
CS 111, Review of Prerequisite Topcs 1

Asymptotic Notation

• The need for asymptotic notation
• Definition of asymptotic notations O, Ω, Θ
• Asymptotic relations between common functions
• Analyzing running time and other applications

University of California, Riverside 2

Motivations

for (int i = 0; i < n; i++) {
 for (int j = 0; j < n ; j++) {

 x = y + i*j;
A[i][j] = 7*i*j + 3*x;
cout << A[i][j];

 }
}

Consider this piece of code. What it’s running time?

n2 iterations
⎫
⎬
⎭

Running time = n2 × (time to execute these instructions)

The time to execute these instructions is a constant, independent of n, but dependent on the
computing environment (processor, compiler, system load, …)

So we can only say that running time = c·n2 , for some unknown constant c

University of California, Riverside 3

Motivations

for (int i = 0; i < n; i++) {
 for (int j = 0; j < n ; j++) {

 x = y + i*j;
A[i][j] = 7*i*j + 3*x;
cout << A[i][j];

 }
}
for (int i = 0; i < n; i++) x = x+ i*i;

How about this piece of code?

Running time = c·n2 + d·n

time c

not informative and gets messy quickly

We need some concept of “running time” that would be
• independent of the computing environment
• independent of time units
• informative — provide useful information about performance

time d

University of California, Riverside 4

Motivations

Consider running time function 2·x2 + 9·x

For x ≤ 10

2 4 6 8 10

50

100

150

200

250

300 2·x2 + 9·x

2·x2

University of California, Riverside 5

Motivations

Consider running time function 2·x2 + 9·x

Now zoom out : for x ≤ 50
2·x2 + 9·x
2·x2

10 20 30 40 50

1000

2000

3000

4000

5000

University of California, Riverside 6

Motivations

Consider running time function 2·x2 + 9·x

And zoom out even more: for x ≤ 500
2·x2 + 9·x
2·x2

100 200 300 400 500

100000

200000

300000

400000

500000

As x grows, the term 9·x becomes negligible compared to the value of the function

University of California, Riverside 7

Motivations

Key word: scaling. Instead of capturing the absolute performance, we want
to know how does the performance scale as the input size n increases?

We need some concept of “running time” that would be
• independent of the computing environment
• independent of time units
• informative — provide useful information about performance

To capture this, we use asymptotic notations:

T(n) grows not faster than proportionally with g(n)

T(n) grows not slower than proportionally with g(n)

T(n) grows proportionally with g(n)

T (n) = O(g(n))

T (n) = ⌦(g(n))

T (n) = ⇥(g(n))

University of California, Riverside 8

Big-Oh Notation — Definition

Definition: Let f(n) and g(n) : ℤ → ℤ be two functions. We say that f(n) is of
order (at most) g(n), denoted f(n) =O(g(n)), iff there are constants c and n0
such that |f(n)| ≤ c·g(n) for all n ≥ n0.

f(n)

cg(n)

g(n)

n0

University of California, Riverside 9

Example: Prove, directly from the definition, that 10n+5 =O(n).

To prove it, all we need to do is to observe that 10n+5 ≤ 11n for n ≥ 5.

c = 11 n0 = 5

Example: Prove, directly from the definition, that 2n3+6n2+2 =O(n3).

We can estimate 2n3+6n2+2 ≤ 2n3+6n3+2n3 = 10n3 for n ≥ 1.

c = 10 n0 = 1

Big-Oh Notation — Definition

Definition: Let f(n) and g(n) : ℤ → ℤ be two functions. We say that f(n) is of
order (at most) g(n), denoted f(n) =O(g(n)), iff there are constants c and n0
such that |f(n)| ≤ c·g(n) for all n ≥ n0.

University of California, Riverside 10

‣ Comments:

10n+5 ≤ 15n for n ≥ 1
 …

• The choice of c and n0 is not unique. For example, to show that 10n+5 =O(n) we can
estimate 10n+5 ≤ 11n for n ≥ 5

• In particular, if g(n) is strictly positive, then we can always take , by taking c large
enough.

n0 = 0

• In this class we mostly care about functions ℕ → ℕ (running time cannot be negative). In
this case the absolute value in the definition is not needed.

• Definition also applies to functions ℝ → ℝ.

Big-Oh Notation — Definition

University of California, Riverside 11

• The goal is to express a possibly complex f(n) in terms of a simple function g(n) . So
while it is true that

 n3 = O(2n3+6n2+2)
this estimate is not useful.

• We can write 2n3+6n2+2 = O(n3) , but it makes no sense to write

O(n3) = 2n3+6n2+2.
Why?

This equation symbol does not represent
equality. It represents ∈ relation. Some people
write it as 2n3+6n2+2 ∈ O(n3) .

Big-Oh Notation — Definition

‣ Comments:

• Important: the big-Oh notation is only an upper bound. So

2n3+6n2+2 = O(n3) , but it is also true that

2n3+6n2+2 = O(n4) , or
2n3+6n2+2 = O(n5) , etc.

But typically we look for the best possible
upper bound, which is O(n3). This will be
later captured using the Θ notation.

University of California, Riverside 12

Example: Let’s derive a big-Oh estimate for harmonic numbers:

Hn =
Pn

j=1
1
j = 1 + 1

2 + 1
3 + ...+ 1

n

H1 = 1

H2 = 1 + 1
2 = 3

2

H3 = 1 + 1
2 + 1

3 = 11
6

Theorem: For n ≥ 1 we have .1
2 (log n� 1) Hn log n+ 1

From this theorem, for n ≥ 2 we get :

Hn log n+ 1

 log n+ log n

= 2 log n

c = 2

n0 = 2

So we can conclude that Hn = O(log n)

We’ll prove this theorem
later if time suffices

Big-Oh Notation — Definition

University of California, Riverside 13

Big-Oh Notation — Definition

Proof: The base case involves values n = 0,1. For n = 0 we have a0 = 3 ≤ 3(2.75)0, and for n = 1
we have a1 = 8 ≤ 3(2.75)1.

applying inductive
assumption

This completes the inductive step, and the proof of the claim.

Claim: an ≤ 3(2.75)n for n ≥ 0.

Example: Let’s derive some big-Oh estimate for the sequence defined
recursively:
 a0 = 3 , a1 = 8, and an = 2·an-1 + an-2 for n ≥ 2 .

a2 = 19

a3 = 46

a4 = 111

an = 2an−1 + an−2

≤ 2 ⋅ 3(2.75)n−1 + 3(2.75)n−2

= 3(2.72)n−2(2 ⋅ 2.75 + 1)
≤ 3(2.75)n−2(2.75)2

≤ 3(2.75)n

Inductive step: assume that the claim holds for all values smaller than some n, where n ≥ 2. Then

University of California, Riverside 14

Big-Oh Notation — Definition

Claim: an ≤ 3(2.75)n for n ≥ 0.

From this claim, we obtain that an = O((2.75)n).

Example: Let’s derive some big-Oh estimate for the sequence defined
recursively:
 a0 = 3 , a1 = 8, and an = 2·an-1 + an-2 for n ≥ 2 .

a2 = 19

a3 = 46

a4 = 111

University of California, Riverside

Most of the asymptotic bounds used in the
analysis of algorithms can be expressed as
combinations of these “reference functions”

15

Big-Oh Notation — Common functions

‣ Common functions used in asymptotic bounds:

• constant

• logarithmic

• polynomial

• exponential

1

log n

nb where b > 0

cn where c > 1

We focus on properties of these functions…

3x

x2

x

log x
1

1.0 1.5 2.0 2.5

2

4

6

8

10

University of California, Riverside 16

Big-Oh Notation — Common functions

Question: Which function grows faster as n → ∞ ?
• n2

• 1.5n

1 2 3 4 5

5

10

15

20

25

1.5n

n2

University of California, Riverside 17

Big-Oh Notation — Common functions

1.5n

n2

5 10 15 20 25 30

1000

2000

3000

4000

5000

6000

Answer: 1.5n

Question: Which function grows faster as n → ∞ ?
• n2

• 1.5n

University of California, Riverside 18

Big-Oh Notation — Combining Asymptotic Bounds

Theorem: Suppose that f1(n) = O(g1(n)) and f2(n) = O(g2(n)).
Then:

(a) f1(n) + f2(n) = O(g1(n) + g2(n))
(b) f1(n) + f2(n) = O(max (g1(n) , g2(n)))
(c) f1(n) · f2(n) = O(g1(n) · g2(n))

First, we show some general rules for combining asymptotic bounds:

Proof:

University of California, Riverside 19

Big-Oh Notation — Properties of Common Functions

‣ Logarithmic functions.

In this class we use notations
log x = log2 x

lnx = loge x natural logarithm

Fact: Let r, p > 1, x > 0. Then

logr x =
logp x

logp r
= 1

logp r · logp x

this is a constant
(independent of x)

So all logarithmic functions have the same asymptotic behavior: for all bases
r, p > 1 we have

logr x = O(logp x)

University of California, Riverside 20

Big-Oh Notation — Properties of Common Functions

‣ Polynomial functions.

Fact: Let . Then .f(x) =
Pk

i=0 aix
i f(x) = O(xk)

f(x) = 2x5 + 3x2 + 1

f(x) = x+ 7

f(x) = 5x121 + x37

Example:

 Proof: Let A = max |ai|. For x ≥ 1 we can then estimate f(x) as follows:

f(x) = akx
k + ak�1x

k�1 + ...+ a1x+ a0

 A(xk + xk�1 + ...+ x+ 1)

 A(xk + xk + ...+ xk + xk)

= A(k + 1)xk

 This gives us that f(x) ≤ c·xk for c =A(k+1) and x ≥ 1.

University of California, Riverside 21

Big-Oh Notation — Properties of Common Functions

Theorem: For all a,b > 0, c >1, we have
(a) 1 = O(logan)
(b) logan = O(nb)
(c) nb = O(cn)

Proof: We prove (c). Take d = c1/b and A = 1/(d−1)b. Since c > 1 and b > 0, we have d > 1.
Then, for n ≥ 1 we can estimate nb as follows

nb = (

nz }| {
1 + 1 + ...+ 1)b

 (1 + d+ d2 + ...+ dn�1)b

= (d
n�1
d�1)b

 (1
d�1)

b · (dn)b = A · (db)n = A · cn

 This gives us that nb ≤ A·cn for n ≥ 1.

University of California, Riverside 22

Big-Oh Notation — Examples

Example: Determine the best big-Oh estimate for . f(n) = n2 log2 n + n3

suspect for the
dominating term

We can estimate it as follows:

f(n) = n2 log2 n + n3

= n2O(n) + n3

= O(n3) + n3

= O(n3)

So .f(n) = O(n3)

this is actually
the relation∈

this is actually
the relation⊆

because ,
by previous slide

log2n = O(n)

University of California, Riverside 23

Big-Oh Notation — Examples

Example: Determine the best big-Oh estimate for . f(n) = 13n2.3 log2
5 n + 11 n log7 n + n3

suspect for the
dominating term

We can estimate it as follows:

f(n) = 13n2.3 log2
5 n + 11 n log7 n + n3

= 13n2.3O(n0.7) + 11n0.5O(n2.5) + n3

= O(n3) + O(n3) + n3

= O(n3)

So .f(n) = O(n3)

University of California, Riverside 24

Big-Oh Notation — Examples

suspect for the
dominating termExample: Determine the best big-Oh estimate for .f(n) = 7n52n + 3n

f(n) = 7n52n + 3n

= 2n · (7n5 + 1.5n)

= 2n · (O(1.5n) + 1.5n) because n5 = O(1.5n)

= 2n ·O(1.5n)

= O(3n)

We can estimate f(n) as follows:

So f(n)=O(3n).

University of California, Riverside 25

Big-Oh Notation — Examples

Example: Determine the best big-Oh estimate for the running time of this algorithm:
Algorithm WhatsMyRuntime(n: integer)

for i ←1 to 6n do z ←2z − 1
for i ←1 to 2n2 do

for j ←1 to n+1 do z ←z2 − z

Number of iterations of the first “for” loop = 6n

Number of iterations of the second (double) “for” loop = 2n2(n+ 1)

Each iterations takes O(1) time, so the total running time is

6n+ 2n2(n+ 1) = 2n3 + 2n2 + 6n = O(n3)

University of California, Riverside 26

Big-Oh Notation — Examples

Example: Determine the best big-Oh estimate for the number of “hello”s printed by this algorithm:
Algorithm HowManyHellos(n: integer)

for i ←1 to 6n do print(“hello”)
for i ←1 to 2n+1 do

for j ←1 to i+2 do print(“hello”)

6n “hello”s

Analysis of double “for” loop:
• For each i, the internal loop makes i+2 iterations
• So the total number of iterations of the double “for” loop is

P2n+1
i=1 (i+ 2) =

P2n+1
i=1 i+

P2n+1
i=1 2

= 1
2 (2n+ 1)(2n+ 2) + 2(2n+ 1)

= 2n2 + 7n+ 3

Therefore the total number of “hello”s is 2n2 + 13n+ 3 = O(n2)

University of California, Riverside 27

Definition: Let f(n) and g(n) : ℤ → ℤ be two functions. We say that f(n) is of
order at least g(n), denoted f(n) =Ω(g(n)), iff there are constants c and n0
such that |f(n)| ≥ c·g(n) for all n ≥ n0.

Big-Ω Notation — Definition

lower bound, as
opposed to big-Oh,
that is an upper bound

f(n)

cg(n)

g(n)

n0

University of California, Riverside 28

Example: Prove, directly from the definition, that 10n+5 =Ω(n).

This is straightforward when all terms are non-negative: 10n+5 ≥ 10n for n ≥ 0.

c = 10 n0 = 0

Example: Prove, directly from the definition, that 2n3−6n2+2 =Ω(n3).

We can estimate

2n3 − 6n2 + 2 ≥ 2n3 − 6n2

= n3 + n2(n − 6)
≥ n3 for n ≥ 6

c = 1
n0 = 6

Big-Ω Notation — Definition

Definition: Let f(n) and g(n) : ℤ → ℤ be two functions. We say that f(n) is of
order at least g(n), denoted f(n) =Ω(g(n)), iff there are constants c and n0
such that |f(n)| ≥ c·g(n) for all n ≥ n0.

University of California, Riverside 29

Θ-Notation

Definition: Let f(n) and g(n) : ℤ → ℤ be two functions. We say that f(n) is of order g(n), denoted
f(n) =Θ(g(n)), iff there are constants c1, c2 and n0 such that c1·g(n) ≤ |f(n)| ≤ c2 ·g(n) for all n ≥ n0.

f(n)

c1·g(n)

c2·g(n)

n0

University of California, Riverside 30

Θ-Notation

Theorem: Let f(n) and g(n) : ℤ → ℤ be two functions. Then f(n) =Θ(g(n)) iff both f(n) =O(g(n))
and f(n) =Ω(g(n)).

In other words, f(n) =Θ(g(n)) means that g(n) is a tight asymptotic
estimate for f(n) . This is capture by the following theorem:

Proof: Since (⇒) is trivial, so we will only prove (⇐). Since f(n) =O(g(n)) and f(n) =Ω(g(n)), there
are constants such that

c1·g(n) ≤ |f(n)| ≤ c2 ·g(n)
for n ≥ n1 for n ≥ n2

Taking n0 = max(n1 , n2) , both inequalities will hold for n ≥ n0 .

Definition: Let f(n) and g(n) : ℤ → ℤ be two functions. We say that f(n) is of order g(n), denoted
f(n) =Θ(g(n)), iff there are constants c1, c2 and n0 such that c1·g(n) ≤ |f(n)| ≤ c2 ·g(n) for all n ≥ n0.

University of California, Riverside 31

Θ-Notation — Examples

Theorem: For n ≥ 1 we have .1
2 (log n� 1) Hn log n+ 1

Example: Determine the Θ-estimate for the harmonic sequence:

Hn =
Pn

j=1
1
j = 1 + 1

2 + 1
3 + ...+ 1

n

H1 = 1

H2 = 1 + 1
2 = 3

2

H3 = 1 + 1
2 + 1

3 = 11
6

We showed earlier that Hn = O(log n). So we now need to show that Hn = Ω(log n).
From the theorem, for n ≥ 4 we have:

Hn � 1
2 (log n� 1)

� 1
4 log n

So Hn = Ω(log n). c = 1/4

n0 = 4

Since Hn = O(log n) and Hn = Ω(log n), we obtain that Hn = Θ(log n).

University of California, Riverside 32

-Notation — ExamplesΘ

Example 1: Give the -estimate for the running time of this code, as a function of (no proofs). Θ n

for to do

for to do
 for to do

i ← 1 2n + 1
x ← x2

j ← 1 n + 2
k ← 1 n + 1

x ← x /k

Answer: .
Explanation: We have three nested independent loops, each of range .
Operations and take time .

Θ(n3)
Θ(n)

x ← x2 x ← x /k Θ(1)

University of California, Riverside 33

-Notation — ExamplesΘ

Question: How many iterations will this loop make for ?
• 5
• 8
• 4
• 7
• 6
• none of the above

n = 125

Example 2: Give the -estimate for the running time of this code, as a function of (no proofs). Θ n

while do

i ← 1
i < n

x ← x2

i ← 2 ⋅ i

University of California, Riverside 34

-Notation — ExamplesΘ

Question: How many iterations will this loop make for ?
• 5
• 8
• 4
• 7
• 6
• none of the above

n = 125

Example 2: Give the -estimate for the running time of this code, as a function of (no proofs). Θ n

Answer: 7. Values of for which the loop will execute: i 1 2 4 8 16 32 64

while do

i ← 1
i < n

x ← x2

i ← 2 ⋅ i

University of California, Riverside 35

-Notation — ExamplesΘ

while do

i ← 1
i < n

x ← x2

i ← 2 ⋅ i

Example 2: Give the -estimate for the running time of this code, as a function of (no proofs). Θ n

Answer: .
Explanation: will double exactly times, and .

Θ(log n)
i ⌈log n⌉ ⌈log n⌉ = Θ(log n)

University of California, Riverside 36

-Notation — ExamplesΘ

while do
 for to do

i ← 1
i < n

j = i n
x ← x2

i ← 2 ⋅ i

Challenge questions: Give the -estimate, as a function of , for the running time of these
three pieces of code.

Θ n

while do
 for to do

i ← 1
i < n

j = 1 i
x ← x2

i ← 2 ⋅ i

while do

i ← 2
i < n

x ← x2

i ← i2

