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Abstract

In the incremental version of the well-known k-median problem the objective is to compute
an incremental sequence of facility sets F1 ⊆ F2 ⊆ .... ⊆ Fn, where each Fk contains at most k
facilities. We say that this incremental medians sequence is R-competitive if the cost of each Fk

is at most R times the optimum cost of k facilities. The smallest such R is called the competitive
ratio of the sequence {Fk}. Mettu and Plaxton [6, 7] presented a polynomial-time algorithm
that computes an incremental sequence with competitive ratio ≈ 30. They also showed a lower
bound of 2. The upper bound on the ratio was improved to 8 in [5] and [4]. We improve both
bounds in this paper. We first show that no incremental sequence can have competitive ratio
better than 2.01 and we give a probabilistic construction of a sequence whose competitive ratio
is at most 2 + 4

√
2 ≈ 7.656. We also propose a new approach to the problem that for instances

that we refer to as equable achieves an optimal ratio of 2.

1 Introduction

The k-median problem is one of the most studied facility location problems. We are given two
sets: a set C of customers and a set F of n facilities, with a metric function d that specifies the
distance dxy between any two points x, y ∈ C ∪ F . The cost of a facility set F ⊆ F , denoted by
cost(F ), is defined as the minimum sum, over all customers c ∈ C, of dcF , where dcF = minf∈F dcf

is the minimum distance from c to F . Given k, the objective is to compute a set of k facilities with
minimum cost.

Not surprisingly, the k-median problem is NP-hard. A number of polynomial-time approxima-
tion algorithms have been proposed, with the latest one, by Arya et al. [1, 2] achieving the ratio of
3 + ε, for any ε > 0.

Mettu and Plaxton [6, 7] introduced the incremental medians problem, where the permitted
number k of facilities is not specified in advance. Starting with the empty set, an algorithm
receives authorizations for new facilities over time, and after each authorization it is allowed to
add another facility to the existing ones. As a result, such an algorithm produces an incremental
sequence of facility sets F1 ⊆ F2 ⊆ ... ⊆ Fn, where |Fk| ≤ k for all k. This sequence {Fk} is said
to be R-competitive if cost(Fk) is at most R times the optimum cost of k facilities, for each k. The
smallest such R is called the competitive ratio of {Fk}.

Mettu and Plaxton [6, 7] gave a polynomial-time algorithm that computes such an incremental
sequence with competitive ratio ≈ 30. This result is quite remarkable, for there is no apparent
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reason why an incremental sequence {Fk} of facility sets, with each cost(Fk) within a constant
factor of the the optimum, would even exist – let alone be computed efficiently.

It is thus natural to address the issue of existence separately from computational complexity,
and this is what we focus on in this paper. As shown by Mettu and Plaxton [6, 7], no ratio better
than 2 is possible, that is, for each ε > 0 there is a metric space where each incremental facility
sequence has competitive ratio at least 2 − ε. The upper bound on the ratio was improved to 8
by Lin et al. [5] and, independently, by Chrobak et al. [4]. In [5], the authors also show that a
16-competitive incremental median sequence can be computed in polynomial time.
Our results. We improve both the lower and upper bounds for incremental medians. For the
lower bound, we show that, in general, no competitive ratio better than 2.01 is possible. We also
prove, via a probabilistic argument, that each instance has an incremental medians sequence with
competitive ratio at most 2 + 4

√
2 ≈ 7.656.

In numerical terms, the improvement of the lower bound is mostly symbolic, as it implies that
2 is not the “right” ratio. For the upper bound, our result shows that the doubling method from
[5, 4] (see also [3]) is not optimal – even though it gives the optimal ratio of 4 for the closely related
“resource augmentation” version of incremental medians [4]. As discussed in Section 6, we believe
that our methods can be refined to further improve both the lower and upper bounds.

In addition, we consider a special case of the incremental medians problem where for any fixed
value of k, each customer has the same distance to the optimal k-median. We refer to such instances
as equable. (See Section 5 for a formal definition.) For this case, we show a construction of a 2-
competitive incremental medians sequence, matching the lower bound from [6, 7]. Our method
for this case is very different from previous constructions and we believe that it will be useful in
improving the upper bound for general spaces. In fact, this result implies that if there is a constant
γ ≥ 1 such that for each fixed k all customers’ optimal costs are within factor γ of each other, then
our construction achieves ratio at most 2γ – improving our own bound above if γ < 1 + 2

√
2.

2 Preliminaries

Let (F , C) be an instance of the medians problem, where F is a set of n facilities, C is a set of
customers, and F∪C forms a metric space. By dxy or d(x, y) we denote the distance between points
x, y. If Y is a set, we also write dxY = miny∈Y dxy for the minimum distance from x to Y . For a
facility set F ⊆ F , denote by cost(F ) the cost of F , that is

∑
x∈C dxF . We will simplify the notation

for cost when F has small cardinality by omitting set notation and writing cost(x) = cost({x}),
cost(x, y) = cost({x, y}), etc., for x, y ∈ F .

For a point x and a set Y , denote by ΓY (x) the point y ∈ Y that is closest to x, that is
dxy = dxY (if this point is not unique, then break the tie arbitrarily.) If X is a set, we also define
ΓY (X) = {ΓY (x) | x ∈ X}. Clearly, |ΓY (X)| ≤ |X|. Note that if F is a facility set and X is a set
of customers, then ΓF (X) is exactly the set of facilities in F that serve customers in X if F is the
facility set under consideration.

By optk we denote the optimum cost of k facilities, that is

optk = min {cost(F ) | F ⊆ F and |F | = k}. (1)

By F ∗
k ⊆ F we will denote the optimal set of k facilities, that is, the k-median. (As before, ties are

broken arbitrarily.) Thus cost(F ∗
k ) = optk.
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Figure 1: Metric space used in the lower bound. The varying lengths and rectangle sizes represent,
approximately, relative distances and set cardinalities.

3 A New Lower Bound

In this section we prove our lower bound of 2.01 on the competitive ratio for incremental medians,
improving slightly the previous bound of 2 from [6, 7].

Theorem 1. There is an instance (C,F) for which no incremental median sequence has competitive
ratio smaller than 2.01.

Proof. In our construction, the set of customers is C = U ∪V ∪W , where U , V , W are disjoint sets
with |U |+ |V |+ |W | = n−3, for some large integer n. The set of facilities is F = {f, g, h}∪C. The
distances between customers and facilities are illustrated in Figure 1. A bi-directional edge between
a facility f , g or h and a set U , V or W signifies that this facility is connected to all customers in
this set by an edge of the indicated distance. Thus, for each set U , V , W , all customers in a set
have the same distance to each facility. For example, the distance from f to all u ∈ U is a, the
distance from h to all v ∈ V is b, etc. Other distances are measured along the shortest paths in the
graph represented in Figure 1. For instance, the distance from g to h is c′ + c + 2a, the distance
from f to any v ∈ V is 2a + b. The same rule applies, in particular, to any two customers from a
same set (they are not at distance 0 from one-another). For example, for v, v′ ∈ V with v′ 6= v, the
distance from v to v′ is 2b, for w,w′ ∈ W with w′ 6= w, the distance from w to w′ is 2min {c, c′}.

Since for k = n−3 the optimal cost is 0, the first n−3 facilities in any competitive incremental
sequence must be chosen from C. In fact, we will only use only three values of k: k = 1, 2 and n−3.

To prove that there is no incremental medians sequence with ratio better than R, we only need
to give some values a, b, c, c′, |U |, |V | and |W | such that:

min {cost(v), cost(w)} ≥ R · cost(f) and (2)
min {cost(u, u′), cost(u, v), cost(u, w)} ≥ R · cost(g, h) (3)

for any u, u′ ∈ U , v ∈ V and w ∈ W .
These inequalities imply the lower bound of R, because (2) implies that, for k = 1, to beat ratio

R we must pick some u ∈ U as the first facility, and (3) implies that, for k = 2, it is not possible
to add to u another facility and preserve ratio R.

In order to simplify calculations, we slightly modify the way we compute the costs. If x ∈
U ∪ V ∪W is chosen as a facility and it serves a customer at a point z 6= x from the same set U ,
V or W , then the cost of z is the length of the shortest path from z to x via one facility f , g, or
h, while the cost of z = x is 0. Our modification is that we will charge this z = x the cost of such
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a shortest path as well, that is, z cannot serve itself directly at cost 0. Thus, if there is a facility
at x ∈ W , then we will charge x the cost of 2 min {c, c′} to get to this facility; if x ∈ U , this cost
will be 2a, and if x ∈ V this cost will be 2b. Let cost′(·) denote this modified cost function. Note
that for any facility set F of constant cardinality, we have cost′(F ) = (1+Θ(1/n))cost(F ), since all
customers, except those located at the points of F , contribute the same cost to both cost functions;
thus for k = 1, 2 and n large enough, the two cost functions are essentially identical. Further, if
F ⊆ {f, g, h}, then cost′(F ) = cost(F ).

With this convention in mind, we set a = 5/4, b = 1, c = 211/100, c′ = 141/100, |U | = 295λ,
|V | = 25λ, and |W | = 149λ, for some large integer λ. (Thus n = 469λ+3.) Note that b ≤ a ≤ c′ ≤ c.

Fix any u, u′ ∈ U , with u 6= u′, v ∈ V and w ∈ W . Then, for k = 1 we have

cost(f) = |U |a + |V |(b + 2a) + |W |c = 776.64λ

cost′(v) = |U |(a + b) + |V |(2b) + |W |(b + 2a + c) = 1549.64λ

cost′(w) = |U |(a + c) + |V |(b + 2a + c) + |W |(2c′) = 1551.63λ

and for k = 2 we have

cost(g, h) = |U |a + |V |b + |W |c′ = 603.84λ

cost′(u, u′) = |U |(2a) + |V |(a + b) + |W |(a + c) = 1294.39λ

cost′(u, v) = |U |(a + b) + |V |(2b) + |W |(a + c) = 1214.39λ

cost′(u, w) = |U |(2a) + |V |(a + b) + |W |(2c′) = 1213.93λ

Then

min {cost′(v), cost′(w)}
cost(f)

=
2039
1014

> 2.01, and

min {cost′(u, u′), cost′(u, v), cost′(u, w)}
cost(g, h)

=
121393
60384

> 2.01.

This implies that inequalities (2), (3) hold with R = 2.01 for the modified cost function. But,
as we observed earlier, for any facility set F of cardinality k = 1, 2, we have cost′(F ) = (1 +
Θ(1/n))cost(F ). Therefore we can conclude that inequalities (2) and (3) will also hold if we take n
large enough, and the lower bound follows.

The lower bound proof above may seem mysterious, and a reader may wonder how did we
discover this specific space and strategy. In fact, we tried to prove an upper bound of 2 for the case
when k takes only values 1, 2 and n. In the course of this work, we isolated metric spaces for which
we were not able to prove the upper bound – essentially the same spaces as the one in Figure 1.
Then, by parametrizing the distances and set cardinalities, with a help of a computer program, we
were able to design the lower bound strategy above.

4 A New Upper Bound

In this section we construct an incremental medians sequence with competitive ratio R = 2 + 4
√

2.
First, we show that, given a facility set H we can find subsets F ⊆ G ⊆ H of specified sizes and of
appropriately small cost. We then use this result to construct our incremental medians sequence.
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Figure 2: Notation.

4.1 Choosing Two Nested Facility Sets

Let 1 ≤ k ≤ l ≤ m ≤ n. (Recall that n = |F| is the number of facilities.) Throughout this
section we consider three facility sets: H of cardinality m, U of cardinality k, and V of cardinality
l. Intuitively, U and V represent optimal k− and l− medians. We use a probabilistic argument to
show that there exist two sets F and G, with |F | = k, |G| = l and F ⊆ G ⊆ H, such that cost(F )
and cost(G) are bounded in terms of cost(U), cost(V ) and cost(H).

Lemma 2. Let 1 ≤ k ≤ l ≤ m ≤ n, and let U , V and H be facility sets with |H| = m, |V | = l and
|U | = k. Then there is a set T ⊆ V with |T | = k such that, denoting T̄ = V − T , we have

cost(ΓH(T )) + cost(ΓH(U ∪ T̄ )) ≤ 2 · cost(H) + 4 · cost(V ) + 2 · cost(U). (4)

Proof. We use a probabilistic argument, by defining a probability distribution on subsets T ⊆ V
and proving that inequality (4) holds in expectation.

Define a random mapping Φ : U → C, where Φ(u) is chosen uniformly from the set Cu =
{x ∈ C | ΓU (x) = u}. (If Cu = ∅, Φ(u) is undefined. Alternatively, one can simply remove this u
from U , perform the construction for k − 1 to get a set T with k − 1 facilities, and then simply
add an arbitrary facility to T .) In other words, Φ(u) is a random customer of u when U is the
facility set. Order arbitrarily the elements of V , and for any given Φ define TΦ as the subset of V
that consists of ΓV (Φ(U)) and k − |ΓV (Φ(U))| smallest elements of V (with respect to the chosen
ordering) that are not in ΓV (Φ(U)). Thus |TΦ| = k.

For each point x in C, let ux = ΓU (x), vx = ΓV (x) and hx = ΓH(x) be the points serving
x respectively in U , V and H. The corresponding distances from x are denoted ax = d(x, ux),
bx = d(x, vx) and cx = d(x, hx). Let also u′x = ΓH(ux) and v′x = ΓH(vx). (See Figure 2.)

We now temporarily fix the mapping Φ and a customer x ∈ C. To simplify notation, we write
TΦ = T and u = ux. Recall that, for a set F , by d(x, F ) = minf∈F dxf we denote the distance from
a point x to the nearest point in a set F . We claim that

d(x,ΓH(T )) + d(x,ΓH(U ∪ T̄ )) ≤ ax + 2bx + cx + aΦ(u) + 2bΦ(u) + cΦ(u). (5)

To prove the claim, we consider two cases, for vx ∈ T and vx ∈ T̄ .
Case 1: vx ∈ T̄ . This case is illustrated in Figure 3.
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Figure 3: The proof of (5) when vx ∈ T̄ . Dotted lines represent the initial estimates for d(x,ΓH(T ))
and d(x,ΓH(U ∪ T̄ )) while solid lines show the final estimates.
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Figure 4: The proof of (5) when vx ∈ T̄ . Dotted lines represent the initial estimates for d(x,ΓH(T ))
and d(x,ΓH(U ∪ T̄ )), while solid lines show the final estimates.

Since v′Φ(u) ∈ ΓH(T ), using the definition of v′Φ(u) and several applications of the triangle
inequality, we have d(x,ΓH(T )) ≤ d(x, v′Φ(u)) ≤ ax + d(u, vΦ(u)) + d(vΦ(u), v

′
Φ(u)) ≤ ax + [aΦ(u) +

bΦ(u)] + d(vΦ(u), hΦ(u)) ≤ ax + aΦ(u) + 2bΦ(u) + cΦ(u).
Since v′x ∈ ΓH(U ∪ T̄ ), using the definition of v′x and the triangle inequality, d(x,ΓH(U ∪ T̄ )) ≤

d(x, v′x) ≤ bx + d(vx, v′x) ≤ bx + d(vx, hx) ≤ 2bx + cx.
Combining the two bounds, we get

d(x,ΓH(T )) + d(x,ΓH(U ∪ T̄ )) ≤ ax + 2bx + cx + aΦ(u) + 2bΦ(u) + cΦ(u).

Case 2: vx ∈ T . This case is illustrated in Figure 4.
Since v′x ∈ ΓH(T ), using the triangle inequality and the definition of v′x, we have d(x,ΓH(T )) ≤

d(x, v′x) ≤ bx + d(vx, v′x) ≤ bx + d(vx, hx) ≤ 2bx + cx.
Since u′x ∈ ΓH(U∪T̄ ), using the definition of u′x = ΓH(u), we have d(x,ΓH(U∪T̄ )) ≤ d(x, u′x) ≤

ax + d(u, u′x) ≤ ax + d(u, hΦ(u)) ≤ ax + aΦ(u) + cΦ(u).
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Combining the two bounds we get

d(x,ΓH(T )) + d(x,ΓH(U ∪ T̄ )) ≤ ax + 2bx + cx + aΦ(u) + cΦ(u)

≤ ax + 2bx + cx + aΦ(u) + 2bΦ(u) + cΦ(u),

completing the proof of inequality (5).
From (5), for a fixed Φ we have

cost(ΓH(TΦ)) + cost(ΓH(U ∪ T̄Φ)) ≤
∑
u∈U

∑
x∈Cu

[
ax + 2bx + cx + aΦ(u) + 2bΦ(u) + cΦ(u)

]
≤ cost(H) + 2 · cost(V ) + cost(U)

+
∑
u∈U

|Cu| · [aΦ(u) + 2bΦ(u) + cΦ(u)]. (6)

For any facility set Z, we have cost(Z) =
∑

u∈U

∑
x∈Cu

d(x,Z) =
∑

u∈U |Cu| ·ExpΦ[d(Φ(u), Z)],
because Φ(u) is uniformly distributed in Cu. Applying it to Z = U , V and H, and using the
linearity of expectation, inequality (6) yields

ExpΦ

[
cost(ΓH(TΦ)) + cost(ΓH(U ∪ T̄Φ))

]
≤ cost(H) + 2 · cost(V ) + cost(U)

+
∑
u∈U

|Cu| · ExpΦ

[
aΦ(u) + 2bΦ(u) + cΦ(u)

]
= 2 · cost(H) + 4 · cost(V ) + 2 · cost(U).

This implies that there is a T = TΦ that satisfies the lemma.

Theorem 3. Let 1 ≤ k ≤ l ≤ m ≤ n. For any facility sets H, U and V with |U | = k, |V | = l,
|H| = m, there exist F ⊆ G ⊆ H with |F | = k, |G| = l such that

(i) cost(F ) ≤ cost(H) + 2 · cost(U) and

(ii) cost(G) ≤ cost(H) + 4 · cost(V ).

Proof. Let U ′ = ΓH(U) and V ′ = ΓH(V ) be the facilities in H that are closest to those in U and
V , respectively. Using the triangle inequality, it is not difficult to show (see [5, 4], for example)
that cost(U ′) ≤ cost(H) + 2 · cost(U) and cost(V ′) ≤ cost(H) + 2 · cost(V ).

Let T ⊆ V be the set from Lemma 2. Then either cost(ΓH(T )) ≤ cost(H) + 2 · cost(U) or
cost(ΓH(U ∪ T̄ )) ≤ cost(H) + 4 · cost(V ). In the first case, we take F = ΓH(T ) and G = V ′, and in
the second case we take F = U ′ and G = ΓH(U ∪ T̄ ). (If |F | < k or |G| < l, we can increase their
cardinalities by adding a sufficient number of elements of H while preserving the inclusion F ⊆ G.)
The theorem then follows from Lemma 2 and the bounds on cost(U ′) and cost(V ′).

4.2 Competitive Incremental Medians

Recall that n is the number of facilities, F ∗
j is the optimal j-median and optj = cost(F ∗

j ), for each
j = 1, 2, ..., n. Our objective is to construct an incremental medians sequence F1 ⊆ F2 ⊆ ... ⊆ Fn.

The general approach is similar to that in [5, 4]: we construct the sequence backwards, at each
step extracting a smaller set of facilities from among those selected earlier. These sets Fj will be
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constructed only for values of j in a predefined sequence {κ(a)} of indices, for which the optimal
costs increase exponentially with a. For the intermediate values of j, we simply let Fj to be Fκ(a),
where a is the smallest index for which κ(a) ≤ j.

The crucial difference between our method and the previous constructions is in how we extract
facilities from Fκ(a) to form Fκ(a+1). The algorithms in [5] and [4] select κ(a + 1) facilities in Fκ(a)

that are closest to those in the optimal set F ∗
κ(a+1). Instead, we use our probabilistic construction

from the previous section to simultaneously extract two facility sets next in the sequence, namely
Fκ(a+1) and Fκ(a+2), with Theorem 3 providing an upper bound on their costs.
Construction of incremental medians. Without loss of generality we can assume that optn = 1,
for otherwise we can normalize the instance by dividing all distances by optn. (If optn = 0, instead
of n, we can start the process with the largest n′ for which optn′ > 0.)

We use two parameters γ = 2 +
√

2/2 ≈ 2.71 and λ = 3
√

2/2 − 1 ≈ 1.16. We now define a
sequence of indices n = κ(0) ≥ κ(1) ≥ ... ≥ κ(h) = 1. For a = 0, 1, ..., let

κ(a) =
{

min {j | optj ≤ γa/2} if a is even
min {j | optj ≤ λγ(a−1)/2} if a is odd

and choose h to be the smallest a for which κ(a) = 1. Note that we allow some of the elements in
the sequence {κ(a)} to be equal.

We first define facility sets Fj for j = κ(0), κ(1), ..., κ(h). Initially, Fκ(0) = F , the set of all
facilities. Assume that Fκ(a) has been already defined for some even a, where 0 ≤ a ≤ h − 2. In
Theorem 3 let m = κ(a), H = Fκ(a), l = κ(a + 1), k = κ(a + 2), V = F ∗

κ(a+1) and U = F ∗
κ(a+2). We

then choose Fκ(a+2) ⊆ Fκ(a+1) ⊆ Fκ(a) such that

cost(Fκ(a+1)) ≤ cost(Fκ(a)) + 4optκ(a+1), and (7)
cost(Fκ(a+2)) ≤ cost(Fκ(a)) + 2optκ(a+2). (8)

The existence of such sets is guaranteed by Theorem 3; namely take Fκ(a+1) = G and Fκ(a+2) = F .
It still remains to address the special case when a = h − 1. In this case, we still can chose

a set Fκ(h) = Fκ(a+1) satisfying (7), by using k = l in Theorem 3. (Alternatively, we can take
Fκ(a+1) = ΓH(F ∗

κ(a+1)), for H = Fκ(a), as in [5, 4].)
Next, we extend the sequence to other values of j. If κ(a + 1) < j < κ(a), we simply let

Fj = Fκ(a+1). This completes the construction.

Theorem 4. The incremental sequence {Fj} constructed above is R-competitive, where R = 2 +
4
√

2 ≈ 7.656.

Proof. For each j = 1, ..., n, denote costj = cost(Fj). Using the bounds (7), (8), and the definition
of the sequence {κ(a)}, each value costκ(a) can be estimated as follows: if a is even, then costκ(a) ≤
2

∑a/2
b=0 optκ(2b) ≤ 2

∑a/2
b=0 γb, and if a is odd then costκ(a) ≤ costκ(a−1) + 4optκ(a) ≤ 2

∑(a−1)/2
b=0 γb +

4λγ(a−1)/2. Summing up the geometric sequences, we thus get

costκ(a) ≤


2γa/2+1

γ − 1
if a is even

2γ(a−1)/2+1

γ − 1
+ 4λγ(a−1)/2 if a is odd
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Fix some number of facilities j, and choose a such that κ(a+1) ≤ j < κ(a). We want to show that
costj ≤ R · optj . By the construction, Fj = Fκ(a+1), so costj = costκ(a+1). We have two cases.

Suppose first that a is even. By the choice of j and the definition of κ(a), we get optj > γa/2.
Since costj = costκ(a+1) ≤ 2γa/2+1/(γ − 1) + 4λγa/2, the ratio is

costj
optj

≤ 2γ

γ − 1
+ 4λ = R.

If a is odd, then by the choice of j and the definition of κ(a), we get optj > λγ(a−1)/2. Since
costj = costκ(a+1) ≤ 2γ(a+1)/2+1/(γ − 1), the ratio is

costj
optj

≤ 2γ2

(γ − 1)λ
= R,

completing the proof.

5 2-Competitive Incremental Medians for Equable Instances

In this section we present a construction of a 2-competitive incremental medians sequence for a
special case where, for any fixed value of k each customer has the same distance to the optimal
k-median.

More formally, we consider the following setting. Suppose (F , C) is an instance of the medians
problem with C ⊆ F and |C| = m. For each k = 1, 2, ...,m we are also given an “adversary”
k-median F ∗

k such that d(x, F ∗
k ) = δk for all x ∈ C, where δ1 > δ2 > ... > δm. Thus cost(F ∗

k ) = mδk

for all k. We will refer to this instance as an equable instance. We prove that there is an incremental
medians sequence F1 ⊆ F2 ⊆ ... ⊆ Fm that is 2-competitive against the adversary medians1, that
is cost(Fk) ≤ 2mδk for all k = 1, 2, ....,m.

The motivation for considering this version is two-fold. First, the original lower bound of 2 [6, 7],
as well as most of our own attempts to improve it, were based on equable distances. (The use of
such instances is natural, because their symmetry greatly reduces the complexity of reasoning about
an online algorithm’s behavior.) Our result shows that this approach will not work. Second, it also
shows that a ratio lower than that in Section 4 can be achieved if, for each k, the distances between
all customers and their facility in F ∗

k are sufficiently close to each other. Thus hard instances are
those where, for some values of k, the distances between customers and their facilities in F ∗

k vary
greatly.

Our method in this section is different from previous constructions of incremental medians,
including the one from Section 4. Unlike in these previous approaches, we construct the sequence
F1, F2, ..., Fm forward, maintaining an invariant ensuring that we not only do well at step k, but
also that we make good progress towards obtaining a low-cost l-median for all l > k.
Intuition. We start with a simple, although not quite correct, construction, and later we will
explain how to modify it to make it work. Imagine that we can order the customers x1, x2, ..., xm

such that, for each k, the first k customers x1, x2, ..., xk are served by different facilities in F ∗
k . For

1It is convenient here to consider this more general setting of adversary medians rather than the true optimal
medians, because optimal medians with the desired property would not exist for the values of k > m/2.
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any k define Fk = {x1, x2, ..., xk}. We claim that in this case we have cost(Fk) ≤ 2mδk. Indeed, if
x ∈ C is any customer, choose the point xj , j ≤ k, that is served by the same facility f in F ∗

k as x.
This xj must exist by the assumption about the sequence {xi}. Then d(x, xj) ≤ d(x, f)+d(f, xj) =
2δk, and the bound on cost(Fk) follows.

The problem with the argument above is that the sequence x1, x2, ..., xm with the required prop-
erty may not exist. By relaxing appropriately the condition on the xk’s, we obtain the construction
detailed below.
Incremental spanners. We introduce first an auxiliary combinatorial construction. Suppose that
for each k = 1, 2, ...,m we have a family Sk ⊆ 2C of k sets that forms a partition of C, that is, all
sets in Sk are disjoint and

⋃
A∈Sk

A = C. For a set X ⊆ C, define its k-span as

Spank(X) =
⋃
{A ∈ Si | i ≥ k and A ∩X 6= ∅}.

Note that X ⊆ Spank(X) for all k, and that Spank(X) ⊆ Spanj(X) for all j ≤ k. A set X ⊆ C is
called a k-spanner if Spank(X) = C. By the earlier observation, if X is a k-spanner then it is also
a j-spanner for any j < k.

A sequence X1 ⊆ X2 ⊆ ... ⊆ Xm is called an incremental spanner if for each k = 1, 2, ...,m,
|Xk| = k and Xk is a k-spanner. We now show how to construct an incremental spanner.

For X ⊆ C and any j = 1, 2, ...,m, let setscovj(X) be the collection of sets in Sj covered by the
j-span of X, that is

setscovj(X) = {A ∈ Sj | A ⊆ Spanj(X)}.

Note that |setscovj(X)| = j if and only if X is a j-spanner, because Sj is a partition of C.
We will construct sets ∅ = X0 ⊆ X1 ⊆ ... ⊆ Xm so that, for each k = 0, 1, 2, ...,m, we will have

|Xk| = k and the following invariant will hold:

|setscovj(Xk)| ≥ k, for all j = k, k + 1, ...,m. (9)

Initially, for k = 0, we set X0 = ∅, and (9) holds trivially. Suppose we have X0, X1, ..., Xk′ , for some
k′ < m and that (9) holds for k = 0, 1, ..., k′. This implies, in particular, that |setscovk′(Xk′)| = k′,
that is, Xk′ is a k′-spanner. Thus Xk′ is also a k-spanner for all k ≤ k′. Let l be the minimum
index for which Xk′ is not an l-spanner, that is C − Spanl(Xk′) 6= ∅. By the choice of l, we have
l > k′. Pick any x ∈ C −Spanl(Xk′) and take Xk′+1 = Xk′ ∪{x}. Clearly, |Xk′+1| = k′ +1, because
x /∈ Xk′ .

We now show that (9) holds for k = k′+1. By the choice of l, for j = k′+1, k′+2, ..., l−1, Xk′ is a
j-spanner. Therefore, for these values of j, Xk′+1 is a j-spanner as well, and thus |setscovj(Xk′+1)| =
j ≥ k′ + 1. We thus have that (9) holds for j = k′ + 1, k′ + 2, ..., l− 1 and k = k′ + 1. Consider any
j ≥ l ≥ k′ + 1. Let A ∈ Sj be the set for which x ∈ A. Since x ∈ C − Spanl(Xk′) ⊆ C − Spanj(Xk′),
we have A /∈ setscovj(Xk′). But now x ∈ Xk′+1, so A ∈ setscovj(Xk′+1) and, by induction, we get
|setscovj(Xk′+1)| ≥ |setscovj(Xk′)| + 1 ≥ k′ + 1. This completes the proof that our construction
preserves invariant (9).

By (9), for each k we have |setscovk(Xk)| ≥ k, and thus Xk is a k-spanner. We can conclude
then that X1, X2, ..., Xm is an incremental spanner.
Incremental medians. We now show how to use incremental spanners to construct incremental
medians. For k = 1, 2, ...,m, assign each customer x ∈ C to its closest facility f ∈ F ∗

k (that is,
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dxf = δk), breaking ties arbitrarily. Define Cf
k to be the set of customers assigned to f , and let

Sk = {Cf
k | f ∈ F ∗

k }. Then each Sk contains k sets and forms a partition of C. As we showed above,
for these partitions S1,S2, ...,Sm there exists an incremental spanner F1, F2, ..., Fm.

We claim that F1, F2, ..., Fm is 2-competitive against the adversary medians. Consider some
fixed k. Since Fk is a k-spanner, for each customer x ∈ C there is i ≥ k and f ∈ F ∗

i such that
x ∈ Cf

i and Cf
i ∩ Fk 6= ∅. Choose any y ∈ Cf

i ∩ Fk. Then d(x, Fk) ≤ dxy ≤ dxf + dyf = 2δi ≤ 2δk.
This implies that cost(Fk) ≤ 2mδk, and the claim follows.

Summarizing, we obtain the following result:

Theorem 5. Any equable instance of the medians problem has an incremental medians sequence
that is 2-competitive against the adversary medians.

6 Final Comments

We improved both the lower and upper bounds for incremental medians, from 2 to 2.01 and from
8 to 2 + 4

√
2 ≈ 7.656, respectively, thus proving that neither 2 nor 8 are the “right” bounds for

this problem. (By optimizing the parameters in Section 3 it is possible to improve the lower bound
slightly, to about 2.01053.) In addition to its own independent interest, closing or significantly
reducing the remaining gap would shed more light on the computational hardness of approximating
incremental medians, as it would show to what degree the difficulty of the problem can be attributed
to non-existence of incremental median sequences with small competitive ratios.

The expected values in the proof of Lemma 2 can be computed in polynomial-time, and thus
our probabilistic construction in that proof can be de-randomized using the method of conditional
expectations. This does not necessarily lead to a polynomial-time construction of incremental
medians, since our construction in Section 4 requires the knowledge of optimal k-medians for all
values of k. It is possible, however, that our method from Lemma 2 can be combined with the
approach from [5] to obtain a ratio below 16 in polynomial time. Since the potential improvement,
if possible at all, appears to be minor, we did not pursue this direction of research.

We believe that some of the ideas in the paper can be used to prove even better bounds. In the
upper bound proof in Section 4 we construct our sequence backwards, starting with all facilities, and
gradually extracting smaller and smaller facility sets, two at a time. By extending the probabilistic
construction to more than two steps at a time, we should be able to get a better bound. Even our
two-step method still might have room for improvement, as the two choices for F and G considered
in the proof of Theorem 3 are not “balanced”, that is, the bounds on the cost of F and G in the two
cases are not the same. Also, our construction of a 2-competitive incremental medians sequence
for equable spaces is very different from previous constructions and we believe that its basic idea
will be useful in improving the upper bound for general spaces.

Our lower bound argument uses only three steps, for k = 1, 2, n. It should be possible to
improve our bound by using either k > 2 as the intermediate number of facilities or more (perhaps
an unbounded number of) steps. Both ideas lead to difficulties that we were not able to overcome
at this time. In a three-step strategy using k = 1, k′, n with k′ > 2, an algorithm can place facilities
2, .., k′ optimally (given the choice of the first facility), and thus increasing k′ seems only to help
the algorithm. A strategy that uses additional steps leads to a different problem. Average costs
for the customers must decrease with k, and thus introducing additional steps creates shortcuts via
optimal k′-medians for large k′, reducing the algorithm’s cost for small values of k.
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The result from Section 5 may also be useful for lower bound proofs, as it shows that in “hard”
instances, for a fixed k, the optimal customers’ costs should be significantly different.
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