Approximation Algorithms for the Fault-Tolerant Facility Placement Problem

Li Yan

Computer Science University of California Riverside

06/10/2013

lyan@cs.ucr.edu Approximation Algorithms for FTFP

∃ >

Outline

- 2 Results in Dissertation
- 3 Related Work
- 4 Techniques
- 5 Approximation Algorithms

Outline

- 2 Results in Dissertation
- 3 Related Work
- 4 Techniques
- **5** Approximation Algorithms

6 Summary

FTFP Results Related Work Techniques Algorithms End

Fault-Tolerant Facility Placement Problem (FTFP)

Fault-Tolerant Facility Placement Problem (FTFP)

Feasible Integral Solution

Instance

lyan@cs.ucr.edu Approximation Algorithms for FTFP

э

Feasible Integral Solution

Instance

Solution

Feasible Integral Solution

Instance

Solution

lyan@cs.ucr.edu Approximation Algorithms for FTFP

Metric Distances: Triangle Inequality

Triangle Inequality

$$egin{aligned} &d(i_1,j_2) \leq \ &d(i_1,j_1) + d(i_2,j_1) + d(i_2,j_2) \end{aligned}$$

Needed when estimating distances...

Outline

- 2 Results in Dissertation
- 3 Related Work
- 4 Techniques
- **5** Approximation Algorithms

6 Summary

Hardness

How hard is FTFP?

FTFP is NP-hard

lyan@cs.ucr.edu Approximation Algorithms for FTFP

A B M A B M

Hardness

How hard is FTFP?

FTFP is NP-hard

FTFP is MaxSNP-hard

lyan@cs.ucr.edu Approximation Algorithms for FTFP

Hardness

How hard is FTFP?

FTFP is NP-hard

FTFP is MaxSNP-hard

Best ratio \geq 1.463 unless P = NP

A B M A B M

Results Highlight

- LP-rounding: 1.575-approximation
- LP-rounding: asymptotic ratio of 1 when all demands large
- Primal-dual: *H_n*-approximation
- Primal-dual: Example of $\Omega(\log n / \log \log n)$ for dual-fitting

$$\begin{array}{lll} \mathsf{FTFP} & r_j \geq 1 & <\infty \text{ facility per site} \\ \mathsf{UFL} & r_j = 1 & \leq 1 \text{ facility per site} \\ \mathsf{FTFL} & r_j \geq 1 & \leq 1 \text{ facility per site} \end{array}$$

э

∃ >

□ ▶ ▲ 臣 ▶ ▲

$$\begin{array}{lll} \mathsf{FTFP} & r_j \geq 1 & <\infty \text{ facility per site} \\ \mathsf{UFL} & r_j = 1 & \leq 1 \text{ facility per site} \\ \mathsf{FTFL} & r_j \geq 1 & \leq 1 \text{ facility per site} \end{array}$$

 $\mathsf{UFL} \preceq \mathsf{FTFP} \preceq \mathsf{FTFL}$

э

聞 と く き と く き と

$$\begin{array}{lll} \mathsf{FTFP} & r_j \geq 1 & <\infty \text{ facility per site} \\ \mathsf{UFL} & r_j = 1 & \leq 1 \text{ facility per site} \\ \mathsf{FTFL} & r_j \geq 1 & \leq 1 \text{ facility per site} \end{array}$$

$\mathsf{UFL} \preceq \mathsf{FTFP} \preceq \mathsf{FTFL}$

< ∃ >

$$\begin{array}{lll} \mathsf{FTFP} & r_j \geq 1 & <\infty \text{ facility per site} \\ \mathsf{UFL} & r_j = 1 & \leq 1 \text{ facility per site} \\ \mathsf{FTFL} & r_j \geq 1 & \leq 1 \text{ facility per site} \end{array}$$

 $\mathsf{UFL} \preceq \mathsf{FTFP} \preceq \mathsf{FTFL}$

Outline

1 The FTFP Problem

- 2 Results in Dissertation
- 3 Related Work
- 4 Techniques
- **5** Approximation Algorithms

6 Summary

Related Work for UFL

Approximation Results for UFL

Shmoys, Tardos and Aardal	1997	3.16	LP-rounding
Chudak	1998	1.736	LP-rounding
Sviridenko	2002	1.58	LP-rounding
Jain and Vazirani	2001	3	primal-dual
Jain <i>et al.</i>	2002	1.61	greedy
Mahdian <i>et al.</i>	2002	1.52	greedy
Arya <i>et al.</i>	2004	3	local search
Byrka	2007	1.5	hybrid
Li	2011	1.488	hybrid

Lower Bound

Guha and Khuller

1998 1.463

Related Work for FTFL

Approximation Algorithms for FTFL

Jain and Vazirani	2000	3 ln max _j r _j	primal-dual
Guha <i>et al.</i>	2001	4	LP-rounding
Swamy, Shmoys	2008	2.076	LP-rounding
Byrka <i>et al.</i>	2010	1.7245	LP-rounding

No primal-dual algorithms for FTFL with constant ratio.

Work on FTFP (Dissertation Topic)

Approximation Algorithms for FTFP

Xu and Shen	2009		Introduced FTFP
Liao and Shen	2011	1.861	Dual-fitting (for special case)
Yan and Chrobak	2011	3.16	LP-rounding
Yan and Chrobak	2012	1.575	LP-rounding
Yan and Chrobak	prelim	inary results	Dual-fitting (for general case)

Outline

1 The FTFP Problem

- 2 Results in Dissertation
- 3 Related Work

4 Techniques

5 Approximation Algorithms

6 Summary

Algorithm for FTFP — LP

- y_i = number of facilities open at site $i \in F$
- x_{ij} = number of connections from client $j \in \mathbb{C}$ to site $i \in F$

 $\begin{array}{ll} \text{(Primal)} & \min & \sum f_i y_i + \sum d_{ij} x_{ij} \\ & \text{subject to} & y_i - x_{ij} \ge 0 & \forall i, j \\ & \sum x_{ij} \ge r_j & \forall j \\ & x_{ij} \ge 0, y_i \ge 0 & \forall i, j \end{array}$

(Dual) maximize $\sum r_j \alpha_j$ subject to $\sum \beta_{ij} \leq f_i \qquad \forall i$ $\alpha_j - \beta_{ij} \leq d_{ij} \qquad \forall i, j$ $\alpha_j \geq 0, \beta_{ij} \geq 0 \qquad \forall i, j$

- **→** → **→**

Algorithm for FTFP — Demand Reduction

Algorithm for FTFP — Adaptive Partitioning

Techniques

• Demand Reduction

- Reduce all *r_j* to polynomial values (to ensure polynomial time of rounding)
- $\rho\text{-approx}$ for reduced instance $\Rightarrow \rho\text{-approx}$ for original instance
- Adaptive Partitioning
 - Split sites into facilities and clients into unit demands
 - Split associated fractional values
 - Properties ensure rounding similar to UFL can be applied

Demand Reduction

Implementation

• Solving LP for
$$(\mathbf{x}^*, \mathbf{y}^*)$$

• $(\hat{\boldsymbol{x}},\hat{\boldsymbol{y}})=(\boldsymbol{x}^*,\boldsymbol{y}^*)$ round down to integer

•
$$(\dot{\mathbf{x}},\dot{\mathbf{y}}) = (\mathbf{x}^*,\mathbf{y}^*) - (\hat{\mathbf{x}},\hat{\mathbf{y}})$$
, fractional part

•
$$\hat{r}_j = \sum_i \hat{x}_{ij}$$
 for $\hat{\mathcal{I}}$, $\dot{r}_j = r_j - \hat{r}_j$ for $\dot{\mathcal{I}}$

- $(\hat{\boldsymbol{x}}, \hat{\boldsymbol{y}})$ (integral) feasible and optimal for $\hat{\mathcal{I}}$
- $(\dot{\textbf{x}},\dot{\textbf{y}})$ (fractional) feasible and optimal for $\dot{\mathcal{I}}$

Properties

•
$$\dot{r}_j = \text{poly}(|F|)$$

• $\rho\text{-approx}$ for $\dot{\mathcal{I}}$ implies $\rho\text{-approx}$ for \mathcal{I}

Demand Reduction: Consequences

FTFP to FTFL, 1.7245-approximation

- Sites into facilities
- Clients with demand r_j
- FTFL size polynomial because of demand reduction

Ratio 1 + O(|F|/Q) for $Q = \min_j r_j$, approaches 1 when Q is large

Next slide

Ratio 1 + O(|F|/Q) for FTFP

Ratio 1 + O(|F|/Q) for FTFP

Techniques

- Demand Reduction
 - Reduce all *r_j* to polynomial values (to ensure polynomial time of rounding)
 - $\rho\text{-approx}$ for reduced instance $\Rightarrow \rho\text{-approx}$ for original instance
- Adaptive Partitioning
 - Split sites into facilities and clients into unit demands
 - Split associated fractional values
 - Properties ensure rounding similar to UFL can be applied

Demand Reduction Adaptive Partitioning

Adaptive Partitioning

Demand Reduction Adaptive Partitioning

Adaptive Partitioning

Adaptive Partitioning

Adaptive Partitioning

- Strategy 1: for each ν , open one $\mu \in N(\nu)$ with prob. \bar{y}_{μ}
 - optimal connection cost
 - large facility cost

- Strategy 1: for each ν , open one $\mu \in N(\nu)$ with prob. \bar{y}_{μ}
 - optimal connection cost
 - large facility cost

Strategy 2: open facility only for demands with disjoint neighborhoods

- optimal facility cost
- large connection cost

- Strategy 1: for each ν , open one $\mu \in N(\nu)$ with prob. \bar{y}_{μ}
 - optimal connection cost
 - large facility cost

How to balance these two costs?

Strategy 2: open facility only for demands with disjoint neighborhoods

- optimal facility cost
- large connection cost

Two Types of Demands: Primary and Non-primary

Neighborhood Structure for Siblings

Neighborhood Structure for Siblings

Example of Partitioning

Before Partitioning

글 🖌 🖌 글 🕨

э

Example of Partitioning

Partitioning:

- $\bullet \ {\sf Clients} \to {\sf demands}$
- $\bullet \ Sites \to facilities$
- $(x^*, y^*) \rightarrow (\bar{x}, \bar{y})$
- $\sum_{\mu} \bar{x}_{\mu
 u} = 1$
- $ar{x}_{\mu
 u}=ar{y}_{\mu}$ or 0

Structure:

• If κ_1, κ_2 primary then $N(\kappa_1) \cap N(\kappa_2) = \emptyset$

- Each non-primary ν assigned to κ with
 - $N(\kappa) \cap N(\nu) \neq \emptyset$
 - priority(κ) \leq priority (ν)

伺 ト く ヨ ト く ヨ ト

•
$$(N(\kappa_1) \cup N(\nu_1)) \cap (N(\kappa_2) \cup N(\nu_2)) = \emptyset$$

Partitioning:

- $\bullet \ {\sf Clients} \to {\sf demands}$
- $\bullet \ Sites \to facilities$
- $(x^*, y^*) \rightarrow (\bar{x}, \bar{y})$
- $\sum_{\mu} \bar{x}_{\mu
 u} = 1$
- $ar{x}_{\mu
 u}=ar{y}_{\mu}$ or 0

Structure:

• If κ_1, κ_2 primary then $N(\kappa_1) \cap N(\kappa_2) = \emptyset$

small facility cost

- Each non-primary ν assigned to κ with
 - $N(\kappa) \cap N(\nu) \neq \emptyset$
 - priority(κ) \leq priority (ν)

- **→** → **→**

•
$$(N(\kappa_1) \cup N(\nu_1)) \cap (N(\kappa_2) \cup N(\nu_2)) = \emptyset$$

Partitioning:

- $\bullet \ {\sf Clients} \to {\sf demands}$
- $\bullet \ Sites \to facilities$
- $(x^*, y^*) \rightarrow (\bar{x}, \bar{y})$
- $\sum_{\mu} \bar{x}_{\mu
 u} = 1$
- $ar{x}_{\mu
 u}=ar{y}_{\mu}$ or 0

Structure:

• If κ_1, κ_2 primary then $N(\kappa_1) \cap N(\kappa_2) = \emptyset$

small facility cost

- Each non-primary ν assigned to κ with
 - $N(\kappa) \cap N(\nu) \neq \emptyset$
 - priority(κ) \leq priority (ν)

/⊒ > < ∃ >

small connection cost of ν

•
$$(N(\kappa_1) \cup N(\nu_1)) \cap$$

 $(N(\kappa_2) \cup N(\nu_2)) = \emptyset$

Partitioning:

- $\bullet \ {\sf Clients} \to {\sf demands}$
- $\bullet \ Sites \to facilities$
- $(x^*, y^*) \rightarrow (\bar{x}, \bar{y})$
- $\sum_{\mu} \bar{x}_{\mu
 u} = 1$
- $ar{x}_{\mu
 u}=ar{y}_{\mu}$ or 0

Structure:

• If κ_1, κ_2 primary then $N(\kappa_1) \cap N(\kappa_2) = \emptyset$

small facility cost

- Each non-primary ν assigned to κ with
 - $N(\kappa) \cap N(\nu) \neq \emptyset$
 - priority(κ) \leq priority (ν)

small connection cost of ν

• $(N(\kappa_1) \cup N(\nu_1)) \cap$ $(N(\kappa_2) \cup N(\nu_2)) = \emptyset$

fault-tolerance

30 / 45

Partitioning Implementation

Partitioning implementation: two phases

- Phase 1, the partitioning phase
 - Define demands
 - Allocate facilities
- Phase 2, the augmenting phase
 - Add facilities to make neighborhood unit

Phase 1, Step 1: Choose Best Client

In each iteration, create one demand for best client

Phase 1, Step 1: Choose Best Client

In each iteration, create one demand for best client

- $bid(j) = avgdist(N_1(j)) + \alpha_i^*(dual value)$
- Best bid client p selected to create a demand

Phase 1, Step 2: Decide Neighborhood

Best client p creates demand ν , to decide $N(\nu)$, two cases:

Phase 1, Step 2 Contd.

Best client p creates demand ν , to decide $N(\nu)$, two cases:

Phase 1, Step 2 Contd.

Best client p creates demand ν , to decide $N(\nu)$, two cases:

• Case 1: disjoint, $N(\nu)$ gets $N_1(p)$

Phase 1, Step 2 Contd.

Best client p creates demand ν , to decide $N(\nu)$, two cases:

• Case 1: disjoint, $N(\nu)$ gets $N_1(p)$

• Case 2: overlap, N(
u) gets $N(p) \cap N(\kappa)$

Done with partitioning, next to rounding

< 17 ▶

* E > * E >

э

Outline

- 2 Results in Dissertation
- 3 Related Work
- 4 Techniques
- 5 Approximation Algorithms

6 Summary

э

3-Approximation for FTFP

Rounding: round each \bar{y}_{μ} and $\bar{x}_{\mu\nu}$ to 0 or 1

- Facilities: each primary κ opens one $\mu \in \mathit{N}(\kappa)$
- Connections: non-primary demands ν assigned to κ connect to μ

Analysis

- Fault-Tolerance: ν uses only facilities in $N(\nu) \cup N(\kappa)$
- Cost: $\leq 3 \cdot LP^*$, because
 - Facility cost $\leq F^*$
 - Connection cost $\leq C^* + 2 \cdot LP^*$

1.736-Approximation for FTFP

Rounding: round each $ar{y}_\mu$ and $ar{x}_{\mu u}$ to 0 or 1

- Facilities:
 - Each primary κ opens random $\mu \in N(\kappa)$
 - Other facilities open randomly independently
- Connections:
 - If a neighbor open, connect to nearest neighbor
 - Else connect via assigned primary demand

Analysis

- Fault-Tolerance: ν uses only facilities in $N(\nu) \cup N(\kappa)$
- Cost: $\leq (1+2/e) \operatorname{LP}^*$, because
 - Facility cost $\leq F^*$
 - Connection cost $\leq C^* + (2/e) \cdot \mathrm{LP}^*$

1.575-Approximation for FTFP — Partitioning

More intricate neighborhood structure

- Two neighborhoods: close and far, $N(
 u) = N_{
 m cls}(
 u) \cup N_{
 m far}(
 u)$
- $N_{
 m cls}(
 u) =$ nearest $(1/\gamma)$ -fraction of N(
 u)
- $N_{
 m cls}(
 u)\cap N_{
 m cls}(\kappa)
 eq \emptyset$, if u assigned to κ
- For siblings ν_1, ν_2 , $N_{\rm cls}(\kappa_1) \cup N(\nu_1)$ and $N_{\rm cls}(\kappa_2) \cup N(\nu_2)$ disjoint

...

1.575-Approximation for FTFP — Rounding

Rounding: boost $(\mathbf{x}^*, \mathbf{y}^*)$ by γ and apply demand reduction and adaptive partitioning, then round by

- Facilities:
 - Each primary κ opens random $\mu \in N_{\mathrm{cls}}(\kappa)$
 - Other facilities open randomly independently
- Connections:
 - If a neighbor open, connect to nearest neighbor
 - Else connect via assigned primary demand

Analysis

- Fault-Tolerance: u uses only facilities in $N(
 u) \cup N_{
 m cls}(\kappa)$
- Cost: $\leq \gamma \cdot \mathrm{LP}$ for $\gamma = 1.575$, because
 - Facility cost $\leq \gamma \cdot F^*$
 - Connection cost $\leq \gamma \cdot C^*$

→ □ → → □ →

Rounding Dual-fitting

Greedy and Dual-fitting

- Greedy in polynomial time
 - Best star can be found quickly
 - Best star remains best
- Ratio *H_n* (Wolsey's result): Greedy is *H_n*-approx for
 - Minimizing a linear function
 - Subject to submodular constraints
- Lower bound Ω(log *n*/log log *n*) for dual-fitting
 - Example has k groups, $n = k^k$
 - Shrinking factor is k/2

Rounding Dual-fitting

Dual-fitting Example

Dual constraints force a ratio of k/2, number of clients $n = k^k$

43 / 45

Outline

1 The FTFP Problem

- 2 Results in Dissertation
- 3 Related Work
- 4 Techniques
- **5** Approximation Algorithms

Summary

Results

- 1.575-approximation algorithm for FTFP
- Technique for extending LP-rounding algorithms for UFL to FTFP

Summary

Results

- 1.575-approximation algorithm for FTFP
- Technique for extending LP-rounding algorithms for UFL to FTFP

Open Problems

- Can FTFL be approximated with the same ratio?
- LP-free algorithms for FTFP or FTFL with constant ratio?
- Close the 1.463 1.488 gap for UFL!