
Collecting Weighted Items from a Dynamic Queue∗

Marcin Bienkowski† Marek Chrobak‡ Christoph Dürr§ Mathilde Hurand§

Artur Jeż† Lukasz Jeż† Grzegorz Stachowiak†

Abstract

We consider the problem of collecting weighted items
from a dynamic queue S. Before each step, some items
at the front of S can be deleted and some other items
can be added to S at any place. An item, once deleted,
cannot be re-inserted — in other words, it “expires”.
We are allowed to collect one item from S per step.
Each item can be collected only once. The objective is
to maximize the total weight of the collected items.

We study the online version of the dynamic queue
problem. It is quite easy to see that the greedy algo-
rithm that always collects the maximum-value item is 2-
competitive, and that no deterministic online algorithm
can be better than 1.618-competitive. We improve both
bounds: We give a 1.89-competitive algorithm for gen-
eral dynamic queues and we show a lower bound of 1.632
on the competitive ratio. We also provide other upper
and lower bounds for restricted versions of this problem.

The dynamic queue problem is a generalization of
the well-studied buffer management problem, and it is
an abstraction of the buffer management problem for
network links with intermittent access.

1 Introduction

We consider the problem of collecting weighted items
from a dynamic queue S (an ordered list). Before each
step, some items at the front of S (a prefix) can be
deleted and some other items can be added to S at any
place. An item, once deleted, cannot be re-inserted—in
other words, it “expires”. We are allowed to collect one
item from S per step. Each item can be collected only
once. The objective is to maximize the total weight of
the collected items. We focus on the online version of
this problem, where the updates of S are not known

∗Supported by MNiSW grants number N206 001 31/0436,
2006–2008 and N N206 1723 33, 2007–2010, NSF grants OISE-
0340752 and CCF-0729071, and ANR Alpage.

†Institute of Computer Science, University of Wroc law, 50-383
Wroc law, Poland. {mbi, aje, lje, gst}@ii.uni.wroc.pl

‡Department of Computer Science, University of California,
Riverside, CA 92521, US.

§CNRS, LIX UMR 7161, Ecole Polytechnique, 91128
Palaiseau, France. {durr, hurand}@lix.polytechnique.fr

in advance. Our goal is to design online competitive
algorithms and establish lower bounds.

To our knowledge, the problem above has not been
explicitly addressed in the literature, though it naturally
generalizes the well-studied problem of bounded-delay
buffer management. In the buffer management problem,
packets with weights and deadlines arrive in a buffer of
a network link. (The weights represent various quality-
of-service levels.) At each step, we can send one packet
along the link. The objective is to maximize the total
weight of packets sent before their deadlines. This is
a special case of our dynamic queue problem, where
packets are represented by items ordered according to
deadlines. The difference is crucial though: in packet
scheduling, packet arrival times are unknown but their
deadlines are revealed at their arrival, while in dynamic
queues both the arrival and deadlines are not known.

Competitive algorithms for various versions of
bounded-delay buffer management problem have been
extensively studied [3, 5, 6, 7, 8, 10, 11, 12, 13]. In par-
ticular, it is known that no deterministic online algo-
rithm can have competitive ratio better than φ ≈ 1.618
[3, 6], and an algorithm with competitive ratio ≈ 1.828
has been recently developed [7] (see also [13]). Clos-
ing the gap between these bounds remains an intrigu-
ing open problem. For agreeable deadlines (where the
items are released in order of non-decreasing deadlines),
an upper bound of φ has been established [12].

The buffer management model above assumes that
we can send one packet at each time step. This is
not the case in networks when access to the link may
be only intermittent. One example is that of a tiered
QoS systems, where all traffic is divided into classes
with different QoS guarantees. Packets from a lower
tier are transmitted only if no higher-tier packets are
pending. In this model, maximizing the total value of
sent packets from this lower tier is equivalent to our
dynamic queue problem. (A more explicit reduction
will be given in the full version of this paper. The
rough idea is that we can simulate item deletions
by blocking time slots using tight top-tier packets,
that must be transmitted in the step when they are
released.) Tiered systems are increasingly common—

for example, the newly introduced WiMAX standard for
the “last mile” connectivity comprises of five tiers with
traffic ranging from the voice and video service with
real-time guarantees to the lowest best-effort service
for web-browsing and data transfer [2]. There are
other scenarios where link access is intermittent or
unpredictable, due to competition with other traffic
streams, errors or interference in wireless channels, or
link failures. (One extreme example is that of meteor
burst communication, where a connection requires an
entry of a meteor into the atmosphere at a desired
location [1].)

The dynamic queue problem is also loosely related
to various versions of online bipartite matching (it can
be thought of as computing a maximum weight match-
ing between time steps and items) and to the adwords
problem, both extensively studied in the literature (see
[9, 4, 14] and the references therein). Due to differ-
ent focus and assumptions, however, algorithmic ideas
developed for those problems do not seem to apply to
dynamic queues.

Our results. It is quite easy to see that algorithm
Greedy, which always collects the maximum-value item,
is 2-competitive for general dynamic queues [8, 10]. We
improve this bound, by providing a 1.89-competitive
algorithm PrudentMark (see Section 3.) Our ratio is
larger than the ratio of ≈ 1.828 for the more restricted
problem of buffer management [7], but the algorithm
in [7] (as well as the one in [13]) uses information
about packet deadlines and is not applicable to dynamic
queues. We also show that our analysis of PrudentMark
is essentially tight.

Next, in Section 4, we study the special case of
FIFO queues, where items can be added only at the end
of the queue. The FIFO case generalizes the variant of
buffer management with agreeable deadlines. For this
case we give a 1.737-competitive algorithm EFH, and we
show that the analysis of EFH is tight.

Our last upper bound is for the non-decreasing
weight case, where the weights of the items are non-
decreasing with respect to the list ordering. In Sec-
tion 5 we present an online algorithm MarkAndPick for
this case with competitive ratio φ—thus matching the
lower bound from [3, 6]. This result has implications for
buffer management, as the proof of the lower bound of
φ uses instances with geometrically increasing weights.
Thus, improving this lower bound—if possible at all—
would require a completely new approach. Our com-
petitive analysis uses an invariant technique involving
dominance relations between sets of numbers, and is
likely to find applications in improving upper bounds
for various versions of buffer management problems.

We then turn our attention to lower bounds. It is

easy to establish a lower bound of φ for any determinis-
tic algorithm for dynamic queues, using only two items
(see Section 6). We improve this bound, by proving a
lower bound of ≈ 1.63. This bound applies even to the
decremental case, where all items are inserted at the
beginning and no insertions are allowed afterwards.

We also show two tight lower bounds for memo-
ryless algorithms, which make decisions based only on
the weights of the pending items. For deterministic
algorithms we prove a lower bound of 2. This con-
trasts with a 1.893-competitive memoryless algorithm
for buffer management [7]. Thus, for memoryless algo-
rithms, knowing the exact deadlines helps. For random-
ized memoryless algorithms (against an adaptive adver-
sary), we present a lower bound of e/(e− 1), matching
an upper bound of Algorithm RMix [5], which can be
adapted to dynamic queues.

2 Preliminaries

We refer to the items currently in S as active. In
other words, those are the items that have been already
inserted but not yet deleted. An item is called pending
for an algorithm A if it is active but not yet collected
by A. We denote the weight of an item x as wx and
the total weight of a set of items X as w(X). We use
symbol “C” to represent the ordering in S, i.e. a C b
means that a is before b in the list. This relation is
well-defined, since items cannot be re-inserted into the
list.

If all queue updates are specified upfront, an op-
timal solution can be computed in polynomial-time by
reduction to maximum-weight matching: Represent the
instance as a bipartite graph G whose partitions are
items and time steps. (Only O(n) time steps need to be
considered, where n is the number of items.) An item
a is connected to the time steps when a is active with
edges of weight wa. The maximum-weight matching in
G represents an optimal collection sequence.

Using a routine exchange argument, it is easy to
show that, without loss of generality, optimal (or the
adversary’s) solutions satisfy the following Earliest-
Expiration-First (EEF) Property: If a, b are active at
the same time, a C b, and both a, b are collected, then
a is collected before b. We say that a is pending for the
adversary if it can be collected later by the adversary
satisfying the EEF property. In other words, if at some
step the adversary collects an item b, then he forfeits all
active items aC b, that is, they are no longer considered
pending for the adversary.

An online algorithm A is called R-competitive if
its gain on any instance I is at least the optimum
gain on I divided by R. (An additive constant is
sometimes allowed in this bound; in our upper bounds

this constant is 0, and our lower bounds can be easily
modified to work for this more general definition.) The
competitive ratio of A is the smallest R for which A is
R-competitive.

3 A 1.897-Competitive Algorithm for General
Queues

It is easy to show that Algorithm Greedy, which always
collects the maximum value item, is 2-competitive [8,
10]: Divide the items collected by the adversary into
two types: (1) those collected by Greedy and (2) all
other items. Obviously, the total weight of type-1 items
does not exceed Greedy’s gain. If the adversary collects
a type-2 item x at time t, then x is also pending for
Greedy at time t, so at this time Greedy collects an item
at least as heavy as x. Thus the total weight of type-2
items also does not exceed Greedy’s gain.

We improve this bound, by presenting an online
algorithm PrudentMark with competitive ratio ≈ 1.897.
(In the appendix, we show that our analysis is nearly
tight, i.e. that the competitive ratio of PrudentMark is
at least 1.894.) For simplicity, we assume that there are
always pending items, for otherwise we can insert any
number of items of zero weight into the queue, without
affecting the analysis.
Algorithm PrudentMark: Fix two parameters 0 <
α, β < 1. The algorithm maintains marks on some
pending items. At each step, we proceed as follows:

/* update queue */
let h be the heaviest pending item
let m be the heaviest unmarked pending item
if wm < αwh then

collect h
else

mark m
collect the earliest pending item e with we ≥ βwm

Theorem 3.1. There are constants α and β for which
Algorithm PrudentMark is 1.897-competitive.

Analysis of PrudentMark. We choose β to be the
only root of β3 − 4β2 + β + 1 = 0 in the interval
[0, 1], i.e. β ≈ 0.7261, and α = 2 − 1/β ≈ 0.6228.
For these parameters we prove that PrudentMark is R-
competitive, where R = 1/β2 ≈ 1.8967. The following
inequalities are routine to verify:

(3.1) 2α ≤ β+1 ≤ 1/β2 ≤ 2 ≤ 1/β+α ≤ 2β+α

Types of items. We now focus our attention on the
adversary’s pending items. (Recall the definition in
Section 2.) Our first observation, that follows directly
from the algorithm, is this:

(i1) If item b is pending for PrudentMark then wb ≤ wh.
If PrudentMark marks an item m in this step then
also wb ≤ wm/α.

Suppose that b is an item pending for the adver-
sary. We call b an M-item if b has been marked by
PrudentMark, and a C-item if b has been collected by
PrudentMark. If b is both an M-item and a C-item then
we refer to it as a CM-item.

We group some items into protection pairs. Each
protection pair (b, k) consists of a C-item b and an M-
item k. Item b is called the protected item and item k is
called the protecting item. We also say that k protects b.
These items will satisfy the following conditions at every
step:

(i2) b C k and wb ≥ βwk.

(i3) k is either an M-item pending for PrudentMark or
is itself a protected CM-item.

(i4) there is no other protection pair where b is
a protected item or k is a protecting item.

Conditions (i3) and (i4) imply that protection pairs
form chains, where each item is protected by the next
one. All items in a chain except last are C-items, all
items except possibly first are M-items, and the last
item in the chain must be a pending M-item. In general,
not all C-items and M-items will belong to protection
pairs; there may also be a number of unprotected C-
items and non-protecting M-items present.

Proof idea. The proof uses amortized analysis. When
PrudentMark collects an item of weight x, we think
about it as receiving an allowance of Rx units. When
the adversary collects an item of weight y, we pay him
y units. The goal is to show that we never run out of
money.

The idea of the analysis is to “pre-pay” for some
items that are still pending for the adversary. At some
steps we give adversary credit for his pending items,
while in other steps we use these credits to decrease
his gain in the step. The sum of his actual gain and
the credit change will be called the amortized gain. We
prove that the adversary’s amortized gain in each step
is at most R times our gain in this step.

Intuitively, let b be an item collected by
PrudentMark, pending for the adversary, and with
weight much larger than the weight of the PrudentMark’s
pending items. Then b already has full credit on it, for
when the adversary collects b PrudentMark cannot af-
ford to pay for b with the items that it still can collect.
In other situations, if b is not too large, we can afford
to give the adversary only partial credit for b.

 C-items

 M-items

protected

protecting

wb

Rwc-βwkb

c

k0

(1-α)wbb

b

Figure 1: Items and their credits

For example, if PrudentMark marks m and collects
an item e pending for the adversary then (e,m) becomes
a protection pair. If, at the same time, the adversary
collects an item z C e that is pending for PrudentMark
then we give the adversary only partial credit for e.
The principle is that, for a fixed we, the smaller the
value of wm, the bigger the credit we give to e. This is
because our “allowance” is Rwe, while our “payment”
is at most wz, which cannot exceed βwm (for otherwise
PrudentMark would collect z instead of e). The intuition
here is this: if m is very light, then e will actually receive
full credit. On the other hand, if m is heavy, then we can
afford to give e only partial credit, for if the adversary
later collects e or m, then PrudentMark will also collect
a relatively heavy item (since m is still pending for
PrudentMark). We emphasize that the classification of e
and m can change over time; for example e could become
a CM-item or m could become a non-protecting M-item.
Assignment of credits. At a given step, let h and
m be as described in PrudentMark, namely the heaviest
pending item and the heaviest unmarked pending item,
respectively. We present the strategy for awarding the
adversary credits. If b is an item pending for the
adversary, then at each step b satisfies:

(c1) If b is pending for PrudentMark and not marked
then b has no credit.

(c2) If b is a non-protecting M-item pending for
PrudentMark, it has a credit (1− α)wb.

(c3) If b is an unprotected C-item then b has credit wb.

(c4) Otherwise, b belongs to a protection pair. A
protection pair (c, k) has credit Rwc − βwk. We
split this credit between c and k as follows: k
has credit (1 − α)wk, and c has credit Rwc −
(1 + β − α)wk. (By (i2) Rwc − (1 + β − α)wk ≥

Rβwk−(1+β−α)wk = (1−β)wk ≥ 0, so c’s credit
is non-negative.)

Amortized analysis. Fix one step, and let h and m
be as described in PrudentMark. Let z be the item
collected by the adversary in this step. We divide each
step into two sub-steps: (i) In the first sub-step the
adversary chooses z, inserts some items, and possibly
deletes some items before z. In our analysis, this can
cause some items other than z to change their status and
we may need to update their credits. The total change
of credits in this sub-step will be called the adversary z-
gain. (ii) In the second sub-step, PrudentMark executes
its move, collecting an item. This may result in some
items changing their status, and thus we may have to
adjust their credits. We refer to the credit change in
this step as the new credit.

We start by showing bounds on the adversary z-
gain.

Fact 3.1. (adv1) If z is pending for PrudentMark then
the z-gain is at most wz.
(adv2) If z is a pending M-item then the z-gain is at
most αwz.
(adv3) If PrudentMark collects h in this step and z is
neither an M-item nor a C-item (that is, z is pending
for PrudentMark and not marked) then the z-gain is at
most αwh.
(adv4) Suppose that z is a C-item. If z is unprotected
then the z-gain is at most 0. Otherwise, if z’s protector
is k, then the z-gain is at most (1+β−α)wk−(R−1)wz.
In either case, the z-gain can be bounded by any of
the following quantities: αβwk, αwz, αβwh, and, if
PrudentMark marks m in this step, also by βwm.

Proof. First, since all credits are non-negative and only
the items pending for the adversary have credits, if aCz
then we will not increase the credit of a.

In cases (adv1), (adv2) and (adv3), we will not
change the credit for any item a with zCa. With this in
mind, (adv1) is obvious, and so is (adv2), with the only
difference being that in this case z already had credit
(1 − α)wz. In (adv3), since PrudentMark collects h, we
must have wz < αwh, for otherwise PrudentMark could
mark z. This implies (adv3).

It remains to show (adv4). Suppose that z was
already collected by PrudentMark. If z is unprotected,
then it already has full credit. Also, in this case we do
not change the credit for any items a with z C a, so the
z-gain is at most 0.

Otherwise, suppose that z is protected by k. Then
the adversary gain for collecting z is wz − [Rwz − (1 +
β−α)wk] = (1+β−α)wk−(R−1)wz. Since wz ≥ βwk,

we can bound the last expression by (1 + β − α)wk −
(R− 1)wz ≤ (1 + β − α− (R− 1)β)wk = αβwk.

If wk ≤ wh, then we do not change credits on any
items a with zCa. Thus the z-gain is at most αβwk, and
the remaining bounds follow from wk ≤ wz/β, wk ≤ wh

and wh ≤ wm/α.
Suppose now that wk > wh. Then wk cannot be

a pending M-item (by the definition of h), so wk is a
protected CM-item, by (i3). Let s be maximum for
which there are protection pairs (z = k0, k = k1),
(k1, k2), . . . , (ks−1, ks). Then ks must be a pending
M-item, so, by the definition of h, wks ≤ wh.

To get the desired bound, we change the status and
credits of some items: items k1, k2, . . . , ks−1 become
unprotected C-items (with full credit). Item ks becomes
a pending, non-protecting M-item with credit (1−α)ks.
This modification preserves the invariants and produces
a correct credit assignment. Using (3.1), wks

≤ wh and
wz ≥ βwk, the z-gain is at most

s−1∑
i=0

wki
+ (1− α)wks

−
s−1∑
i=0

[
Rwki − βwki+1

]
= − (R− 1)wz + (1 + β − α)wks −

s−1∑
i=1

(R− 1− β)wki

≤ (1 + β − α)wks − (R− 1)wz

≤ (1 + β − α)wh − (R− 1)βwh

= αβwh .

Since, in this case, wh ≤ wk, the z-gain is also bounded
by αβwk, and the other bounds follow like in the
previous case. ut

We show that, in this step, the invariant is preserved
and that the adversary’s amortized gain is at most
R times the gain of PrudentMark. This is sufficient to
prove R-competitiveness, by a standard amortization
argument. The proof is by analyzing a number of cases.
Case 1: wm ≥ αwh. We mark m and collect the earliest
pending item e such that we ≥ βwm.
Case 1.1: z C e. We claim that the z-gain is at most
βwm. Indeed, if z is pending for PrudentMark then
wz < βwm, thus, by (adv1), the z-gain is at most βwm.
If z is a C-item, then, by (adv4), the z-gain is at most
βwm as well.

We estimate the new credits. We have two sub-
cases. If e = m then e becomes an unprotected C-
item with full credit wm. Adding the βwm z-gain,
we get that the amortized adversary gain is at most
(1 + β)we ≤ Rwe.

Otherwise, suppose that e C m. We create a
protection pair (e,m), with total credit Rwe − βwm.

Adding the βwm bound on the z-gain, the adversary
amortized gain is at most Rwe. Note that if e was
already a protecting M-item, then e becomes a protected
CM-item, preserving (i3). Also, by PrudentMark, we ≥
βwm so (i2) is preserved.
Case 1.2: e E z. We estimate the adversary z-gain.
Suppose first that z is pending for PrudentMark. From
(adv1), if wz ≤ wm, the z-gain is at most wz ≤ wm.
If wz > wm, then z must be marked and wz ≤ wm/α,
so, by (adv2), the z-gain is at most αwz ≤ wm. If z is
a C-item, by (adv4), the z-gain is at most βwm. We
conclude that in this case the z-gain is at most wm.

Next, we estimate the new credit. Since eEz, we do
not need to give the adversary any credit for e. If zCm,
we give the adversary (1 − α)wm credit for m (which
becomes a non-protecting M-item), and otherwise the
credit increase is 0.

Overall, the adversary’s amortized gain is at most
wm + (1− α)wm = (2− α)wm ≤ (2− α)we/β = Rwe.

Case 2: wm < αwh. In this case PrudentMark collects
h. Note that h is a pending M-item. We first estimate
the z-gain. If z is a pending M-item then the adversary
gain is at most αwz ≤ αwh, by (adv2). If z is pending
for PrudentMark and not marked, then, by (adv3), the
z-gain is at most wz ≤ αwh. If z is a C-item then, by
(adv4), the z-gain is at most αβwh ≤ αwh. We conclude
that in this case the z-gain is at most αwh.

We now have two sub-cases.

Case 2.1: h = b0 protects some item b1 and
z C b1. Let s be the maximum index for which
(bs, bs−1), . . . , (b2, b1), (b1, b0 = h) are protection pairs.
Let also p be the maximum index for which z C bp.
(Since z C b1, p is well-defined and p ≥ 1.) All items
bp, bp−1, . . . , b0 will become unprotected C-items. Using
(3.1) and (i2), the total credit increase will be at most

p∑
i=0

wbi −
p∑

i=1

[
Rwbi − βwbi−1

]
= (1 + β)wh − (R− 1− β)

p−1∑
i=1

wbi − (R− 1)wbp

≤ (1 + β)wh − (R− 1− β)
p−1∑
i=1

βiwh − (R− 1)βpwh

=
(

1 + β − βR

1− β
− βp+1(2−R)

1− β

)
wh

≤ 1 + β − βR

1− β
wh .

Adding the αwh bound on the z-gain, substituting
α = 2 − 1/β and R = 1/β2, and using the definition
of β, we conclude that the amortized adversary gain in

this case is at most(
α +

1 + β − βR

1− β

)
wh =

−β2 + 4β − 2
β(1− β)

· wh

=
1
β2

· wh = Rwh .

Case 2.2: Either h is a non-protecting M-item, or it
protects a C-item b such that b E z. If z C h, item
h becomes an unprotected C-item with full credit,
otherwise we do not change its credit. If h protects
b, the case assumption implies that we do not give the
adversary credit for b. Thus the increase of the credit
will be at most αwh. Adding the αwh bound on the
z-gain and using (3.1), we conclude that the amortized
adversary gain is at most 2αwh ≤ Rwh.

4 A 1.737-Competitive Algorithm for FIFO
Queues

Algorithm EFH: The computation is divided into
stages, where each stage is a single step, a pair of con-
secutive steps, or a triple of consecutive steps. Formally,
each stage begins in step (E) and ends right before the
next step (E). We number the stages in the natural man-
ner. EFH uses parameters, α, β, ξ ∈ [0, 1], β ≤ ξ, which
we fix later.

(S) /* update queue */
(E) let h be the heaviest pending item

collect the earliest pending item e with we ≥ βwh

/* update queue */
(F) let h′ be the heaviest pending item

if h is not pending or αwh′ > wh then goto (E)
collect the earliest pending item f with wf ≥ ξwh

/* update queue */
(H) let h′′ be the heaviest pending item

if h is not pending or αwh′′ > wh then goto (E)
collect h and goto (S)

Theorem 4.1. The competitive ratio of Algorithm EFH
is R = 2(

√
13 − 1)/3 ≈ 1.737 for constants β =

(
√

13 + 1)/8 ≈ 0.576, ξ = 4
3β = (

√
13 + 1)/6 ≈ 0.768,

and α = 3
4 = 0.75.

Algorithm Analysis. We fix an instance and we
compare EFH’s gain on this instance to the adversary’s
gain. By the EEF property if the adversary collects
items a, b, c in a stage, in this order, then a C b C c.

The proof is by amortized analysis. We associate
credits with items that are pending for the adversary
and collected by EFH. When EFH collects an item of
weight w, it uses its allowance of Rw to pay for the
item collected by the adversary. If there are any funds

left, they can be assigned to some items as credits. If
the allowance is not sufficient to pay for the adversary’s
item, we use credits to cover the difference.

We use the FIFO queue property in the following
way. After nominating h in the stage we are guaranteed
that no new items appear before h. Thus all the items
collected by the adversary in this stage that are before
h were either pending for EFH at (E) or had credit on
them. On the other hand, all new items, including h′

and h′′, are after h, and thus if the adversary collects
them then he gains no credit for items collected by EFH.

The adversary’s amortized gain in a stage is the
sum of weights of the items he collected in this stage
plus the total credit change in the stage. We preserve
the following invariant: after each stage, each item x
pending for the adversary but already collected by EFH
has credit of value wx associated with it, with a sole
exception: If e is the item collected by EFH in the last
stage, then e can be designated as a special item with
partial credit of 2

3we, conditioned that the item h from
the last stage is still pending (in other words, the last
stage ended because αwh′ > wh or αwh′′ > wh).

Lemma 4.1. In each stage the adversary’s amortized
gain is at most R times EFH’s gain.

Proof. We assume that, with the exception for the spe-
cial item, at each step the adversary collects items that
are not collected by EFH before this stage. Otherwise
the adversary collects an item that has credit on it and
his amortized gain for this item is zero.

We examine three disjoint cases, where Case k =
1, 2, 3 corresponds to a stage that lasts k steps. Within
each case, we examine the reason for the stage to end (h′

or h′′ are very heavy, h was collected, or h was deleted)
and the possible behavior of the adversary—the position
of his B-maximal item collected in this stage relatively
to the items collected by EFH. In each of those sub-
cases we show that the amortized gain of the adversary
does not exceed R times the gain of EFH. The complete
analysis will appear in the full version of the paper. ut

5 A φ-Competitive Algorithm for
Non-Decreasing Weights

In this section we give an online algorithm MarkAndPick
that is φ-competitive for dynamic queues when item
weights are increasing. More precisely, if C denotes the
ordering of the items in the queue, then we assume that,
at any time, for any two active items a, b ∈ S, if a C b
then wa ≤ wb.

Algorithm MarkAndPick:

(U) /* update queue */
if there is no pending item then skip step, go to (U)

let h be the heaviest unmarked item (not neces-
sarily active)
mark h, collect the earliest pending item i
with wi ≥ wh/φ

M

D E'E

M'

Algorithm's items

Marked items

Adversary items

weight order j
(max. adversary

item)

L L'

Figure 2: Notation.

Notation: The notation introduced here and used in
the analysis is depicted on Figure 2. Let Dt, Mt, and Lt

denote, respectively, the sets of items collected by the
adversary, marked by the MarkAndPick, and collected
by MarkAndPick up to and including step t. Let Ct be
the set of items pending for the adversary at the end
of step t. L′t = Lt ∩ Ct is the set of items collected
by MarkAndPick and pending for the adversary, and
let `t = |L′t|. Similarly et = |Dt| − |Mt| denotes
the difference of the number of items collected by the
adversary and by MarkAndPick up to time t. We also
introduce the sets Et ⊂ Dt, E′t ⊂ Dt, and M ′

t ⊂ Mt,
such that |Et| = et and |E′t| = |M ′

t | = `t. Intuitively,
M ′

t = Mt ∪ Ct and Et ∪ E′t represent extra items of
the adversary: each time MarkAndPick picks an item i
while the adversary picks e such that eCi, then later the
adversary might collect i and MarkAndPick has nothing
to collect. Thus e is an “extra item” as it gives the
adversary an “extra step”. Items in Et are extra items
that are already “consumed”—the adversary used the
extra step, while the ones in E′t can still grant an extra
step in the future.

Intuition: The φ-competitiveness comes from the
combination of two extreme scenarios: In one, the
adversary collects no extra items up to time ω. Then
|Mω| = |Dω| = |Lω|, and whenever MarkAndPick marks
an item h, it collects an item i with wi ≥ wh/φ. So
its budget φwi is sufficient to pay for h, and we get
φw(Lω) ≥ w(Mω) ≥ w(Dω). In the other scenario the
adversary gets |Mω| extra items. Then it can be shown
that Lω = Mω, i.e. MarkAndPick collected the |Mω|
heaviest items. An item e is added to Eω if MarkAndPick
collects an item i after e even though e is pending; thus
we is at most wh/φ, where h was the item marked
at that time. Overall, the gain of the adversary is

w(Lω)+w(Eω) ≤ w(Lω)+w(Lω)/φ = φw(Lω), and thus
MarkAndPick has enough budget. To make the proof
work for the intermediate cases, we need to introduce a
dominance relations between sets and to represent our
invariants in terms of this dominance relation.

Set dominance relation. Let X, Y be two finite sets
of numbers. We say that X dominates Y , denoted
X � Y , if either Y = ∅, or maxX ≥ max Y and
(X − max X) � (Y − max Y). Note that we do not
require that |X| = |Y |. In particular, X � ∅, for any X.

For sets B and C of items, we say that B dom-
inates C, writing B � C, if {wb : b ∈ B} dominates
{wc : c ∈ C}. We write B � aC if {wb : b ∈ B} dom-
inates {awc : c ∈ C}. The following lemma states the
properties of the dominance relation needed in the anal-
ysis of MarkAndPick. Its proof appears in the full version
of this paper.

Lemma 5.1. Suppose that X � Y 6= ∅. Then
(i) X −minX � Y −minY . (ii) If x ∈ X ∩Y then

X − x � Y − x. (iii) If X, Y ⊆ Z, y ∈ Z − Y , and
x ≥ max {z ∈ Z −X : z ≤ y} then X ∪ x � Y ∪ y. (In
particular, this holds for x ≥ y.)

Lemma 5.2. For each time step t, there exist disjoint
sets Et, E

′
t ⊆ Dt with |Et| = et and |E′t| = `t, and a set

M ′
t ⊆ Mt with |M ′

t | = `t, such that

(a) φw(Lt − L′t) ≥ w(Mt −M ′
t) + w(Et),

(b) φL′t � M ′
t � L′t,

(c) Mt � (Dt − Et − E′t) ∪ L′t, and

(d) M ′
t � φE′t.

Proof. The idea is as follows: let j be the C-maximal
item collected by the adversary. We deal with items
before and after j separately. We upper-bound the
weight of items collected by the adversary before j by
w(M−M ′), so the maximum weight items among them,
plus w(E), thus extra items that were already used.
Those items are paid by MarkAndPick items before j,
that is L− L′, hence (a).

Among items after j the adversary will collect all
the M ′ items. Then we are ready for two extreme
scenarios of MarkAndPick choices. Either MarkAndPick
collects light items and thus adversary’s gain is paid
by L′, hence (b), or there are no items to collect by
MarkAndPick and the adversary uses E′ as extra items
but cannot prevent MarkAndPick from taking the whole
M ′, thus M ′ pays for M ′ and for E′, which is formalized
in (d).

Since M ′ � L′, (c) should be viewed as M −M ′ �
D − E − E′, i.e. the adversary’s non-extra items are
dominated by marked items.

In the following we turn this idea into a solid proof.
We show that the invariant in the lemma is pre-

served. For simplicity, we omit the subscript t and
write D = Dt, M = Mt, etc. Also, let ∆w(D) =
w(Dt+1) − w(Dt), ∆w(M) = w(Mt+1) − w(Mt), and
so on. We view the process as follows: at each step,
(I) the adversary first inserts items into S; (II) then he
selects the item j to be collected; (III) next, the adver-
sary deletes some items from S (of course, only the items
that are before j in S can be deleted); (IV) finally, both
the adversary and the algorithm collect their items.

In order to show (a), we need to show that

φ∆w(L) + ∆w(M ′)
≥ φ∆w(L′) + ∆w(M) + ∆w(E) .

(5.2)

In addition, we need to show that (b), (c) and (d) are
preserved.

We look at all sub-steps separately. (I) Insertions
do not affect the invariants. (None of the sets M , D,
L, L′ changes, and we do not change sets M ′, E, and
E′.) In (II), suppose the adversary selects j and j′ was
an item collected by the adversary in the previous step.
There may have been some items i, j′CiCj, that were in
L′. Since these items are now removed from C, they are
also removed from L′, and we need to update M ′ and
E′ so that they have the same cardinality as L′, and in
such a way that the invariants are preserved. Let i ∈ L′

be such an item with minimum weight, g the minimum-
weight item in M ′ and e the minimum-weight item in
E′. We remove i from L′, g from M ′ and e from E′.
Since φwi ≥ wg, by (b), we have φ∆w(L) + ∆w(M ′) =
0−wg ≥ −φwi + 0 +0 = φ∆w(L′) + ∆w(M) + ∆w(E),
so (a) is preserved. Invariants (b) and (d) are preserved
because we remove the minimum items from L′, M ′,
and E′. In (c), the left-hand side does not change and
on the right-hand side we remove i from L′ and add e to
D−E−E′, and by (b) and (d) we have wi ≥ wg/φ ≥ we,
so the right-hand side cannot increase. In sub-step (III),
deletions do not affect the invariants.

The rest of the proof is devoted to sub-step (IV).
We examine (5.2) and the changes in (b), (c) and (d)
due to the algorithm and the adversary collecting their
items.
Case A: There is at least one pending item. The
algorithm marks h and collects the earliest pending item
i such that wi ≥ wh/φ. Thus h is added to M and i
is added to L. We do not change E. We have some
sub-cases.
Case A.1: i E j. Then i is not added to L′, and we do
not change E′. Since φ∆w(L) = φwi ≥ wh = ∆w(M)

and ∆w(E) = 0, to prove (5.2) it is now sufficient to
show that

∆w(M ′) ≥ φ∆w(L′).(5.3)

If j /∈ L (note that this included the case i = j), then
L′ does not change and we do not change M ′, so (5.3)
is trivial. In (b) and (d) nothing changes. We add the
maximum unmarked item h to M and j to D, so (c)
follows from Lemma 5.1(iii).

If i 6= j and j ∈ L and then let g be the minimum
item in M ′ and e the minimum item in E′. Item j
is removed from L′ and we remove g from M ′ and e
from E′. Since, by (b), φwj ≥ wg, we have ∆w(M ′) =
−wg ≥ −φwj = φ∆w(L′), so (5.3) holds. Since j, g
and e are minimal, (b) and (d) are preserved. In (c),
moving j from L′ to D does not change the right-hand
side. We also add h to M and e to D − E − E′ ∪ L′,
so (c) is preserved because of the choice of h and
Lemma 5.1(iii).
Case A.2: i B j and j /∈ L. Then i is added to L′. We
also add j to E′. Since ∆w(L) = ∆w(L′) = wi and
∆w(M) = wh, to show (5.2) it is sufficient to show that

∆w(M ′) ≥ wh.(5.4)

Since |L′| increased, we need to add one item f to M ′.
We choose this f as follows: If i E h, we choose f = h.
Otherwise, if i B h then, by the choice of h, we get that
all items h E f E i are now marked. In this case, we
choose the largest f E i such that f /∈ M ′ and add it
to M ′. Since h ∈ M −M ′, h itself is a candidate for f ,
so we have h E f E i.

Note that, in this case, by the choice of i (as the
earliest pending item with weight at least wh/φ), j C i
and j /∈ L, we have wf ≥ wh ≥ φwj . In particular, this
means that j C h and that all items h E f ′C i are in L′.

Since wf ≥ wh, (5.4) is trivial. Invariant (d) is also
quite easy, since wf ≥ φwj , by the previous paragraph.
In (c), adding j to D and E′ does not change the right-
hand side. We also add h to M and i to L′, which
preserves (c) by the choice of h and Lemma 5.1(iii).

To show (b), if i E h then f = h and, since
φwi ≥ wh ≥ wi, invariant (b) is preserved. If iBh, then,
φwi ≥ wi ≥ wf , so the first part of (b) is preserved.
That the second part of (b) is preserved follows from
the choice of f and Lemma 5.1(iii).
Case A.3: i B j and j ∈ L. Then we remove j from
L′ and add i. We thus have ∆w(L) = wi, ∆w(L′) =
wi − wj and ∆w(M) = wh. Thus to show (5.2) it is
sufficient to show that

∆w(M ′) + φwj ≥ wh.(5.5)

We do not change E′. To update M ′, we proceed as
follows. Let g be the lightest item in M ′. Since j is the

minimal element of L′, (b) implies wj ≤ wg ≤ φwj . We
first remove g from M ′. Next, we proceed similarly as in
the previous case, looking for an item f that we can add
to M ′ to compensate for removing g (since |M ′| cannot
change in this case.) Let h′ = max(g, h). Note that
h′ ∈ M −M ′. If i E h′, we choose f = h′. Otherwise,
if i B h′ then, by the choice of h′, we get that all active
items h′E f E i are marked. In this case, we choose the
largest f E i such that f /∈ M ′ and add it to M ′. Since
h′ ∈ M −M ′, h′ itself is a candidate for f , so we have
h′ E f E i.

Note that, in this case, by j E g, all items h′E f C i
are active and, by the choice of i, they are all in L′.

Now, in (5.5) we have ∆w(M ′) + φwj = (−wg +
wf) + φwj ≥ wf ≥ wh′ ≥ wh. In (d), the left-hand side
can only increase (since f ≥ g) and the right-hand side
does not change. In (c), moving j from L′ to D does
not change the right-hand side. We also added h to the
left-hand side and i to L′ on the right-hand side, so (c)
is preserved by the choice of h and Lemma 5.1(iii).

In (b), removing j from L′ and g from M ′ does not
affect the invariant. Then we add f to M ′ and i to
L′. By the algorithm, we have φwi ≥ wh, while by the
case assumption and (b), we have φwi ≥ φwj ≥ wg.
Therefore φwi ≥ wh′ . Since either f = h′ or f E i, this
implies φwi ≥ wf , showing that the first inequality in
(b) is preserved. The second part of (b) follows again
from the choice of f and Lemma 5.1(iii).
Case B: There are no pending items for the algorithm.
It means that L′ contains all active items iDj, including
j. By the weight ordering assumption and the second
part of (b) this implies that L′ = M ′. Since the
adversary collects an item and the algorithm does not,
e = |D| − |M | increases by 1, so we also need to add an
item to E. Let b be the minimum-weight item in E′.
We do this: we remove j from M ′ and from L′ and
we move b from E′ to E. Using the choice of b and
(d) we have wj ≥ φwb, so φ∆w(L) + ∆w(M ′) =
0 + (−wj) = −φwj + wj/φ ≥≥ −φwj + 0 + wb =
φ∆w(L′) + ∆w(M) + ∆w(E), and thus (5.2) holds. By
the choice of j and e as the minimum items in L′ and
E′, respectively, invariants (b) and (d) are preserved. In
(c), j moves from L′ to D, and b moves from E′ to E,
so the right-hand side does not change. ut

Theorem 5.1. Algorithm MarkAndPick is φ-
competitive for dynamic queues if item weights
are non-decreasing.

Proof. By the invariants of Lemma 5.2, at each time
step it holds that φw(Lt) ≥ [φw(L′t)−w(M ′

t)]+w(Mt)+
w(Et) ≥ 0+[w(Dt−Et−E′t)+w(L′t)]+w(Et) = w(Dt)+
w(L′t) − w(E′t) ≥ w(Dt) + w(M ′

t)/φ − w(E′t) ≥ w(Dt),
and the φ-competitiveness follows. ut

6 Lower Bounds

As the item collection problem is a generalization of
the buffer management problem, we immediately get
a lower bound of φ [3, 6] for the competitive ratio of
any deterministic algorithm. However, for our problem
the proof can be substantially simplified: Start with
two items, a C b, with weights wa = 1 and wb = φ.
If the algorithm chooses b, the adversary chooses a,
deletes it, and collects b in the next step, so the ratio
is (wa + wb)/wb = (1 + φ)/φ = φ. If the algorithm
chooses a, the adversary chooses b and deletes both
items, so the ratio is wb/wa = φ again.
Lower bound of 1.63. In the remainder of this sec-
tion, we show how to improve the lower bound to 1.63.
Our lower bound works even in the decremental case,
however, for simplicity reasons, we show it first for the
general case. The proof is by presenting an adversary’s
strategy that forces any deterministic online algorithm
A to gain less than 1/1.63 times the adversary’s gain.

Adversary’s strategy. Note that since the algorithm
is deterministic, the adversary knows the moves of the
algorithm in advance. In particular, we can specify the
items he collects at the end.

We assume that the items appear gradually, so
that at each step the algorithm has at most three
items to choose from. Fix some n ≥ 2. To simplify
notation, in this section we refer to items simply by their
weight, thus below “zi” denotes both an item and its
weight. The instance consists of a sequence of 2n items
1, z1, z2, . . . , z2n−2, z2n (note that no item is indexed by
2n− 1) such that

z2 C z4 C . . . C z2n−2 C z2nCz2n−3 C . . . C z3 C z1 C 1 ,

and 1 > z1 > z2 > . . . >z2n−3 > z2n−2 > z2n > 0 .

The even- and odd-numbered items in this sequence
form two roughly geometric sequences. In fact, z2i is
only slightly smaller than z2i−1, for all i = 1, . . . , n− 1.

Initially, items z2 C z1 C 1 are present. In step
i = 1, 2, . . . , n−1, the adversary maintains the invariant
that the active items are z2i C z2i−1 C . . . C 1, of which
only three items z2i, z2i−1 and 1 are pending for A
(i.e. A already collected z2i−3, . . . , z1). The adversary’s
move depends now on what A collects in this step:

(i)A collects z2i. Then the adversary ends the game by
deleting all active items. In this case the adversary
collects i heaviest items: 1, z1, z2, z3, . . . , zi−1.

(ii)A collects 1. The adversary ends the game by delet-
ing x2i and x2i−1. This leaves A with no pending
items, and the adversary can now collect A’s items
one by one. Overall, in this case the adversary col-
lects 2i heaviest items: 1, z1, z2, . . . , z2i−2, z2i−1.

(iii) A collects z2i−1. In this case the game continues.
If i < n− 1, the adversary deletes z2i, inserts z2i+2

and z2i+1 into the current list (according to the
order defined earlier), and the game proceeds to
step i + 1. The case i = n − 1 is slightly different:
here the adversary only inserts the last item z2n

before proceeding to step n (described below).

If the game reaches step n, A has two pending
items, z2n and 1. In this step, the adversary behavior is
similar to previous steps: if A collects z2n, then the
adversary deletes the whole sequence and collects n
heaviest items: 1, z1, z2, z3, . . . , zn−1. If A collects 1,
the adversary deletes zn, leaving A without pending
items, and allowing the adversary to collect the whole
sequence.

Lemma 6.1. Suppose that there is a sequence
1, z1, . . . , z2n−2, z2n, and a constant R, such that
for all 0 ≤ j < n it holds that

R · (1 +
∑j

i=1 z2i−1) ≤ 1 +
∑2j+1

i=1 zi ,

R · (z2j+2 +
∑j

i=1 z2i−1) ≤ 1 +
∑j

i=1 zi .

Then there is no R-competitive deterministic online
algorithm.

The lemma is clear from the description of the
strategy given earlier, since the sides of the inequalities
above represent the gains of the adversary and the
algorithm in various steps. Additionally, the lemma
holds even if all the items are inserted at the beginning.
To achieve this, we slightly modify the adversary’s
strategy: all the items are present at the beginning, and
whenever A deviates from the choices (i), (ii), (iii), it
collects an item lighter than z2i, and thus the adversary
can finish the game as in Case (i). Lemma 6.1 and
straightforward calculations for n = 3 (6 items) yield
the following.

Theorem 6.1. There is no deterministic online algo-
rithm for dynamic queues (even for the decremental
case) with competitive ratio smaller than 1.6329.

A natural question arises how much this bound can
be improved with sequences {zi} of arbitrary length.
For n = 5 (10 items), one can obtain R = 1.6367 . . ., and
our experiments indicate that the corresponding ratios
tend to ≈ 1.6378458, so the improvement is minor.
Memoryless algorithms. Lower bounds can be
improved for memoryless algorithms, i.e. algorithms
that decide which item to collect based only on the
weights of their pending items.

Theorem 6.2. No deterministic memoryless algorithm
has competitive ratio smaller than 2.

Theorem 6.3. No randomized memoryless algorithm
has competitive ratio smaller than e

e−1 against an
adaptive-online adversary.

References

[1] Meteor burst communications. http://en.

wikipedia.org/wiki/Meteor burst communications.
[2] WiMAX. http://en.wikipedia.org/wiki/WiMAX.
[3] N. Andelman, Y. Mansour, and A. Zhu. Competitive

queueing policies in QoS switches. In Proc. 14th
Symp. on Discrete Algorithms (SODA), pages 761–770.
ACM/SIAM, 2003.

[4] B. Birnbaum and C. Mathieu. On-line bipartite match-
ing made simple. SIGACT News, 39(1):80–87, 2008.

[5] F. Y. L. Chin, M. Chrobak, S. P. Y. Fung, W. Jawor,
J. Sgall, and T. Tichý. Online competitive algorithms
for maximizing weighted throughput of unit jobs. Jour-
nal of Discrete Algorithms, 4:255–276, 2006.

[6] F. Y. L. Chin and S. P. Y. Fung. Online scheduling for
partial job values: Does timesharing or randomization
help? Algorithmica, 37:149–164, 2003.

[7] M. Englert and M. Westerman. Considering sup-
pressed packets improves buffer management in QoS
switches. In Proc. 18th Symp. on Discrete Algorithms
(SODA), pages 209–218. ACM/SIAM, 2007.

[8] B. Hajek. On the competitiveness of online scheduling
of unit-length packets with hard deadlines in slotted
time. In Conference in Information Sciences and
Systems, pages 434–438, 2001.

[9] B. Kalyanasundaram and K. Pruhs. An optimal deter-
ministic algorithm for online b-matching. Manuscript,
1996.

[10] A. Kesselman, Z. Lotker, Y. Mansour, B. Patt-Shamir,
B. Schieber, and M. Sviridenko. Buffer overflow man-
agement in QoS switches. SIAM J. Comput., 33:563–
583, 2004.

[11] A. Kesselman, Y. Mansour, and R. van Stee. Improved
competitive guarantees for QoS buffering. Algorith-
mica, 43:63–80, 2005.

[12] F. Li, J. Sethuraman, and C. Stein. An optimal
online algorithm for packet scheduling with agreeable
deadlines. In Proc. 16th Symp. on Discrete Algorithms
(SODA), pages 801–802. ACM/SIAM, 2005.

[13] F. Li, J. Sethuraman, and C. Stein. Better online buffer
management. In Proc. 18th Symp. on Discrete Algo-
rithms (SODA), pages 199–208. ACM/SIAM, 2007.

[14] A. Mehta, A. Saberi, U. Vazirani, and V. Vazirani.
Adwords and generalized online matching. J. ACM,
54:22, 2007.

A Lower Bound on the Algorithm
PrudentMark

In this section, we show that the analysis of algorithm
PrudentMark is nearly tight: for any choice of α, β ∈
(0, 1), the competitive ratio of our algorithm is no better
than 1.894. We also remark that if either α = 0 or α = 1
or β = 0 or β = 1, the competitive ratio is no less than
2. The proof is by presenting two instances, so that for
any choice of α, β ∈ (0, 1), the algorithm’s ratio on at
least one of those instances will exceed 1.894.

y0

y2
y1

ynyn-1

. .
 .

x0

x2
x1

xn

xn-1

. .
 .

1

α
β

βn-2

βn-1

βn

y0

y2

y1

yn

yn-1

x1

xn-2

1

α
αβ

αβn-1
βn
αβn

βn-1

x0
β

. .
 .

. .
 .

xn-1

Figure 3: The instances I1 (left) and I2 (right) used in
the lower bound.

Instance I1. Choose a large integer n and fix some
very small κ > 0, say κ = (αβ)n/n. The first instance
I1 has 2n+2 items y0 Cy1 C . . .Cyn Cx0 Cx1 C . . .Cxn,
with weights wxi = βn−i for i ≤ n, wyi = βn−i − κ for
i < n, and wyn = α−κ. At step 1 the adversary releases
items x0, x1 and y0. At each step i = 2, 3, . . . , n, the
adversary releases items xi and yi−1.

In each step i = 1, . . . , n, the algorithm marks xi

and collects xi−1, (indeed, all items before xi−1 are
lighter than βwxi = βn−i+1), and the adversary collects
yi−1. After step n, the algorithm has collected x0,
marked and collected x1, x2, . . . , xn−1 and marked xn.
The adversary has collected y0, y1, . . . , yn−1. Before
step n + 1 all items from y0 to yn−1 are deleted and

item yn is released. Since wyn < αwxn , the algorithm
collects xn. The adversary collects yn and deletes it.
After this step, the algorithm has no more items to
collect, while the adversary can now collect all the
items x0, x1, . . . , xn. The total gain of the algorithm
is

∑n
i=0 xi =

∑n
i=0 βi ≤ 1/(1 − β). The total gain of

the adversary is
∑n

i=0(xi + yi) =
∑n

i=0 βi +
∑n

i=1(β
i −

κ) + α − κ = (1 + β)/(1 − β) + α − O(βn). Therefore,
the ratio is at least R1(α, β) = 1 + α + β−αβ−O(βn).

Instance I2. We choose n and κ as before. The
second instance has 2n + 2 items x0 C y0 C x1 C y1 C
. . .Cxn−1 Cyn−1 Cyn, where the weights are wxi = αiβ
for i = 0, 1, . . . , n, wyi = αi−1 for i = 1, 2, . . . , n,
and wy0 = 1 − κ. Items y0, y1, . . . , yn and x0 are
released at the beginning. The adversary maintains the
invariant that right before step i items yi−1, yi, . . . , yn

and xi−1 are active, by collecting yi−1 in step i and
deleting yi−1 and xi−1 and releasing xi after step i.
This way in step i the algorithm will mark yi (because
wyi ≥ αwyi−1) and collect xi−1. The algorithm’s total
gain is

∑n−1
i=0 wxi =

∑n−1
i=0 βαi ≤ β/(1 − α). The

total adversary gain is
∑n−1

i=0 wyi = 1− κ +
∑n−2

i=0 αi =
(2−α)/(1−α)−O(αn). Therefore the ratio is at least
R2(α, β) = (2− α)/β −O(αn).

Lower bound. For any choice of α and β
the ratio of our algorithm is at least R(α, β) =
max {R1(α, β), R2(α, β)}. For n → ∞, R(α, β) con-
verges to

R∗(α, β) = max {1 + α + β − αβ, (2− α)/β}.

For fixed β, the first quantity increases with α whereas
the second one decreases. Therefore the minimum of
R∗(α, β) will be realized when the quantities in the
maximum are equal. Solving this equation, we get α =
(β2+β−2)/(β2−β−1), and plugging it into the formula
above, we get the ratio (β−3)/(β2−β−1). By routine
calculus, this expression is minimized for β = 3 −

√
5,

yielding the lower bound of 1 + 2
√

5/5 ≈ 1.8944 on the
competitive ratio of PrudentMark.

B Proof of Lemma 4.1—FIFO upper bound

Proof of Lemma 4.1. Note that for e 6= h we may assume
that we = βwh: the weight of this item is calculated in
the gain of EFH (with coefficient 1) and the adversary
may have collected this item or gained credit for it.
Thus minimizing we maximizes the competitive ratio.
Likewise, we may assume that wf = ξwh, if f 6= h.

We first prove, that we can deal with increasing the
partial credit to full credit in each step (E). Define the
adjusted adversary a-gain to be his gain for his first item
a plus the change of the credit on the item ê collected
in step (E) of the last stage.

Fact B.1. The adjusted adversary a-gain is is at most
max(βwh, wa).

Proof. Let ê and ĥ be the item collected by EFH and
the heaviest item from step (E) of the last stage. If ê
is not pending for the adversary then it has no credit,
so the claim is obvious. It’s also obvious if ê has full
credit. The only case we need to consider then is when
ê is special.

If aD ê, we simply drop the partial credit on ê, and
the adjusted gain for a is trivially at most wa.

If a C ê then we pay 1
3wê ≤ 1

3βwê to increase the
partial on ê credit to full credit. Since wa ≤ βwê the
adjusted a-gain is at most βwê + 1

3βwê = 4
3βwê ≤

4
3αβwh = βwh, where the last inequality follows from
the assumption on the special item. ut

As βwh is the smallest upper bound on wa, wb, wc

we ever use in our analysis, by the claim above, we
can ignore the partial credit increase to full credit when
bounding the adversary’s amortized gain in the analysis,
and below we will simply count the adversary gain for
a towards his amortized gain, instead of the adjusted
a-gain.

Case 1: EFH collected 1 item in the stage.

Case 1.1: e = h. If a C h, then wa ≤ βwh and the
adversary gains credit for h. Hence the competitive
ratio is at most

wh + βwh

wh
= 1 + β ≈ 1.576 < R .

On the other hand, if a D h, then wa ≤ wh and
the adversary gains no credit. Thus the ratio is at
most 1.

Case 1.2: h is not pending in (F), because it was
deleted by the adversary. Then wa ≤ wh, the
adversary gains no credit and the ratio is at most
1
β = R.

Case 1.3: αwh′ > wh.

Case 1.3.1: a C e. Then wa ≤ βwh and e is a
special item, thus given only 2

3βwh of credit.
Thus the competitive ratio is at most:

βwh + 2
3βwe

we
≤

2
3βwh + βwh

βwh
=

5
3

< R .

Case 1.3.2: a D e. As wa ≤ wh and the adversary
gains no credit, the ratio is at most 1

β = R.

Case 2: EFH collected 2 items in the stage.

Case 2.1: f = h. EFH collects e and h.

Case 2.1.1: b C e. Then wa ≤ βwh and wb ≤ βwh

and the adversary gets credit for e and h. The
ratio is at most

2βwh + βwh + wh

βwh + wh
=

3β + 1
β + 1

= 1 +
2β

β + 1
≈ 1.731 < R .

Case 2.1.2: e E b C h. Then wa ≤ ξwh and
wb ≤ ξwh and the adversary gains credit for
f . Thus the ratio is at most

wh + 2ξwh

we + wh
≤ 1 + 2ξ

1 + β
≈ 1.609 < R .

Case 2.1.3: h E b. Then wa ≤ wh and wb ≤ wh′ ≤
wh/α and the adversary gains no credit. Thus
the competitive ratio is at most

wh + 1
αwh

we + wh
≤

1 + 1
α

β + 1
≈ 1.481 < R .

Case 2.2: h is not pending in (H), because it was
deleted by the adversary. Then wa ≤ wh and
wb ≤ wh′ ≤ wh/α and the adversary gains no
credit. Thus the ratio is at most

wh + 1
αwh

we + wf
≤

1 + 1
α

β + ξ
=

1 + 1
α

β + β
α

=
1
β

= R .

Case 2.3: αwh′′ > wh.

Case 2.3.1: bC e. Then wa ≤ βwh and wb ≤ βwh.
Item e becomes a special and so the adversary
gains 2

3βwh credit for e. Then the ratio is at
most

wf + 2βwh + 2
3we

we + wf
≤

βwh + ξwh + 5
3βwh

βwh + ξwh

=
8
3β + ξ

β + ξ
=

4β
7
3β

=
12
7

≈ 1.714 < R .

Case 2.3.2: e E b C f . Then wa ≤ ξwh and
wb ≤ ξwh and the adversary gains credit for
f . Hence the ratio is at most

3ξwh

βwh + ξwh
≤ 4β

7
3β

=
12
7
≈ 1.714 < R .

Case 2.3.3: f E b. Then wa ≤ wh and wb ≤
wh′ ≤ wh/α and the adversary gains no credit.
Hence the ratio is at most

wh + 1
αwh

βwh + ξwh
=

1
β

= R .

Case 3: EFH collected 3 items in the stage.

Case 3.1: c C e. Then wa ≤ βwh, wb ≤ βwh and
wc ≤ βwh. The adversary also gets credit for e, f
and h. Thus the ratio is at most

3βwh + we + wf + wh

we + wf + wh
= 1 +

3βwh

we + wf + wh

≤ 1 +
3β

β + ξ + 1
= R .

Case 3.2: e E c C f . Then wa ≤ ξwh, wb ≤ ξwh and
wc ≤ ξwh. The adversary also gains credit for f
and h. Thus the ratio is at most

3ξwh + wf + wh

we + wf + wh
=

4ξ + 1
β + ξ + 1

= R .

Case 3.3: f E c C h. Then wa ≤ wh, wb ≤ wh and
wc ≤ wh. The adversary also gains credit for h.
Thus the ratio is at most

4wh

we + wf + wh
=

4
β + ξ + 1

≈ 1.707 < R .

Case 3.4: hE c. Then wa ≤ wh, wb ≤ wh′ ≤ wh/α and
wc ≤ wh′′ ≤ wh/α. The adversary gains no credit.
Hence the ratio is at most

wh + 2
αwh

we + wf + wh
=

1 + 2
α

β + ξ + 1
≈ 1.565 < R .

ut

C Lower Bound for EFH Analysis

In this section, we prove that the analysis of the algo-
rithm EFH is essentially tight even when the adversary
does not add items to the queue.

Lemma C.1. For any choice of parameters β ≤ ξ for
the algorithm EFH, its competitive ratio is at least
2(
√

13 − 1)/3 ≈ 1.737 even without insertions of new
elements.

Proof. Consider three instances. In the first instance,
we have a C b with weights wa = β, wb = 1. EFH
collects a, while the adversary collects b and deletes the
whole sequence. The ratio is R1 = 1

β .
In the second instance, a C b C c C d C e C f , with

wa = wb = wc = β − ε, wd = β, we = ξ, wf = 1. In
the first three steps EFH collects d, e and f , while the
adversary collects a, b and c. Right after the third step
the adversary deletes a, b and c, and in the remaining
steps collects d, e and f . The ratio is arbitrarily close
to R2 = 4β+ξ+1

β+ξ+1 .

In the third instance, a C b C c C d C e C f , with
wa = β, wb = wc = wd = ξ − ε, we = ξ, wf = 1. In
the first three steps EFH collects a, e and f , while the
adversary collects b, c and d. Right after the third step
the adversary deletes b, c and d, and in the remaining
steps collects e and f . The ratio is arbitrarily close to
R3 = 4ξ+1

β+ξ+1 .
If β > 3

4 , it holds that

R2 =
4β + ξ + 1
β + ξ + 1

= 1 +
3β

β + ξ + 1
> 1 +

9
4

7
4 + ξ

≥ 1 +
9
4

7
4 + 1

= 1 +
9
11

= 1.818 . . .

On the other hand, if β ≤ 3
4 , by setting ξ = 4

3β we
obtain

R2 = R3 =
16β + 3
7β + 3

,

minimizing the maximum of R2 and R3, as the former
is a decreasing and the latter an increasing function of ξ,
while R1 does not depend on ξ. Likewise, with ξ = 4

3β,
R1 is a decreasing and R2 = R3 an increasing function
of β, so their maximum is minimized when R1 = R2 =
R3 holds. This gives the equation 16β2 − 4β − 3 = 0,
with a sole positive solution β = (

√
13 + 1)/8 and

ξ = 4
3β = (

√
13 + 1)/6. These are the values we used in

the algorithm, and they yield the competitive ratio of
2(
√

13− 1)/3 ≈ 1.737.
Note that adding further steps within a stage with

parameter for the third step at least as large as ξ would
not change EFH’s choices in any step. ut

D Upper Bound for Non-Decreasing Weights

To prove lemma 5.2 we first need to show couple lemmas
on set dominance.

For any set T and a number u, let]u(T) =
|{t ∈ T : t ≥ u}|. We show that the majorization can
be described in terms of]u. The following lemma is
routine and we omit the proof.

Lemma D.1. The following three conditions are equiv-
alent: (i)X � Y , (ii) There is an injection f : Y → X
such that f(y) ≥ y for all y. (iii)For every x we have
]x(X) ≥]x(Y).

Using those alternative characterizations of domi-
nance relation the proof of Lemma 5.1 now easily fol-
lows.

Proof of Lemma 5.1. Parts (i) and (ii) are straightfor-
ward. Let x′ = max {z ∈ Z −X : z ≤ y}. It is sufficient
to show (iii) for x = x′. We show it proving that the
definitionD.1(iii) holds.

For u ≤ x′, since X � Y , we have]u(X ∪ x′) =
]u(X) + 1 ≥]u(Y) + 1 =]u(Y ∪ y). For u > y,
we have]u(X ∪ x′) =]u(X) ≥]u(Y) =]u(Y ∪ y).
Suppose x′ < u ≤ y. Since y ∈ Z − Y and X ∩ [u, y] =
Z∩[u, y], we have |X∩[u, y]| > |Y ∩[u, y]|, and therefore
]u(X ∪ x′) =]u(X) ≥]u(Y) + 1 =]u(Y ∪ y). ut

E Lower Bounds

Proof of Theorem 6.1. We now exhibit a sequence of
6 items for which Lemma 6.1 holds with R ≈ 1.63. To
simplify notation, we rename the items: z2, z4, z6, z3, z1

as x, y, z, u, v, respectively. Otherwise we follow the
aforementioned idea.

By Lemma 6.1, we want to find numbers x, y, z, u, v
such that 0 < z < y < u < x < v < 1 and a maximal R
for which:

R · x ≤ 1
R · 1 ≤ 1 + v

R · (v + y) ≤ 1 + v

R · (1 + v) ≤ 1 + v + x + u

R · (v + u + z) ≤ 1 + v + x

R · (1 + v + u) ≤ 1 + v + x + u + z

We can solve it by replacing inequalities by equations,
and after doing substitutions, the problem reduces to
finding a solution of a polynomial equation x5 + x4 +
5x3 − x2 − 1 = 0. This polynomial has exactly one real
root, x = 0.61238 . . ., which yields R = 1.6329 ut

Proof of of Theorem 6.2. Fix a memoryless algorithmA.
We give an adversary’s strategy where the adversary’s
gain is 2− o(1) times A’s gain.

Pick large integers n and T � n, and let X =
{x0, . . . , xn} where wxi = 1 + i

n for i = 0, 1, . . . , n. The
adversary maintains the invariant that at each step A’s
pending set is X, with the items ordered by increasing
value. Suppose that for this pending set A collects some
item xk.

If k = 0, the adversary collects item xn, deletes all
items, inserts copies of all items from X again into the
queue, and repeats the process T times. A’s gain is
Twx0 = T while the optimum gain is Twxn = 2T , so
the ratio is 2.

Suppose now that k ≥ 1. In this case, the adversary
collects xk−1, deletes all items x0, . . . , xk−1 for i =
0, 1, . . . , k−1 and inserts new copies of items x0, . . . , xk.
This process is repeated T times. After T steps, the
adversary collects the remaining uncollected items, in
particular, all T copies of item xk. A can of course
collect the remaining pending items. The value collected

by A is at most Twxk
+2(n+1) = T (1+k/n)+2(n+1),

while the value collected by the adversary is at least
T (wxk−1 + wxk

) = T (2 + (2k − 1)/n). So with T = n3

and n →∞ the ratio approaches 2. ut

Proof of Theorem 6.3. Fix some online memoryless
randomized algorithm A. Recall that by a memoryless
algorithm we mean an algorithm that makes a decision
on which item to collect based only on the weights of
the pending items.

We consider the following scheme. Let a > 1 be
a constant which we specify later and n be a fixed
integer. At the beginning, the adversary inserts items
a0, a1, . . . , an. (To simplify notation, in this proof we
identify items with their weights.) In our construction
we assure that in each step, the list of items which are
pending for A is equal to (a0, a1, . . . , an). Since A is
memoryless, in each step it uses the same probability
distribution (qj)n

j=0, where qj is the probability of
collecting item aj . As the algorithm always makes a
move,

∑n
i=0 qi = 1.

We consider n + 1 strategies for an adversary,
numbered 0, 1, . . . , n. The k-th strategy is as follows: in
each step collect ak, delete all items a0, a1, . . . , ak, and
then issue new copies of all these items. Additionally,
if the algorithm collected aj for some j > k, then the
adversary issues a new copy of aj as well. This way,
in each step exactly one copy of each aj is pending for
the algorithm, while the adversary accumulates copies
of the items aj for j > k.

This step is repeated T � n times, and after the
last step the adversary collects all uncollected items.
Since T � n, we only need to focus on the expected
amortized profits in a single step.

We look at the gains of A and the adversary in a
single step. If the adversary chooses strategy k, then
it gains ak. Additionally, at the end it collects the
item collected by the algorithm if this item is greater
than ak. Thus, its amortized expected gain in single
step is ak +

∑
i>k qia

i. The expected gain of A is∑
i qia

i.
For any probability distribution (qj)n

j=0 of the algo-
rithm, the adversary chooses a strategy k which maxi-
mizes the competitive ratio. Thus, the competitive ratio
of A is is at least

R = max
k

{
ak +

∑
j>k qja

j∑
j qjaj

}

≥
∑

k

vk

ak +
∑

j>k qja
j∑

j qjaj
,

for any coefficients v0, . . . , vn ≥ 0 such that
∑

k vk = 1.
Note that the latter term corresponds to the ratio forced

by a randomized adversary who chooses k with probabil-
ity vk. In particular, we may choose vk to be the value
for which the competitive ratio of such a randomized
adversary strategy against any deterministic algorithm
is the same. After solving the set of equations we get

vk =

{
1
M an−k(a− 1) if k < n
1
M (a− n(a− 1)) if k = n

,

where M = an+1 − n(a− 1). For these values of vk we
obtain

MR
∑

j

qja
j

≥
∑

k

Mvkak +
∑

k

Mvk

∑
j>k

qja
j

=
n−1∑
k=0

Mvkak + Mvnan +
∑

j

qja
j
∑
k<j

Mvk

= an+1
∑

j

qja
j .

Therefore, R ≥ an+1/M . This bound is maximized for
a = 1 + 1/n, in which case

R ≥
(
1 + 1

n

)n+1(
1 + 1

n

)n+1 − 1
n→∞−→ e

e− 1
.

ut

