C, see figure 1. By construction every job meets its deadline, it
remains to show that at no point the temperature exceeds 1. The non-
gadget jobs have all heat contribution smaller than 1, by assumption
(A1), so every execution of a non-gadget job would preserve that the
temperature is not more than 1. Now we show by induction that right after
the execution of a gadget job, the temperature is exactly 1. This is clearly
the case after execution of the first job, since its heat contribution is 2.
Now let u be the time when a 1.75-job is scheduled, and suppose that at
time u−3 the temperature was 1. Let (a, b, c) be the matching associated
to the slots between u− 3 and u. Then at time u the temperature is

1
8

+
8f(a)

8
+

4f(b)
4

+
2f(c)

2
=

1
8

+ 3α + (a + b + c)ε =
1
8

+ 3α + mε =
1
4
.

This shows that at time u + 1 the temperature is again 1. We conclude
that the schedule is feasible.

Now we show the remaining direction in the NP-hardness proof, namely
that if there is a solution to the scheduling problem, then there is a so-
lution to the matching problem. To that purpose, suppose that there is
a solution to the scheduling problem. We first show that it has the form
of figure 1. Since all 4n + 1 jobs have deadline 4n + 1, all jobs must be

scheduled without any idle time between time 0 and 4n + 1. This means
that the gadget job of heat contribution 2 must be scheduled at time 0,
because that is the only moment of temperature 0.

Now we claim that all 1.75-jobs have to be scheduled every 4-th time
unit. For a proof by contradiction assume that at some times u and u+3
two gadget jobs are scheduled. The lightest job that can be scheduled at
times u + 1, u + 2 would be a C-job of heat contribution 2f(0) = 2α.
The temperature at time u + 1 is at least 1.75/2 = 7/8. Therefore the
temperature at time u + 3 is at least

7
32

+
3
2
α =

7
32

+
3
26

> 1/4.

This contradicts that a 1.75-job is scheduled at time u + 3, since the
temperature would exceed 1 at u + 4. So we can conclude that the 1.75-
jobs are scheduled every 4-th time unit. This partitions the remaining
time slots into blocks of 3 time slots each.

We show now that every block contains exactly one A-job, one B-
job and one C-job, in that order. For a proof by contradiction assume
that some A-job is scheduled at the 2nd position of some block. Its heat
contribution is at least 8f(0). The coolest jobs scheduled at position 1
and 3 have heat contribution 2f(0) = 2α at least. Then the temperature
at the end of the block is at least

7
64

+
α

4
+ 2α + α =

7
32

+
13
4

α =
7
32

+
1
4

> 1/4.

This would be too hot for the following 1.75-job. The same argument
shows that A-jobs cannot be scheduled at position 3 in a block, and
therefore the 1st position of a block is always occupied by an A-job. Now
we show that a B-job cannot be scheduled at the 3rd position of some
block. This is because otherwise the temperature at the end of the block
would be again at least

7
64

+ α +
α

2
+ 2α =

7
32

+
7
2
α > 1/4.

We showed that every block contains jobs that correspond to some
matching (a, b, c) ∈ A × B × C. It remains to show that each matching
satisfies a + b + c = m. Let (ai, bi, ci) be the matching corresponding to
the i-th block, for 1 ≤ i ≤ n. Let be ti = (3α − (ai + bi + ci)ε)/2 + 7/8.
Also let be t0 = 1. Then for 1 ≤ k ≤ n the temperature at the end of
time 4k + 1 is

k∑
i=1

(
1
16

)k−i

ti ≤ 1, (1)

For convenience we write pi = 15/16− ti. Assumption (A2) said that the
average of ai + bi + ci over 1 ≤ i ≤ n is m. Therefore the average of ti
(excluding t0) is 15/16, and therefore we have

n∑
i=1

pi = 0. (2)

Furthermore from (1) we have

∀ 1 ≤ k ≤ n :
k∑

i=1

16ipi ≤ 0. (3)

We will show now that for every i, pi = 0. This would imply that
ai + bi + ci = m, and imply that the matching problem has a solution.
For a proof by contradiction suppose that (pi) is not all zero. Let ` be the
smallest index such that p` > 0 and

p1 + . . . + p` ≥ 0. (4)

By minimality of ` we have for every 2 ≤ k ≤ `− 1

p1 + . . . + pk−1 ≤ 0 and pk + . . . + p` ≥ 0

So we can increase the coefficients of the variables pk, . . . , p` by some same
amount and preserve (4), obtain

16p1 + 162p2 + . . . 162p`−1 + 162p` ≥ 0

and finally

16p1 + 162p2 + . . . 16`−1p`−1 + 16`−1p` ≥ 0.

Now using p` > 0, we obtain

16p1 + 162p2 + . . . 16`−1p`−1 + 16`p` > 0,

which contradicts (4). This completes the proof. ut

4 An Online Competitive Algorithm

In this section we show that there is a 2-competitive algorithm. We
will show, in fact, that a large class of deterministic algorithms is 2-
competitive.

Given a schedule, we will say that a job j is pending at time u if j is
released, not expired (that is, rj ≤ u < dj) and j has not been scheduled
before u. If the temperature at time u is t and u is pending, then we call
j available if t + hj ≤ 2, that is, j is not too hot to be executed.

We say that job j dominates job k if j is both cooler and has the same
or smaller deadline than k, that is hj ≤ hk and dj ≤ dk. Also we say that
j dominates strictly job k if at least one of the inequalities is strict. An
online algorithm is called reasonable if at each step (i) it schedules a job
whenever if is available (the non-waiting property), and (ii) it schedules a
pending job that is not strictly dominated by another pending job. The
class of reasonable algorithms contains, for example, the algorithm which
schedules the coolest available job, and the algorithm which schedules the
earliest deadline available job.

Theorem 2. Any reasonable alg. for 1|online-ri, hi|
∑

Ui is 2-competitive.

Proof. We define a charging scheme that maps jobs executed by the ad-
versary to jobs executed by the algorithm in such a way that no job in
the algorithm’s schedule gets more than two charges.

type 1 charge
j

k

−

−

−

j

j

k

k

j

j

k’j

k

k

k’

jtype 2 charge

j

type 3 charges

cooler

adv.
alg.

adv.
alg.

adv.
alg.

adv.

−

alg.

adv.
alg.

Fig. 2. the different types of charges

Fix an instance, and consider both the schedule produced by the al-
gorithm and some arbitrary schedule, say produced by some adversary.
Suppose that the adversary schedules j at time v. There will be three
types of charges.

Type 1 Charges: If the algorithm schedules a job k at time v, charge
j to k. Otherwise, we are idle, and we have two cases.

Type-2 Charges: Suppose that the algorithm is hotter than the ad-
versary at time v and cooler at v + 1. In this case we charge j to the
previous heating step, by which we mean a time u < v, where either the

algorithm schedules a job which is strictly hotter than the one scheduled
by the adversary, or where only the algorithm schedules something and
the adversary is idle.

Type-3 Charges: Suppose now that the algorithm is hotter than the
adversary at v + 1 or cooler at v (and therefore also at v + 1). Now we
argue that j has been scheduled by the algorithm at some earlier time
u: In the case where the algorithm was cooler at v, j would have been
available and we assumed the algorithm is non-waiting. Now consider the
case where the algorithm was hotter than the adversary at time v + 1.
Its temperature is at most 1/2 at that time, so the temperature of j can
be at most 1. So again it would have been executable at time v. This
observation is also true for any job cooler than j, and this will be useful
later.

So let u < v be the execution time of j by the algorithm. To find a
job that we can charge j to, we perform pointer chasing of sorts: If, at
time u, the adversary is idle or schedules an equal or hotter job, then
we charge j to itself (its “copy” in the algorithm’s schedule). Otherwise,
let k be the strictly cooler job scheduled by the adversary at u. Now we
claim that the algorithm schedules k at some time before v. Indeed, if it
were still pending at u, since the algorithm never schedules a dominated
job, its deadline is not before the one of j, in particular it is after v. By
our earlier observation it would have been executable at v, so at v job k
is not pending anymore. We iterate to the time the algorithm executes
k. This iteration will end at some point, since we deal with cooler and
cooler jobs.

Now we show that any job scheduled by the algorithm will get at most
two charges. Obviously, each job in the algorithm’s schedule gets at most
one type-1 charge. Every chain defining a type-3 charge is uniquely defined
by the first considered job, and therefore type-3 charges are assigned to
distinct jobs. This also holds for type-2 charges, since between any two
time steps that satisfy the condition of the type-2 charge there must be a
heating step, so the type-2 charges are assigned to distinct heating steps.

Now let k be a job scheduled by the algorithm at some time v. By
the previous paragraph, k can get at most one charge of each type. If
the adversary is idle at v, k cannot get a type-1 charge. If the adversary
schedules a job j at time v whose heat contribution is equal or smaller
than k’s then k cannot get the type-2 charge. If it schedules something
hotter it cannot get the type-3 charge.

So in total every job scheduled by the adversary is charged to some
job scheduled by the algorithm, and every job scheduled by the algorithm

receives no more than 2 charges, therefore the competitive ratio is not
more than 2. ut

5 A Lower Bound on the Competitive Ratio

Theorem 3. Every deterministic online algorithm for 1|online-ri, hi|
∑

Ui

has competitive ratio at least 2.

Proof. We (the adversary) release a job j → (rj , dj , hj) = (0, 3, 1). If
the online algorithm schedules it at time 0, we release a tight job k →
(1, 2, 1.7) and schedule it followed by j. If the algorithm does not schedule
j at time 0, then we do schedule it at 0 and release (and schedule) a tight
job k′ → (2, 3, 1.7) at time 2. In both cases we scheduled two jobs, while
the algorithm scheduled only one, completing the proof. ut

6 Final Comments

Many open problems remain. Perhaps the most intriguing one is to deter-
mine the randomized competitive ratio for the problem we studied. The
proof of Theorem 3 can easily be adapted to prove the lower bound of
1.5, but we have not been able to improve the upper bound of 2; this is,
in fact, the main focus of our current work on this scheduling problem.

Extensions of the cooling model can be considered, where the temper-
ature after executing j is (t + hj)/R, for some R > 1. Even this formula,
however, is only a discrete approximation for the true model (see, for
example, [11]), and it would be interesting to see if the ideas behind our
2-competitive algorithm can be adapted to these more realistic cases.

In reality, thermal violations do not cause the system to idle, but only
to reduce the frequency. With frequency reduced to half, a unit job will
execute for two time slots. Several frequency levels may be available.

We assumed that the heat contributions are known. This is counter-
intuitive, but not unrealistic, since the ”jobs” in our model are unit slices
of longer jobs. Prediction methods are available that can quite accurately
predict the heat contribution of each slice based on the heat contributions
of the previous slices. Nevertheless, it may be interesting to study a model
where exact heat contributions are not known.

Other types of jobs may be studied. For real-time jobs, one can con-
sider the case when not all jobs are equally important, which can be mod-
eled by assigning weights to jobs and maximizing the weighted through-
put. For batch jobs, other objective functions can be optimized, for ex-
ample the flow time.

One more realistic scenario would be to represent the whole processes
as jobs, rather then their slices. This naturally leads to scheduling prob-
lems with preemption and with jobs of arbitrary processing times. When
the thermal threshold is reached, the execution of a job is slowed down
by a factor of 2. Here, a scheduling algorithm may decide to preempt a
job when another one is released or, say, when the processor gets too hot.

Finally, in multi-core systems one can explore the migrations (say,
moving jobs from hotter to cooler cores) to keep the temperature under
control. This leads to even more scheduling problems that may be worth
to study.

References

1. F. Bellosa, A. Weissel, M. Waitz, and S. Kellner. Event-driven energy account-
ing for dynamic thermal management. In Workshop on Compilers and Operating
Systems for Low Power, 2003.

2. J. Choi, C-Y. Cher, H. Franke, H. Hamann, A. Weger, and P. Bose. Thermal-aware
task scheduling at the system software level. In International Symposium on Low
Power Electronics and Design,, pages 213–218, 2007.

3. M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H.Freeman and Co., 1979.

4. M. Gomaa, M. D. Powell, and T. N. Vijaykumar. Heat-and-run: leveraging smt
and cmp to manage power density through the operating system. SIGPLAN Not.,
39(11):260–270, 2004.

5. S. Irani and K. R. Pruhs. Algorithmic problems in power management. SIGACT
News, 36(2):63–76, 2005.

6. M. Martonosi J. Donald. Techniques for multicore thermal management: Classi-
fication and new exploration. In Proceedings of the International Symposium on
Computer Architecture, pages 78–88, 2006.

7. A. Kumar, L. Shang, L-S. Peh, and N. K. Jha. HybDTM: a coordinated hardware-
software approach for dynamic thermal management. In DAC ’06: Proceedings of
the 43rd Annual Conference on Design Automation, pages 548–553, 2006.

8. E. Kursun, C.-Y. Cher, A. Buyuktosunoglu, and P. Bose. Investigating the effects
of task scheduling on thermal behavior. In the 3rd Workshop on Temperature-
Aware Computer Systems, 2006.

9. A. Merkel and F. Bellosa. Balancing power consumption in multiprocessor systems.
SIGOPS Oper. Syst. Rev., 40(4):403–414, 2006.

10. J. Moore, J. Chase, P. Ranganathan, and R. Sharma. Making scheduling ”cool”:
temperature-aware workload placement in data centers. In ATEC’05: Proceedings
of the USENIX Annual Technical Conference 2005 on USENIX Annual Technical
Conference, pages 5–5, 2005.

11. J. Yang, X. Zhou, M. Chrobak, and Y. Zhang. Dynamic thermal management
through task scheduling. In IEEE International Symposium on Performance Anal-
ysis of Systems and Software, 2008. To appear.

