
CS 111, Review of Prerequisite Topcs 1

Asymptotic Notation

• The need for asymptotic notation 
• Definition of asymptotic notations O, Ω, Θ 
• Asymptotic relations between common functions 
• Analyzing running time and other applications
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Motivations

for (int i = 0; i < n; i++) {
  for (int j = 0; j < n ; j++) {

    x = y + i*j;
A[i][j] = 7*i*j + 3*x;
cout << A[i][j];

  }
}

Consider this piece of code. What it’s running time?

n2 iterations
⎫
⎬
⎭

Running time =  n2 × (time to execute these instructions)

 

The time to execute these instructions is a constant,  independent of n, but dependent on the 
computing environment (processor, compiler, system load, …)

So we can only say that running time = c·n2 , for some unknown constant c
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Motivations

for (int i = 0; i < n; i++) {
  for (int j = 0; j < n ; j++) {

    x = y + i*j;
A[i][j] = 7*i*j + 3*x;
cout << A[i][j];

  }
}
for (int i = 0; i < n; i++) x = x+ i*i;

How about this piece of code?

Running time =  c·n2  + d·n

 

time c

not informative and gets messy quickly

We need some concept of “running time” that would be 
• independent of the computing environment 
• independent of time units 
• informative — provide useful information about performance

 

time d
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Motivations

Consider running time function 2·x2  + 9·x

For x ≤ 10
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Motivations

Consider running time function 2·x2  + 9·x

Now zoom out : for x ≤ 50
2·x2  + 9·x
2·x2
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Motivations

Consider running time function 2·x2  + 9·x

And zoom out even more: for x ≤ 500
2·x2  + 9·x
2·x2
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As x grows, the term 9·x becomes negligible compared to the value of the function
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Motivations

Key word: scaling. Instead of capturing the absolute performance, we want 
to know how does the performance scale as the input size n increases?

We need some concept of “running time” that would be 
• independent of the computing environment 
• independent of time units 
• informative — provide useful information about performance

To capture this, we use asymptotic notations:

T(n)  grows not faster than proportionally with g(n)

T(n)  grows not slower than proportionally with g(n)

T(n)  grows proportionally with g(n)

T (n) = O(g(n))

T (n) = ⌦(g(n))

T (n) = ⇥(g(n))
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Big-Oh Notation — Definition

Definition: Let f(n) and g(n) : ℤ → ℤ  be two functions. We say that f(n) is of 
order (at most) g(n), denoted  f(n) =O(g(n)), iff there are constants c and n0 
such that |f(n)| ≤ c·g(n) for all n ≥ n0.

f(n)

cg(n)

g(n)

n0
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Example: Prove, directly from the definition, that  10n+5 =O(n).

To prove it, all we need to do is to observe that  10n+5 ≤ 11n for  n ≥ 5.

c = 11 n0 = 5

Example: Prove, directly from the definition, that  2n3+6n2+2 =O(n3).

We can estimate  2n3+6n2+2  ≤ 2n3+6n3+2n3 = 10n3        for  n ≥ 1.

c = 10 n0 = 1

Big-Oh Notation — Definition

Definition: Let f(n) and g(n) : ℤ → ℤ  be two functions. We say that f(n) is of 
order (at most) g(n), denoted  f(n) =O(g(n)), iff there are constants c and n0 
such that |f(n)| ≤ c·g(n) for all n ≥ n0.
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‣ Comments:

10n+5 ≤ 15n   for  n ≥ 1 
            …

• The choice of c and n0 is not unique. For example, to show that 10n+5 =O(n) we can 
estimate 10n+5 ≤ 11n   for  n ≥ 5

• In particular, if g(n) is strictly positive, then we can always take , by taking c large 
enough.

n0 = 0

• In this class we mostly care about functions ℕ → ℕ (running time cannot be negative). In 
this case the absolute value in the definition is not needed.

• Definition also applies to functions ℝ → ℝ. 

Big-Oh Notation — Definition
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• The goal is to express a possibly complex f(n) in terms of a simple function g(n) . So 
while it is true that  

                                n3 = O(2n3+6n2+2)    
this estimate is not useful.

• We can write 2n3+6n2+2 = O(n3) , but it makes no sense to write  

O(n3) = 2n3+6n2+2.  
Why?

This equation symbol does not represent 
equality. It represents ∈ relation. Some people 
write it as 2n3+6n2+2 ∈ O(n3) .

Big-Oh Notation — Definition

‣ Comments:

• Important: the big-Oh notation is only an upper bound. So  

2n3+6n2+2 = O(n3) , but it is also true that  

2n3+6n2+2 = O(n4) , or 
2n3+6n2+2 = O(n5)  , etc. 

But typically we look for the best possible 
upper bound, which is O(n3). This will be 
later captured using the Θ notation.
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Example: Let’s derive a big-Oh estimate for harmonic numbers:

Hn =
Pn

j=1
1
j = 1 + 1

2 + 1
3 + ...+ 1

n

H1 = 1

H2 = 1 + 1
2 = 3

2

H3 = 1 + 1
2 + 1

3 = 11
6

Theorem: For n ≥ 1  we have                                                         .1
2 (log n� 1)  Hn  log n+ 1

From this theorem, for n ≥ 2 we get :

Hn  log n+ 1

 log n+ log n

= 2 log n

c = 2

n0 = 2

So we can conclude that Hn = O(log n)

We’ll prove this theorem 
later if time suffices

Big-Oh Notation — Definition
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Big-Oh Notation — Definition

Proof: The base case involves values n = 0,1. For n = 0 we have a0 = 3 ≤ 3(2.75)0, and for n = 1   
we have a1 = 8 ≤ 3(2.75)1. 

applying inductive 
assumption

This completes the inductive step, and the proof of the claim.

Claim:  an ≤ 3(2.75)n  for  n  ≥ 0.

Example: Let’s derive some big-Oh estimate for the sequence defined 
recursively: 
                   a0 = 3 ,  a1 = 8, and  an = 2·an-1 + an-2  for n ≥ 2 .

a2 = 19

a3 = 46

a4 = 111

an = 2an−1 + an−2

≤ 2 ⋅ 3(2.75)n−1 + 3(2.75)n−2

= 3(2.72)n−2(2 ⋅ 2.75 + 1)
≤ 3(2.75)n−2(2.75)2

≤ 3(2.75)n

Inductive step: assume that the claim holds for all values smaller than some n, where n ≥ 2. Then
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Big-Oh Notation — Definition

Claim:  an ≤ 3(2.75)n  for  n  ≥ 0.

From this claim, we obtain that  an = O((2.75)n).

Example: Let’s derive some big-Oh estimate for the sequence defined 
recursively: 
                   a0 = 3 ,  a1 = 8, and  an = 2·an-1 + an-2  for n ≥ 2 .

a2 = 19

a3 = 46

a4 = 111
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Most of the asymptotic bounds used in the 
analysis of algorithms can be expressed as 
combinations of these “reference functions”

15

Big-Oh Notation — Common functions 

‣ Common functions used in asymptotic bounds: 

• constant 

• logarithmic  

• polynomial 

• exponential

1

log n

nb where b > 0

cn where c > 1

We focus on properties of these functions…

3x

x2

x

log x
1
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Big-Oh Notation — Common functions 

Question: Which function grows faster as n → ∞ ? 
• n2 

• 1.5n

1 2 3 4 5
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25

1.5n

n2
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Big-Oh Notation — Common functions 

1.5n

n2

5 10 15 20 25 30
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5000

6000

Answer: 1.5n

Question: Which function grows faster as n → ∞ ? 
• n2 

• 1.5n
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Big-Oh Notation — Combining Asymptotic Bounds

Theorem: Suppose that f1(n) = O(g1(n)) and  f2(n) = O(g2(n)). 
Then:         

(a)  f1(n) + f2(n) = O( g1(n) + g2(n) )  
(b)  f1(n) + f2(n) = O( max ( g1(n) , g2(n) ) )   
(c)  f1(n) · f2(n) = O( g1(n) · g2(n) )                    

First, we show some general rules for combining asymptotic bounds:

Proof:                
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Big-Oh Notation — Properties of Common Functions

‣ Logarithmic functions.               

In this class we use notations               
log x = log2 x

lnx = loge x natural logarithm

Fact: Let r, p > 1, x > 0. Then        

logr x =
logp x

logp r
= 1

logp r · logp x

this is a constant 
(independent of x)

So all logarithmic functions have the same asymptotic behavior:  for all bases  
r, p > 1 we have           

logr x = O(logp x)
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Big-Oh Notation — Properties of Common Functions

‣ Polynomial functions.               

Fact: Let                                . Then                          .f(x) =
Pk

i=0 aix
i f(x) = O(xk)

f(x) = 2x5 + 3x2 + 1

f(x) = x+ 7

f(x) = 5x121 + x37

Example:

 Proof: Let A = max |ai|. For x ≥ 1 we can then estimate f(x) as follows:           

f(x) = akx
k + ak�1x

k�1 + ...+ a1x+ a0

 A(xk + xk�1 + ...+ x+ 1 )

 A(xk + xk + ...+ xk + xk )

= A(k + 1)xk

 This gives us that  f(x) ≤ c·xk  for c =A(k+1)  and  x ≥ 1.
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Big-Oh Notation — Properties of Common Functions

Theorem: For all  a,b > 0, c >1, we have  
(a)  1 = O( logan )  
(b)  logan  = O( nb ) 
(c)   nb = O( cn )                    

Proof: We prove (c). Take d = c1/b and A = 1/(d−1)b.  Since c > 1 and b > 0, we have d > 1. 
Then, for n ≥ 1 we can estimate nb as follows

nb = (

nz }| {
1 + 1 + ...+ 1 )b

 (1 + d+ d2 + ...+ dn�1)b

= (d
n�1
d�1 )b

 ( 1
d�1 )

b · (dn)b = A · (db)n = A · cn

 This gives us that  nb ≤ A·cn  for n ≥ 1.
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Big-Oh Notation — Examples

Example: Determine the best big-Oh estimate for   .                                                              f(n) = n2 log2 n + n3

suspect for the 
dominating term

We can estimate it as follows:

f(n) = n2 log2 n + n3

= n2O(n) + n3

= O(n3) + n3

= O(n3)

So .f(n) = O(n3)

this is actually 
the  relation∈

this is actually 
the  relation⊆

because , 
by previous slide

log2n = O(n)
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Big-Oh Notation — Examples

Example: Determine the best big-Oh estimate for   .                                                              f(n) = 13n2.3 log2
5 n + 11 n log7 n + n3

suspect for the 
dominating term

We can estimate it as follows:

f(n) = 13n2.3 log2
5 n + 11 n log7 n + n3

= 13n2.3O(n0.7) + 11n0.5O(n2.5) + n3

= O(n3) + O(n3) + n3

= O(n3)

So .f(n) = O(n3)
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Big-Oh Notation — Examples

suspect for the 
dominating termExample: Determine the best big-Oh estimate for                                  .f(n) = 7n52n + 3n

f(n) = 7n52n + 3n

= 2n · ( 7n5 + 1.5n )

= 2n · (O(1.5n) + 1.5n ) because n5 = O(1.5n)

= 2n ·O(1.5n)

= O(3n)

We can estimate f(n) as follows:

So f(n)=O(3n).



University of California, Riverside 25

Big-Oh Notation — Examples

Example: Determine the best big-Oh estimate for the running time of this algorithm:                             
Algorithm WhatsMyRuntime(n: integer) 

for i ←1 to 6n do z ←2z − 1  
for i ←1 to 2n2 do 

for j ←1 to n+1 do z ←z2 − z

Number of iterations of the first “for” loop =                            6n

Number of iterations of the second (double) “for” loop =                          2n2(n+ 1)

Each iterations takes O(1) time, so the total running time is                         

6n+ 2n2(n+ 1) = 2n3 + 2n2 + 6n = O(n3)
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Big-Oh Notation — Examples

Example: Determine the best big-Oh estimate for the number of “hello”s printed by this algorithm:                             
Algorithm HowManyHellos(n: integer) 

for i ←1 to 6n do print(“hello”)  
for i ←1 to 2n+1 do 

for j ←1 to i+2 do print(“hello”)

6n “hello”s                           

Analysis of double “for” loop:                     
• For each i, the internal loop makes i+2 iterations               
• So the total number of iterations of the double “for” loop is               

P2n+1
i=1 (i+ 2) =

P2n+1
i=1 i+

P2n+1
i=1 2

= 1
2 (2n+ 1)(2n+ 2) + 2(2n+ 1)

= 2n2 + 7n+ 3

Therefore the total number of “hello”s is 2n2 + 13n+ 3 = O(n2)
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Definition: Let f(n) and g(n) : ℤ → ℤ  be two functions. We say that f(n) is of 
order at least g(n), denoted  f(n) =Ω(g(n)), iff there are constants c and n0 
such that |f(n)| ≥ c·g(n) for all n ≥ n0.

Big-Ω Notation — Definition

lower bound, as 
opposed to big-Oh, 
that is an upper bound

f(n)

cg(n)

g(n)

n0
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Example: Prove, directly from the definition, that  10n+5 =Ω(n).

This is straightforward when all terms are non-negative: 10n+5 ≥ 10n for  n ≥ 0.

c = 10 n0 = 0

Example: Prove, directly from the definition, that  2n3−6n2+2 =Ω(n3).

We can estimate 

                                  
2n3 − 6n2 + 2 ≥ 2n3 − 6n2

= n3 + n2(n − 6)
≥ n3 for n ≥ 6

c = 1
n0 = 6

Big-Ω Notation — Definition

Definition: Let f(n) and g(n) : ℤ → ℤ  be two functions. We say that f(n) is of 
order at least g(n), denoted  f(n) =Ω(g(n)), iff there are constants c and n0 
such that |f(n)| ≥ c·g(n) for all n ≥ n0.
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Θ-Notation

Definition: Let f(n) and g(n) : ℤ → ℤ  be two functions. We say that f(n) is of order g(n), denoted  
f(n) =Θ(g(n)), iff there are constants c1, c2 and n0 such that c1·g(n) ≤ |f(n)| ≤ c2 ·g(n) for all n ≥ n0.

f(n)

c1·g(n)

c2·g(n)

n0
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Θ-Notation

Theorem: Let f(n) and g(n) : ℤ → ℤ  be two functions. Then f(n) =Θ(g(n)) iff both f(n) =O(g(n)) 
and f(n) =Ω(g(n)).

In other words,  f(n) =Θ(g(n)) means that g(n) is a tight asymptotic 
estimate for f(n) . This is capture by the following theorem:

Proof: Since (⇒) is trivial, so we will only prove (⇐). Since f(n) =O(g(n)) and f(n) =Ω(g(n)), there 
are constants such that

c1·g(n) ≤ |f(n)| ≤ c2 ·g(n)
for n ≥ n1 for n ≥ n2

Taking n0 = max( n1 , n2) , both inequalities will hold for n ≥ n0 .

Definition: Let f(n) and g(n) : ℤ → ℤ  be two functions. We say that f(n) is of order g(n), denoted  
f(n) =Θ(g(n)), iff there are constants c1, c2 and n0 such that c1·g(n) ≤ |f(n)| ≤ c2 ·g(n) for all n ≥ n0.
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Θ-Notation — Examples

Theorem: For n ≥ 1  we have                                                        .1
2 (log n� 1)  Hn  log n+ 1

Example: Determine the Θ-estimate for the harmonic sequence:                                            

Hn =
Pn

j=1
1
j = 1 + 1

2 + 1
3 + ...+ 1

n

H1 = 1

H2 = 1 + 1
2 = 3

2

H3 = 1 + 1
2 + 1

3 = 11
6

We showed earlier that Hn = O(log n).  So we now need to show that Hn = Ω(log n). 
From the theorem, for n ≥ 4 we have:

Hn � 1
2 (log n� 1)

� 1
4 log n

So Hn = Ω(log n). c = 1/4

n0 = 4

Since Hn = O(log n)  and  Hn = Ω(log n), we obtain that  Hn = Θ(log n).
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-Notation — ExamplesΘ

Example 1: Give the -estimate for the running time of this code, as a function of  (no proofs).                             Θ n

for  to  do 
 

for  to  do 
   for  to  do       
      

i ← 1 2n + 1
x ← x2

j ← 1 n + 2
k ← 1 n + 1

x ← x /k

Answer: .  
Explanation: We have three nested independent loops, each  of range  . 
Operations  and   take time .               

Θ(n3)
Θ(n)

x ← x2 x ← x /k Θ(1)
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-Notation — ExamplesΘ

Question: How many iterations will this loop make for  ? 
• 5 
• 8 
• 4 
• 7 
• 6 
• none of the above

n = 125

Example 2: Give the -estimate for the running time of this code, as a function of  (no proofs).                             Θ n

 
while  do 

 

i ← 1
i < n

x ← x2

i ← 2 ⋅ i
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-Notation — ExamplesΘ

Question: How many iterations will this loop make for  ? 
• 5 
• 8 
• 4 
• 7 
• 6 
• none of the above

n = 125

Example 2: Give the -estimate for the running time of this code, as a function of  (no proofs).                             Θ n

Answer: 7. Values of  for which the loop will execute: i 1 2 4 8 16 32 64

 
while  do 

 

i ← 1
i < n

x ← x2

i ← 2 ⋅ i
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-Notation — ExamplesΘ

 
while  do 

 

i ← 1
i < n

x ← x2

i ← 2 ⋅ i

Example 2: Give the -estimate for the running time of this code, as a function of  (no proofs).                             Θ n

Answer: .  
Explanation:  will double exactly  times, and  .         

Θ(log n)
i ⌈log n⌉ ⌈log n⌉ = Θ(log n)
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-Notation — ExamplesΘ

 
while  do 
   for  to  do 

 

i ← 1
i < n

j = i n
x ← x2

i ← 2 ⋅ i

Challenge questions: Give the -estimate, as a function of , for the running time of these 
three pieces of code.

Θ n

 
while  do 
   for  to  do 

 

i ← 1
i < n

j = 1 i
x ← x2

i ← 2 ⋅ i

 
while  do 
     
   

i ← 2
i < n

x ← x2

i ← i2


