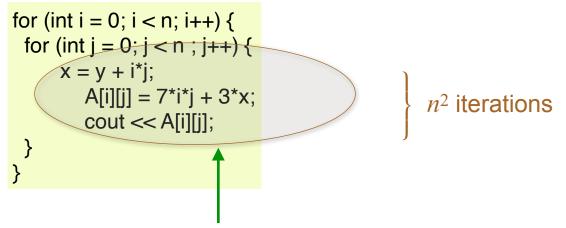
Asymptotic Notation

- The need for asymptotic notation
- Definition of asymptotic notations O, Ω , Θ
- Asymptotic relations between common functions
- Analyzing running time and other applications

Consider this piece of code. What it's running time?

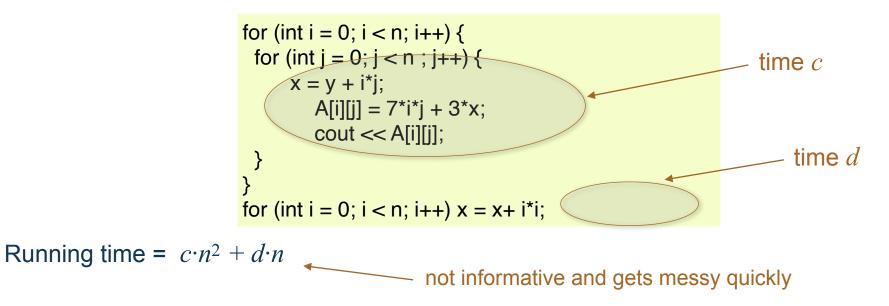


Running time = $n^2 \times$ (time to execute these instructions)

The time to execute these instructions is a constant, independent of n, but dependent on the computing environment (processor, compiler, system load, ...)

So we can only say that running time = $c \cdot n^2$, for some unknown constant c

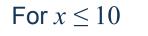
How about this piece of code?

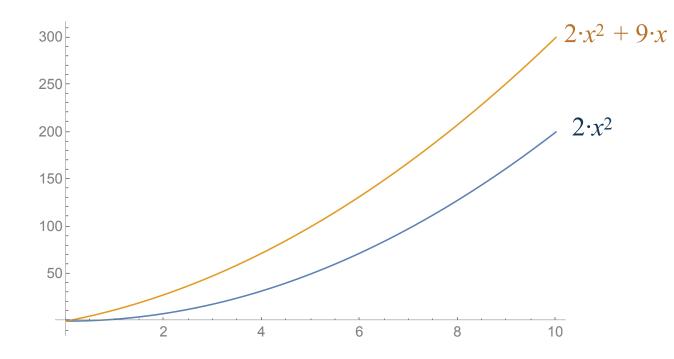


We need some concept of "running time" that would be

- independent of the computing environment
- independent of time units
- informative provide useful information about performance

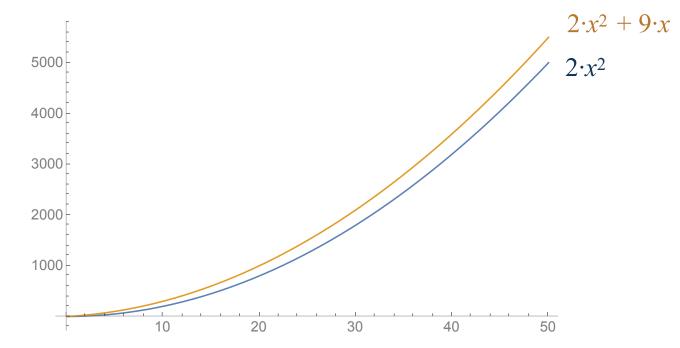
Consider running time function $2 \cdot x^2 + 9 \cdot x$





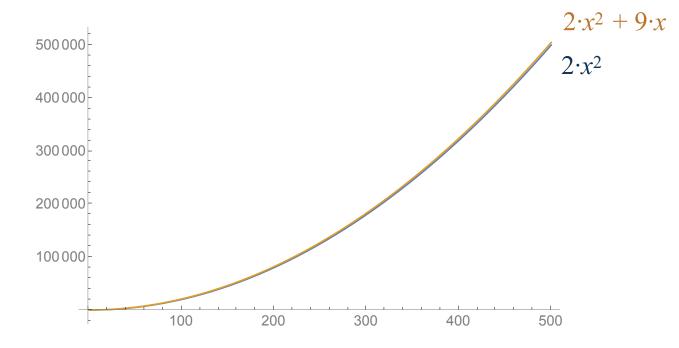
Consider running time function $2 \cdot x^2 + 9 \cdot x$

Now zoom out : for $x \le 50$



Consider running time function $2 \cdot x^2 + 9 \cdot x$

And zoom out even more: for $x \le 500$



As x grows, the term $9 \cdot x$ becomes negligible *compared to the value of the function*

We need some concept of "running time" that would be

- independent of the computing environment
- independent of time units
- informative provide useful information about performance

Key word: *scaling*. Instead of capturing the absolute performance, we want to know *how does the performance scale as the input size n increases?*

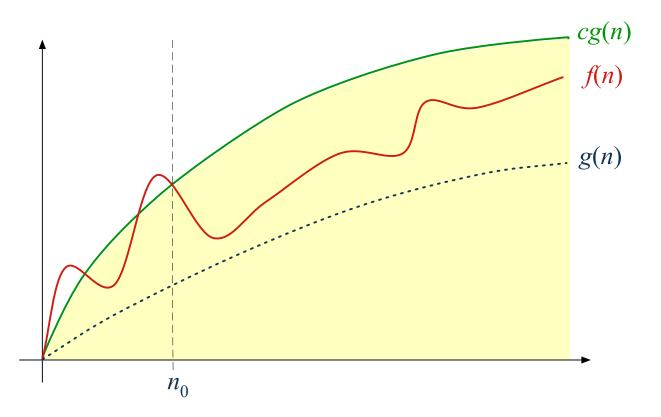
To capture this, we use asymptotic notations:

T(n) = O(g(n)) T(n) grows not faster than proportionally with g(n)

 $T(n) = \Omega(g(n))$ T(n) grows not slower than proportionally with g(n)

 $T(n) = \Theta(g(n))$ T(n) grows proportionally with g(n)

Definition: Let f(n) and $g(n) : \mathbb{Z} \to \mathbb{Z}$ be two functions. We say that f(n) is of order (at most) g(n), denoted f(n) = O(g(n)), iff there are constants c and n_0 such that $|f(n)| \le c \cdot g(n)$ for all $n \ge n_0$.



Definition: Let f(n) and $g(n) : \mathbb{Z} \to \mathbb{Z}$ be two functions. We say that f(n) is of order (at most) g(n), denoted f(n) = O(g(n)), iff there are constants c and n_0 such that $|f(n)| \le c \cdot g(n)$ for all $n \ge n_0$.

Example: Prove, directly from the definition, that 10n+5 = O(n).

To prove it, all we need to do is to observe that $10n+5 \le 11n$ for $n \ge 5$. c = 11 $n_0 = 5$

Example: Prove, directly from the definition, that $2n^3 + 6n^2 + 2 = O(n^3)$.

We can estimate $2n^3+6n^2+2 \le 2n^3+6n^3+2n^3 = 10n^3$ for $n \ge 1$. c = 10 $n_0 = 1$

- Comments:
 - Definition also applies to functions $\mathbb{R} \to \mathbb{R}$.
 - In this class we mostly care about functions N→N (running time cannot be negative). In this case the absolute value in the definition is not needed.
 - The choice of c and n_0 is not unique. For example, to show that 10n+5 = O(n) we can estimate $10n+5 \le 11n$ for $n \ge 5$ $10n+5 \le 15n$ for $n \ge 1$

• • •

• In particular, if g(n) is strictly positive, then we can always take $n_0 = 0$, by taking *c* large enough.

- Comments:
 - The goal is to express a possibly complex *f*(*n*) in terms of a simple function *g*(*n*). So while it is true that

$$n^3 = O(2n^3 + 6n^2 + 2)$$

this estimate is not useful.

• We can write $2n^3+6n^2+2 = O(n^3)$, but it makes no sense to write

 $O(n^3) = 2n^3 + 6n^2 + 2.$

Why?

This equation symbol does *not* represent equality. It represents \in relation. Some people write it as $2n^3+6n^2+2 \in O(n^3)$.

• Important: the big-Oh notation is only an upper bound. So

 $2n^3+6n^2+2 = O(n^3)$, but it is also true that

 $2n^3 + 6n^2 + 2 = O(n^4)$, or

 $2n^3 + 6n^2 + 2 = O(n^5)$, etc.

But typically we look for the best possible upper bound, which is $O(n^3)$. This will be later captured using the Θ notation.

Example: Let's derive a big-Oh estimate for harmonic numbers:

c = 2 -

$$H_n = \sum_{j=1}^n \frac{1}{j} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$

 $H_n \leq \log n + 1 \\ \leq \log n + \log n$

 $= 2 \log n$

$$H_1 = 1$$

$$H_2 = 1 + \frac{1}{2} = \frac{3}{2}$$

$$H_3 = 1 + \frac{1}{2} + \frac{1}{3} = \frac{11}{6}$$

Theorem: For $n \ge 1$ we have $\frac{1}{2}(\log n - 1) \le H_n \le \log n + 1$.

From this theorem, for $n \ge 2$ we get :

 $n_0 = 2$

We'll prove this theorem later if time suffices

So we can conclude that $H_n = O(\log n)$

Example: Let's derive some big-Oh estimate for the sequence defined recursively:

$$a_0 = 3$$
, $a_1 = 8$, and $a_n = 2 \cdot a_{n-1} + a_{n-2}$ for $n \ge 2$.

Claim: $a_n \le 3(2.75)^n$ for $n \ge 0$.

 $a_2 = 19$ $a_3 = 46$ $a_4 = 111$

Proof: The base case involves values n = 0, 1. For n = 0 we have $a_0 = 3 \le 3(2.75)^0$, and for n = 1 we have $a_1 = 8 \le 3(2.75)^1$.

Inductive step: assume that the claim holds for all values smaller than some *n*, where $n \ge 2$. Then

$$a_n = 2a_{n-1} + a_{n-2}$$

$$\leq 2 \cdot 3(2.75)^{n-1} + 3(2.75)^{n-2} \qquad \text{applying inductive}$$

$$= 3(2.72)^{n-2}(2 \cdot 2.75 + 1)$$

$$\leq 3(2.75)^{n-2}(2.75)^2$$

$$\leq 3(2.75)^n$$

This completes the inductive step, and the proof of the claim.

Example: Let's derive some big-Oh estimate for the sequence defined recursively:

$$a_0 = 3$$
, $a_1 = 8$, and $a_n = 2 \cdot a_{n-1} + a_{n-2}$ for $n \ge 2$.

 $a_2 = 19$ $a_3 = 46$ $a_4 = 111$

Claim: $a_n \le 3(2.75)^n$ for $n \ge 0$.

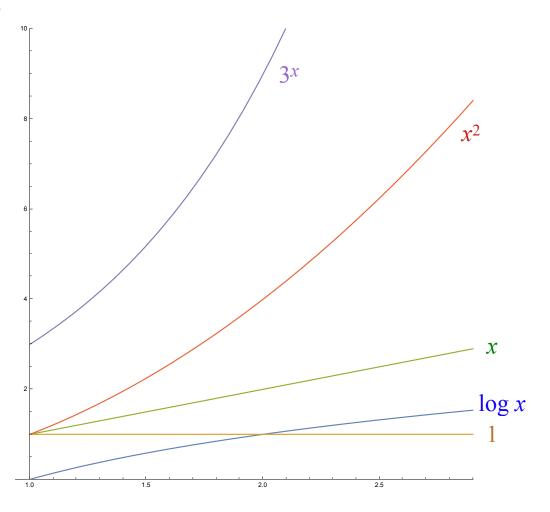
From this claim, we obtain that $a_n = O((2.75)^n)$.

Big-Oh Notation — Common functions

- Common functions used in asymptotic bounds:
 - constant
 - logarithmic $\log n$
 - polynomial n^b where b > 0
 - exponential c^n where c > 1

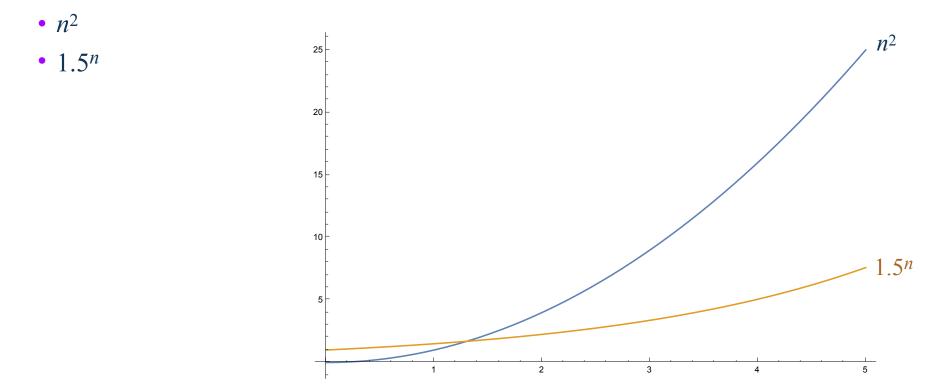
Most of the asymptotic bounds used in the analysis of algorithms can be expressed as combinations of these "reference functions"

We focus on properties of these functions...



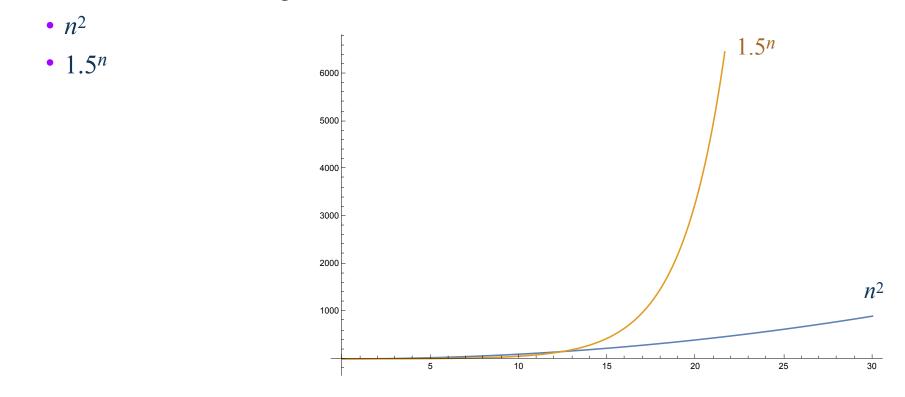
Big-Oh Notation — Common functions

Question: Which function grows faster as $n \rightarrow \infty$?



Big-Oh Notation — Common functions

Question: Which function grows faster as $n \rightarrow \infty$?



Answer: 1.5^n

Big-Oh Notation — Combining Asymptotic Bounds

First, we show some general rules for combining asymptotic bounds:

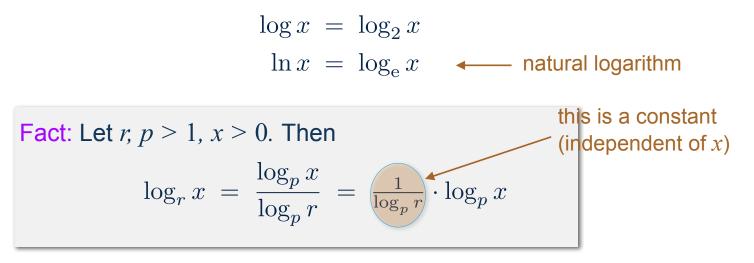
Theorem: Suppose that $f_1(n) = O(g_1(n))$ and $f_2(n) = O(g_2(n))$. Then: (a) $f_1(n) + f_2(n) = O(g_1(n) + g_2(n))$ (b) $f_1(n) + f_2(n) = O(\max(g_1(n), g_2(n)))$ (c) $f_1(n) \cdot f_2(n) = O(g_1(n) \cdot g_2(n))$

Proof:

Big-Oh Notation — Properties of Common Functions

Logarithmic functions.

In this class we use notations



So all logarithmic functions have the same asymptotic behavior: for all bases r, p > 1 we have

$$\log_r x = O(\log_p x)$$

Big-Oh Notation — Properties of Common Functions

Polynomial functions.

Fact: Let
$$f(x) = \sum_{i=0}^{k} a_i x^i$$
. Then $f(x) = O(x^k)$.

Example: $f(x) = 2x^5 + 3x^2 + 1$ f(x) = x + 7 $f(x) = 5x^{121} + x^{37}$

Proof: Let $A = \max |a_i|$. For $x \ge 1$ we can then estimate f(x) as follows:

$$f(x) = a_k x^k + a_{k-1} x^{k-1} + \dots + a_1 x + a_0$$

$$\leq A(x^k + x^{k-1} + \dots + x + 1)$$

$$\leq A(x^k + x^k + \dots + x^k + x^k)$$

$$= A(k+1) x^k$$

This gives us that $f(x) \le c \cdot x^k$ for c = A(k+1) and $x \ge 1$.

Big-Oh Notation — Properties of Common Functions

Theorem: For all a, b > 0, c > 1, we have (a) $1 = O(\log^a n)$ (b) $\log^a n = O(n^b)$ (c) $n^b = O(c^n)$

Proof: We prove (c). Take $d = c^{1/b}$ and $A = 1/(d-1)^b$. Since c > 1 and b > 0, we have d > 1. Then, for $n \ge 1$ we can estimate n^b as follows

$$n^{b} = (\overbrace{1+1+...+1}^{n})^{b}$$

$$\leq (1+d+d^{2}+...+d^{n-1})^{b}$$

$$= (\frac{d^{n}-1}{d-1})^{b}$$

$$\leq (\frac{1}{d-1})^{b} \cdot (d^{n})^{b} = A \cdot (d^{b})^{n} = A \cdot c^{n}$$

This gives us that $n^b \le A \cdot c^n$ for $n \ge 1$.

Example: Determine the best big-Oh estimate for $f(n) = n^2 \log^2 n + n^3$.

We can estimate it as follows:

 $f(n) = n^2 \log^2 n + n^3$ this is actually the \in relation $= n^2 O(n) + n^3 \qquad \qquad \text{because } \log^2 n = O(n),$ by previous slide $= O(n^3) + n^3$ this is actually the \subseteq relation $= O(n^3)$

 $\operatorname{So} f(n) = O(n^3).$

suspect for the dominating term

Example: Determine the best big-Oh estimate for $f(n) = 13n^{2.3}\log_5^2 n + 11\sqrt{n}\log^7 n + n^3$.

We can estimate it as follows:

$$f(n) = 13n^{2.3} \log_5^2 n + 11\sqrt{n} \log^7 n + n^3$$

= $13n^{2.3}O(n^{0.7}) + 11n^{0.5}O(n^{2.5}) + n^3$
= $O(n^3) + O(n^3) + n^3$
= $O(n^3)$

suspect for the dominating term

 $\operatorname{So} f(n) = O(n^3).$

Example: Determine the best big-Oh estimate for $f(n) = 7n^52^n + 3^n$. Suspect for the dominating term

We can estimate f(n) as follows:

$$f(n) = 7n^{5}2^{n} + 3^{n}$$

= $2^{n} \cdot (7n^{5} + 1.5^{n})$
= $2^{n} \cdot (O(1.5^{n}) + 1.5^{n})$ because $n^{5} = O(1.5^{n})$
= $2^{n} \cdot O(1.5^{n})$
= $O(3^{n})$

So $f(n) = O(3^n)$.

Example: Determine the best big-Oh estimate for the running time of this algorithm:

Algorithm WhatsMyRuntime(n: integer) for $i \leftarrow 1$ to 6n do $z \leftarrow 2z - 1$ for $i \leftarrow 1$ to $2n^2$ do for $j \leftarrow 1$ to n+1 do $z \leftarrow z^2 - z$

Number of iterations of the first "for" loop = 6n

Number of iterations of the second (double) "for" loop = $2n^2(n+1)$

Each iterations takes O(1) time, so the total running time is

$$6n + 2n^2(n+1) = 2n^3 + 2n^2 + 6n = O(n^3)$$

Example: Determine the best big-Oh estimate for the number of "hello"s printed by this algorithm:

```
Algorithm HowManyHellos(n: integer)
for i \leftarrow 1 to 6n do print("hello") \leftarrow 6n "hello"s
for i \leftarrow 1 to 2n+1 do
for j \leftarrow 1 to i+2 do print("hello")
```

Analysis of double "for" loop:

- For each *i*, the internal loop makes i+2 iterations
- So the total number of iterations of the double "for" loop is

$$\sum_{i=1}^{2n+1} (i+2) = \sum_{i=1}^{2n+1} i + \sum_{i=1}^{2n+1} 2$$

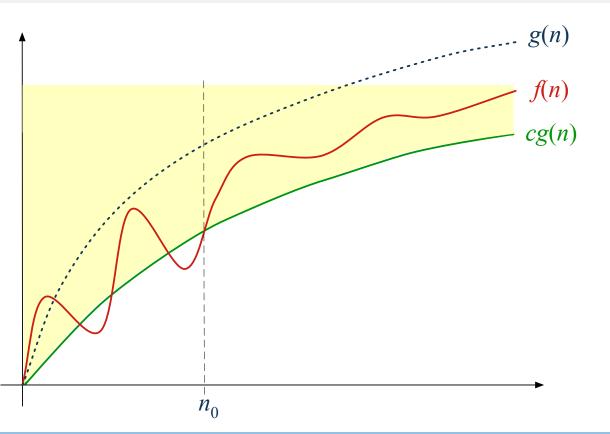
= $\frac{1}{2}(2n+1)(2n+2) + 2(2n+1)$
= $2n^2 + 7n + 3$

Therefore the total number of "hello"s is $2n^2 + 13n + 3 = O(n^2)$

Big- Ω Notation — Definition

Definition: Let f(n) and $g(n) : \mathbb{Z} \to \mathbb{Z}$ be two functions. We say that f(n) is of order at least g(n), denoted $f(n) = \Omega(g(n))$, iff there are constants c and n_0 such that $|f(n)| \ge c \cdot g(n)$ for all $n \ge n_0$.

lower bound, as opposed to big-Oh, that is an upper bound



Big- Ω Notation — Definition

Definition: Let f(n) and $g(n) : \mathbb{Z} \to \mathbb{Z}$ be two functions. We say that f(n) is of order at least g(n), denoted $f(n) = \Omega(g(n))$, iff there are constants c and n_0 such that $|f(n)| \ge c \cdot g(n)$ for all $n \ge n_0$.

Example: Prove, directly from the definition, that $10n+5 = \Omega(n)$. c = 10 $n_0 = 0$

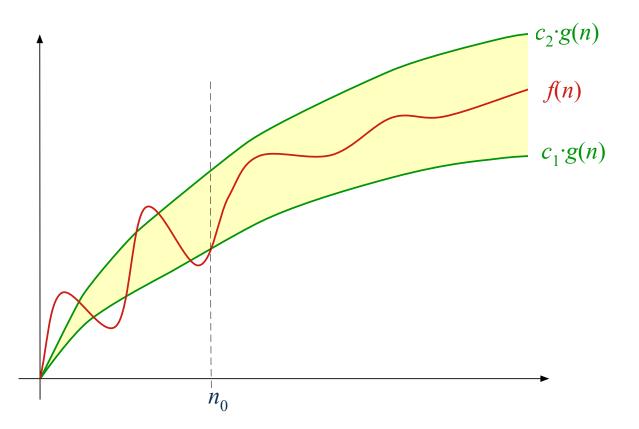
This is straightforward when all terms are non-negative: $10n+5 \ge 10n$ for $n \ge 0$.

Example: Prove, directly from the definition, that $2n^3 - 6n^2 + 2 = \Omega(n^3)$.

We can estimate

Θ-Notation

Definition: Let f(n) and $g(n) : \mathbb{Z} \to \mathbb{Z}$ be two functions. We say that f(n) is of order g(n), denoted $f(n) = \Theta(g(n))$, iff there are constants c_1 , c_2 and n_0 such that $c_1 \cdot g(n) \le |f(n)| \le c_2 \cdot g(n)$ for all $n \ge n_0$.



Θ-Notation

Definition: Let f(n) and $g(n) : \mathbb{Z} \to \mathbb{Z}$ be two functions. We say that f(n) is of order g(n), denoted $f(n) = \Theta(g(n))$, iff there are constants c_1 , c_2 and n_0 such that $c_1 \cdot g(n) \le |f(n)| \le c_2 \cdot g(n)$ for all $n \ge n_0$.

In other words, $f(n) = \Theta(g(n))$ means that g(n) is a tight asymptotic estimate for f(n). This is capture by the following theorem:

Theorem: Let f(n) and $g(n) : \mathbb{Z} \to \mathbb{Z}$ be two functions. Then $f(n) = \Theta(g(n))$ iff both f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.

Proof: Since (\Rightarrow) is trivial, so we will only prove (\Leftarrow). Since f(n) = O(g(n)) and $f(n) = \Omega(g(n))$, there are constants such that

$$c_1 \cdot g(n) \le |f(n)| \le c_2 \cdot g(n)$$

for $n \ge n_1$ for $n \ge n_2$

Taking $n_0 = \max(n_1, n_2)$, both inequalities will hold for $n \ge n_0$.

Example: Determine the Θ -estimate for the harmonic sequence:

$$H_n = \sum_{j=1}^n \frac{1}{j} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$

$$H_1 = 1$$

$$H_2 = 1 + \frac{1}{2} = \frac{3}{2}$$

$$H_3 = 1 + \frac{1}{2} + \frac{1}{3} = \frac{11}{6}$$

Theorem: For
$$n \ge 1$$
 we have $\frac{1}{2}(\log n - 1) \le H_n \le \log n + 1$.

We showed earlier that $H_n = O(\log n)$. So we now need to show that $H_n = \Omega(\log n)$. From the theorem, for $n \ge 4$ we have:

$$H_n \geq \frac{1}{2}(\log n - 1)$$

$$n_0 = 4 \qquad \geq \frac{1}{4}\log n$$

$$C = 1/4$$

Since $H_n = O(\log n)$ and $H_n = \Omega(\log n)$, we obtain that $H_n = \Theta(\log n)$.

Example 1: Give the Θ -estimate for the running time of this code, as a function of *n* (no proofs).

for
$$i \leftarrow 1$$
 to $2n + 1$ do
 $x \leftarrow x^2$
for $j \leftarrow 1$ to $n + 2$ do
for $k \leftarrow 1$ to $n + 1$ do
 $x \leftarrow x/k$

Answer: $\Theta(n^3)$.

Explanation: We have three nested independent loops, each of range $\Theta(n)$. Operations $x \leftarrow x^2$ and $x \leftarrow x/k$ take time $\Theta(1)$.

Example 2: Give the Θ -estimate for the running time of this code, as a function of *n* (no proofs).

 $i \leftarrow 1$ while i < n do $x \leftarrow x^{2}$ $i \leftarrow 2 \cdot i$

Question: How many iterations will this loop make for n = 125 ?

- 5
- 8
- 4
- 7
- 6
- none of the above

Example 2: Give the Θ -estimate for the running time of this code, as a function of *n* (no proofs).

 $i \leftarrow 1$ while i < n do $x \leftarrow x^{2}$ $i \leftarrow 2 \cdot i$

Question: How many iterations will this loop make for n = 125 ?

- 5
- 8
- 4
- 7
- 6
- none of the above

Answer: 7. Values of i for which the loop will execute: 1 2 4 8 16 32 64

Example 2: Give the Θ -estimate for the running time of this code, as a function of *n* (no proofs).

 $\begin{array}{l} i \leftarrow 1 \\ \text{while } i < n \text{ do} \\ x \leftarrow x^2 \\ i \leftarrow 2 \cdot i \end{array}$

Answer: $\Theta(\log n)$. Explanation: *i* will double exactly $\lceil \log n \rceil$ times, and $\lceil \log n \rceil = \Theta(\log n)$.

Challenge questions: Give the Θ -estimate, as a function of n, for the running time of these three pieces of code.

$$i \leftarrow 1$$
while $i < n$ do
for $j = i$ to n do
$$x \leftarrow x^{2}$$

$$i \leftarrow 2 \cdot i$$

$$i \leftarrow 1$$
while $i < n$ do
for $j = 1$ to i do
$$x \leftarrow x^{2}$$

$$i \leftarrow 2 \cdot i$$

$$i \leftarrow 2$$

while $i < n$ do
 $x \leftarrow x^2$
 $i \leftarrow i^2$