
UNIVERSITY OF CALIFORNIA
RIVERSIDE

Approximation Algorithms for the Fault-Tolerant Facility Placement Problem

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Li Yan

June 2013

Dissertation Committee:

Professor Marek Chrobak, Chairperson
Professor Tao Jiang
Professor Stefano Lonardi
Professor Neal Young

Copyright by
Li Yan
2013

The Dissertation of Li Yan is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

I would thank my advisor, Professor Marek Chrobak, for bringing me into the PhD program

at the University of California, Riverside, and for his guidance and patience with my studies

and research during the past five years. I am also grateful to the committee, Professor Tao

Jiang, Professor Stefano Lonardi, and Professor Neal Young for helpful discussions and

comments on my research and this dissertation.

The supportive environment of the Algorithms and Computational Biology Lab

and the Computer Science Department has made my PhD study here a pleasant experience

and I am grateful to Claire Yu-ting Huang, Wei Li, Jonathan Dautrich, Monik Khare, Arman

Yosefia and other labmates in the algorithm lab for helpful discussions and stimulation of

ideas.

My labmates Monik Khare and Jonathan Dautrich, despite their tight schedules,

read a preliminary version of this dissertation with great patience and attention to detail.

Both offered many helpful comments and suggested numerous corrections. Toby Gustafson

from the Computer Science Department, and my fellow graduate students Shiwen Chen,

Dave Gomboc and Rachid Ounit have read later revisions and they have helped improve

the presentation significantly. Dorian Nogneng, a visiting student to our lab, read part of

the dissertation and pointed out several flaws in the theorems and their proofs.

Kristin Noone in the Graduate Writing Center, and Stephanie Chang in the under-

graduate program have proofread this dissertation and corrected a number of grammatical

errors.

During this final stage of my PhD study, our family had a new member, little

iv

Terry. Being with a baby as laid-back as Terry has kept me from getting overly stressed.

I would also like to take this opportunity to show appreciation to my wife, Ying Liu, for

handling most of the family responsibilities and bearing with me for staying up late working

on the dissertation and the defense.

v

To my parents, who always have faith in my endeavors.

vi

ABSTRACT OF THE DISSERTATION

Approximation Algorithms for the Fault-Tolerant Facility Placement Problem

by

Li Yan

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, June 2013

Professor Marek Chrobak, Chairperson

In this thesis, we have studied the Fault-Tolerant Facility Placement problem (FTFP). In

the FTFP problem, we are given a set of sites at which we can open facilities, and a set

of clients with demands. To satisfy demands, clients must be connected to open facilities.

The goal is to satisfy all clients’ demands while minimizing the combined cost of opening

facilities and connecting clients to facilities. The problem is NP-hard, and hence we study

approximation algorithms and their performance guarantees. Approximation algorithms

are algorithms that run in polynomial time with provable performance bounds relative to

optimal solutions.

We present two techniques with which we develop several LP-rounding algorithms

with progressively improved approximation ratios. The best ratio we have is 1.575. We

also study primal-dual approaches. In particular, we show that a natural greedy algorithm

analyzed using the dual-fitting technique gives an approximation ratio of O(log n). On the

negative side, under a natural assumption, we give an example showing that the dual-fitting

analysis cannot give a ratio better than O(log n/ log log n).

vii

Contents

List of Figures x

List of Tables xi

1 Introduction 1
1.1 Background and Related Problems . 1
1.2 Fault-Tolerant Facility Placement . 5
1.3 Organization of Dissertation . 7

2 Related Work 8
2.1 Related Work for UFL . 9

2.1.1 Hardness Results . 10
2.1.2 Linear Program Formulation . 11
2.1.3 Approximation Algorithms . 13
2.1.4 Bifactor Analysis . 16
2.1.5 LP-rounding Algorithms . 18

2.2 Related Work for FTFL . 21
2.3 Related Work for FTFP . 22

3 Linear Program 23
3.1 Notation and Definition . 23
3.2 Linear Program for FTFP . 24
3.3 Special Case with Uniform Demands . 25
3.4 Completeness and Facility Splitting . 26

4 Techniques 28
4.1 Demand Reduction . 29
4.2 Reduction from FTFP to FTFL . 32
4.3 Asymptotic Approximation Ratio for Large Demands 33
4.4 Adaptive Partitioning . 35

viii

5 LP-rounding Algorithms 51
5.1 Algorithm EGUP with Ratio 3 . 52
5.2 Algorithm ECHS with Ratio 1.736 . 55
5.3 Algorithm EBGS with Ratio 1.575 . 62

6 Primal-dual Algorithms 83
6.1 Greedy Algorithm and Dual-fitting Analysis for UFL 84
6.2 Greedy algorithm for FTFP with Ratio O(log n) 85

6.2.1 Greedy Algorithm for FTFP . 85
6.2.2 Analysis . 87

6.3 Limitation of Dual-fitting for FTFP . 91

7 Conclusion 97

Bibliography 99

A Technical Background 103
A.1 Integer Programming and Linear Programming 103

A.1.1 Optimization and Integer Programming 104
A.1.2 Linear Programming, Duality and Complementary Slackness Conditions105

A.2 Proof of Inequality (5.3) . 108

ix

List of Figures

1.1 An instance of the FTFP problem with an integral feasible solution. 6
1.2 Illustration of the triangle inequality. 7

2.1 Illustration of the clustering structure of LP-rounding algorithms for UFL. . 20

4.1 A diagram of the general approach using demand reduction and adaptive
partitioning to design LP-rounding algorithms for the FTFP problem. . . . 29

4.2 Illustration of the approach of reducing FTFP to UFL for the special FTFP
instance with all demands rj being large. 34

4.3 A diagram of adaptive partitioning. 36
4.4 Illustration of the neighborhood N(ν) of a demand ν. 36
4.5 An example of the first case in Phase 1 of adaptive partitioning. 43
4.6 An example of the second case in Phase 1 of adaptive partitioning. 43
4.7 An example of one step in Phase 2 of adaptive partitioning. 44

5.1 Illustration of the sets in the proof of Lemma 17 70

6.1 An Ω(log n/ log log n) example for dual-fitting for FTFP 93

A.1 An overview of application of Integer Programming and Linear Programming
for NP-hard optimization problems. 103

x

List of Tables

2.1 A history of approximation algorithms for UFL 10

4.1 An example of an execution of the partitioning algorithm. 44

xi

Chapter 1

Introduction

1.1 Background and Related Problems

Facility location problems are a class of problems of both theoretical interest and

practical significance. In general, facility location problems are about selecting a set of

sites to open facilities and servicing clients by connecting them to facilities. A classical

application is to set up warehouses to distribute commodities to retailers. On the one hand,

having more warehouses helps reduce shipping cost, because every retailer can be close to

some warehouse. On the other hand, setting up and maintaining a warehouse can be costly.

In this scenario, there is a trade-off between having more warehouses and cheaper shipping

and having fewer warehouses at the expense of shipping. Another application is to place

content servers in a computer network. In the network, we have a number of client machines

that need to access files from one of the servers. Having more servers allows faster access for

all clients. However, keeping a large number of servers around requires substantial hardware

1

and software investment, as well as committing operation engineers to keep the servers up

and running. A more recent example concerns today’s web giants like Google, Facebook

and Amazon. These web-based companies have geographically distributed development

offices. All these offices require access to large amounts of data from a handful of data

centers, located in a few carefully chosen locations. On the one hand, building a data

center is costly. The electricity bill alone would discourage the plan of having an excessive

number of data centers. On the other hand, demands from all offices need to be addressed,

or engineers would sit idling while waiting for data transfer to complete. We shall keep

using the development office and data center example to illustrate several aspects of facility

location problems.

First, setting up a data center incurs a cost and the cost varies with locations.

The real estate rent in Kansas usually does not compare to even a fraction of that in San

Francisco or New York. The electricity rate is also very different in mid-west areas from

that in California. Other factors like potential natural disasters, such as tornadoes and

earthquakes could also be factored into the cost estimate to build a data center in a certain

location. In short, different locations have different costs to set up a data center.

Second, different offices may have different demands. A larger office may require

access to several data centers, either for speedy data transfer, or for redundancy when one

or more of the data centers appear to be offline.

Third, data centers may have capacities. It is thus reasonable to put a limit on the

number of offices that a certain data center is able to serve. However, to keep the problem

simple, we may or may not have this constraint in our problem definition.

2

Facility location problems have long been an active topic in both Operations Re-

search and Computer Science. Early works on facility location problems can be found in

[32, 38, 5]; see also the book by Mirchandani and Francis [41]. For a review of more re-

cent work, see Shmoys’ survey articles [44, 42], Vygen’s lecture notes [47], and the book by

Williamson and Shmoys [18]. Problems that have been considered include

• the Uncapacitated Facility Location problem 1, where each site can open at most one

facility and each client needs to be connected to one facility,

• the Fault-Tolerant Facility Location problem [29, 22, 10], where each site can open at

most one facility, and each client has a demand, which is the number of facilities to

which it needs to connect,

• the Capacitated Facility Location problem [43, 37, 40, 51], where a site can open at

most one facility and each client connects to one facility, but every facility has a

capacity, which is the maximum number of clients it can accept,

• the k-median problem [12, 28, 4, 14], in which there is no cost to open a facility, each

site can open at most one facility, and the total number of facilities opened cannot be

more than k,

• the Multi-level Facility Location problem [2, 1, 50, 9, 31], in which we are given k

disjoint sets of facilities and each client needs to be serviced by a sequence of k

facilities with one from each set,

1This is a well studied problem and references are too numerous to be placed here, for a recent survey,
see Vygen’s lecture notes [47].

3

• the Online Facility Location problem [39, 20, 19], where demand points arrive one a

time and must be assigned irrevocably upon arrival,

• the Prize-Collecting Facility Location problem [13], where a site can open at most

one facility and each client can either connect to one facility, or stay unconnected, in

which case a penalty is counted towards final cost.

In all the problems above, there is a cost to open a facility at a site, and there is a cost to

connect a client to a facility. The goal is to minimize the total cost of opening facilities and

connecting clients to facilities. In the Prize-Collecting Facility Location problem, we also

pay a penalty for each client that is not connected.

The simplest variant, known as the Uncapacitated Facility Location problem

(UFL), is also the one that has been studied most extensively.

Problem 1 (The UFL Problem) In the UFL problem, we are given a set of sites F and

a set of clients C. Each site i can open one facility and each client j needs to connect to one

facility. Facilities are uncapacitated, meaning that a facility can accept connections from

any number of clients. We are also given the facility opening cost fi for each site i, and the

distance dij between a site i and a client j. The problem asks us to find a set of sites on

which to open facilities and to connect clients to facilities, in such a way that the total cost

is minimized. The total cost is the sum of the facility opening cost and the client connection

cost.

The UFL problem with general distances has an algorithm with an approximation ratio of

O(log n), where n is the number of clients. This algorithm is credited to Hochbaum [25].

4

A matching lower bound of Ω(log n) on the approximation ratio is immediate, as the UFL

problem contains the well-known Set Cover problem as a special case [25]. When the

distances form a metric, that is, they satisfy the triangle inequality, there are algorithms

with constant approximation ratios. Shmoys, Tardos and Aardal [43] were the first ones

to obtain an O(1)-approximation algorithm for the UFL problem. Currently, the best

known approximation ratio is 1.488 by Li [33]. On the other hand, Guha and Khuller [21]

showed a lower bound of 1.463 on the approximation ratio, under the assumption that

NP * DTIME(nO(log logn)). Sviridenko [47] weakened the underlying assumption to P 6= NP.

1.2 Fault-Tolerant Facility Placement

The problem studied in this thesis is called the Fault-Tolerant Facility Placement

problem (FTFP), which generalizes the UFL problem. The differences between the UFL

problem and the FTFP problem are: each client j now has a demand rj that could be more

than one, and at each site i we can open one or more facilities. More formally, we define

the FTFP problem as:

Problem 2 (The FTFP Problem) In the Fault-Tolerant Facility Placement problem,

we are given a set of sites F and a set of clients C. Each client j ∈ C has a demand

rj. Opening one facility at a site i incurs a cost of fi. Making one connection from a client

j to a facility at a site i incurs a cost of the distance dij. The problem asks for a solution

in which every client j is connected to rj different facilities and the total cost of opening

facilities and connecting clients to facilities is minimized.

5

One example is given in Figure 1.1, along with an integral feasible solution to that instance.

The FTFP problem with general distances is well-understood, with a greedy algorithm

achieving an approximation ratio of Hn where n is the number of clients and Hn is the

nth harmonic number (we show this result in Section 6.2), and a matching lower bound of

Hn on the approximation ratio because FTFP contains the Set Cover problem as a special

case. In this thesis we only consider the metric version of the FTFP problem, where the

distances dij satisfy the triangle inequality; see Figure 1.2 for an illustration.

3

2

1

f3 = 4

f2 = 6

f1 = 3

4

3

2

1

r4 = 2

r3 = 1

r2 = 1

r1 = 4
1

2

1

3

2

4

(a) The FTFP instance.

3

2

1

4

3

2

1

(b) An integral feasible solution.

Figure 1.1: An instance of the FTFP problem with an integral feasible solution. The cost
of the solution is 2f1 + f2 + 3f3 + d11 + d12 + 2d14 + d23 + 3d31 = 38.

The FTFP problem contains the UFL problem as a special case. In fact, by

setting rj = 1 for all clients j in FTFP, we get the UFL problem. Another problem that

is closely related to the FTFP problem is the Fault-Tolerant Facility Location problem

(FTFL) mentioned earlier. The difference between FTFP and FTFL is that, in FTFP we

can open any number of facilities at a site, while in FTFL we can open at most one facility

6

i1

i2

j1

j2

Figure 1.2: Illustration of the triangle inequality. For any two sites i1 and i2, and any two
clients j1 and j2, we have di1j2 ≤ di1j1 + di2j1 + di2j2 .

at a site.

1.3 Organization of Dissertation

The rest of this thesis is organized as follows: In Chapter 2 we present related work

for UFL, FTFL and our problem FTFP; in Chapter 3 we give the LP for FTFP and describe

structural properties of the optimal fractional solution that we use for our algorithms; in

Chapter 4 we describe two main techniques, demand reduction and adaptive partitioning,

that allow us to obtain a fractional solution with additional structural properties; in Chap-

ter 5 we show how to round the obtained fractional solution to an integral solution with

bounded cost; in Chapter 6 we present preliminary results of the primal-dual approach; in

Chapter 7 we conclude this thesis with a discussion of open problems.

7

Chapter 2

Related Work

In this chapter we review the history of two problems closely related to our FTFP

problem, the Uncapacitated Facility Location problem (UFL), and the Fault-Tolerant Fa-

cility Location problem (FTFL). We finish this chapter with an overview of known results

and our work for the FTFP problem.

In all three problems, we are given a set of sites F, a set of clients C, the facility

opening cost fi for a site i, the distance dij between a site i and a client j, and the demand

rj for a client j. The differences between the problems are:

• UFL: all demands are 1; that is rj = 1 for all clients j. Then we need not more than

1 facility at a site.

• FTFL: some demands may be more than 1, but each site can open at most 1 facility.

• FTFP: some demands may be more than 1, and each site can open any number of

facilities.

8

For all three problems above, we assume the metric version. That is, the distances satisfy

the triangle inequality: for any two sites i1 and i2 and two clients j1 and j2, we have

di1j2 ≤ di1j1 + di2j1 + di2j2 .

In designing algorithms for all three problems, UFL, FTFL, and FTFP, we have

two competing goals: on the one hand, we want to open as few facilities as possible so that

our facility cost is small; on the other hand, we need as many facilities as possible so that

every client can connect to nearby facilities. The main challenge, therefore, is to find a

solution with a balanced facility cost and connection cost. We shall see how this balance is

achieved in several known algorithms for UFL and FTFL. These two problems have been

well studied in the past and a number of approximation algorithms for them are known.

In particular, the LP-rounding algorithms for UFL inspired our approach for the FTFP

problem. For this reason, we explain the LP-rounding algorithms for UFL in the coming

section with full details, aiming at developing an intuition for our LP-rounding algorithms

for the FTFP problem.

2.1 Related Work for UFL

The Uncapacitated Facility Location problem (UFL) is the simplest variant of the

Facility Location problems, and has received the most attention. A surprising fact is that a

wide range of different techniques for designing approximation algorithms have been found

successful in achieving good ratios, as shown in Table 2.1. One alteration of terminology:

to be consistent with the UFL literature, instead of saying “opening facilities at sites”, we

9

simply say “opening or closing facilities” without mentioning the sites, since in the UFL

problem we have not more than one facility at each site.

author technique ratio year

Shmoys, Tardos and Aardal LP-rounding 3.16 1997 [43]

Chudak and Shmoys LP-rounding 1.736 1998 [16]

Sviridenko LP-rounding 1.582 2002 [45]

Jain and Vazirani primal-dual 3 2001 [28]

Jain et al. dual-fitting 1.61 2003 [26]

Arya et al. local-search 3 2001 [3]

Byrka and Aardal hybrid 1.50 2007 [6]

Li hybrid 1.488 (best result) 2011 [33]

Guha and Khuller (*) lower-bound 1.463 1998 [21]

Table 2.1: A history of approximation algorithms for the UFL problem and their ratios. The
word hybrid refers to using two independent algorithms and returning the better solution
of the two. The last row with an asterisk gives a lower bound on the approximation ratio.

2.1.1 Hardness Results

Before we delve into the approximation results for the UFL problem, we review the

hardness results, which establish a limit on the best ratio with which we can approximate

the UFL problem, under the well-respected assumption that P 6= NP. Since both the FTFL

problem and the FTFP problem contain the UFL problem as a special case, all the hardness

results mentioned here carry over to FTFL and FTFP as well. Regarding UFL, the following

10

result is known:

Theorem 3 [21] The metric UFL problem is MaxSNP-hard.

The proof is by a reduction from the B-Vertex-Cover problem, which is a well-known

MaxSNP-hard problem. The idea is to show that, for any constant ε, given a (1 + ε)-

approximation algorithm for the UFL problem, we can construct a (1 + ε′)-approximation

algorithm for the B-Vertex-Cover problem with ε′ = ε(1 +B). Given Theorem 3, we know

that there exists some constant c such that no approximation algorithm with ratio less

than c is possible unless P = NP. The best known such constant c for the UFL problem is

c = 1.463, according to Guha and Khuller [21].

2.1.2 Linear Program Formulation

The analysis of approximation algorithms for NP-hard problems requires an es-

timate on the optimal solution’s cost. For NP-hard problems, the task to compute the

optimal solution’s cost itself is also NP-hard. One alternative is to formulate an integer

program for the problem and relax the integrality constraints to obtain a linear program

(LP). Solving the LP gives an optimal fractional solution. The value of the fractional solu-

tion is then used to estimate the optimal integral solution’s cost. In Appendix A.1 we give

a brief introduction to Integer Programming, Linear Programming and their application for

the UFL problem.

For the UFL problem, the LP formulated by Balinski [5] is now standard. We start

with an integer program, in which we use a variable yi ∈ {0, 1} to indicate whether a facility

i ∈ F is open or not, and a variable xij ∈ {0, 1} to indicate whether a client j is connected

11

to a facility i. Relaxing the integrality constraints, we obtain the following LP (2.1) for the

UFL problem. Observe that we do not need an explicit constraint of xij ≤ 1 or yi ≤ 1, as

any optimal solution to the LP (2.1) must satisfy these two constraints automatically. The

LP is:

minimize
∑
i∈F

fiyi +
∑

i∈F,j∈C
dijxij

subject to yi − xij ≥ 0 ∀i ∈ F, j ∈ C∑
i∈F

xij ≥ 1 ∀j ∈ C

xij ≥ 0, yi ≥ 0 ∀i ∈ F, j ∈ C

(2.1)

The dual program is:

maximize
∑
j∈C

αj

subject to
∑
j∈C

βij ≤ fi ∀i ∈ F

αj − βij ≤ dij ∀i ∈ F, j ∈ C
αj ≥ 0, βij ≥ 0 ∀i ∈ F, j ∈ C

(2.2)

Two general schemes using LP to design approximation algorithms are, the LP-

rounding scheme and the primal-dual scheme. LP-rounding algorithms start with calling an

LP-solver to obtain an optimal fractional solution (x∗,y∗), and then round the fractional

solution in such a way that feasibility is preserved, while the solution’s cost does not increase

by much. However, primal-dual algorithms do not require solving the LP, and the use of

LP in the algorithms and their analysis is implicit. Those algorithms work by constructing

an integral feasible primal solution and a feasible (fractional) dual solution simultaneously.

Moreover, the cost of these two solutions are related. Assuming that the primal program

is a minimization program, the Weak Duality Theorem, Theorem 26 in the appendix, tells

12

us that we can use the cost of this dual solution as a lower bound on the optimal value for

the primal program. We are then able to derive an approximation ratio by comparing the

cost of the primal solution and the cost of the dual solution computed by the algorithm.

2.1.3 Approximation Algorithms

In this subsection, we give an overview of known approximation algorithms for the

UFL problem, including LP-rounding algorithms, primal-dual algorithms, and local-search

algorithms. All of them, except local-search algorithms, make use of the LPs (2.1) and (3.2)

just described.

LP-rounding Algorithms

The first O(1)-approximation algorithm was obtained by Shmoys, Tardos and

Aardal [43], using LP-rounding. The Shmoys et al.’s algorithm has also established a gen-

eral framework that underpins all subsequent LP-rounding algorithms. In this framework,

the clients are partitioned into clusters and each cluster has a representative client. The

rounding algorithm guarantees that each representative has a nearby facility to connect to,

and the rest of the clients then connect to those facilities via their representatives. This

clustering structure is used in all known LP-rounding algorithms for the UFL problem.

The Shmoys et al.’s algorithm achieved a ratio of 3.16. Since their algorithm

has made several greedy choices, it has left quite some room for improvements. Chudak

and Shmoys [15] were the first ones to use the idea of randomized rounding for UFL.

Roughly speaking, in their algorithm, each facility i is opened with probability y∗i , which is

13

given by the optimal fractional solution (x∗,y∗) to the LP (2.1). The expected connection

cost is estimated using a provably worse random process, in which each facility is opened

independently. The expected connection cost of this alternative process is easier to analyze.

Chudak and Shmoys obtained a ratio of 1 + 2/e = 1.736. Sviridenko [45] further improved

the ratio to 1.582, by using a scaled version of the optimal fractional solution (x∗,y∗), and

by a judicious choice of some distribution of the scaling parameter. The rounding process is

called pipage rounding, a deterministic rounding process that takes advantage of the concave

property of some cost function. The analysis is highly technical.

Primal-dual Algorithms

Primal-dual algorithms do not require solving the LP and thus have a lower time

complexity. For UFL, two primal-dual algorithms have achieved impressive approximation

ratios: the first algorithm, given by Jain and Vazirani [28], achieved a ratio of 3; the second

algorithm by Jain, Markakis, Mahdian, Saberi and Vazirani [26] achieved a ratio of 1.61.

For the Jain and Vazirani’s algorithm with a ratio of 3, the approximation ratio is

obtained via a relaxed version of the complementary slackness conditions. These conditions

provide a bound on the cost of the primal solution in terms of the cost of the dual solution.

For a maximization primal program, the cost of any feasible dual solution is a lower bound

on the cost of the optimal primal solution. More on the complementary slackness conditions

and their use for UFL can be found in Appendix A.1.2.

A slightly different primal-dual based algorithm was proposed by Jain, Markakis,

Mahdian, Saberi and Vazirani [26]. They analyzed a greedy algorithm that repeatedly picks

14

the most cost-effective star until all clients are connected. A star consists of one facility and

a subset of clients. The cost of a star is the sum of the facility opening cost and connection

cost of the clients to that facility. The cost-effectiveness of a star is the cost of the star

divided by the number of clients in that star.

The algorithm iterates until all clients are connected. In each iteration, the algo-

rithm picks the best star, connects all member clients to the facility, and sets the facility

cost to zero. The clients that were in the star are removed from future considerations, but

the facility could be reused for future stars.

Jain et al. analyzed the greedy algorithm and its variant using the dual-fitting

technique. They first showed that the greedy algorithm can be interpreted as a process of

growing a dual solution and updating a primal solution. Moreover, the cost of the primal

solution is equal to the cost of the dual solution. It might appear that we have solved

the UFL problem optimally, although we know that this cannot be the case, as the UFL

problem is NP-hard. The catch is that the dual solution computed by the greedy algorithm

is not feasible. The next step is to find a common factor γ, such that the dual solution

after shrunk by γ (divided by γ), becomes feasible. That factor γ is then the desired

approximation ratio. They showed that their two algorithms have approximation ratios of

1.861 1 and 1.61 respectively.

Other Algorithms

A still different approach is local-search, in which we start with some feasible in-

tegral solution, make local moves to improve that solution, and stop when a local optimum

1An improved analysis by Mahdian showed the actual ratio is 1.81.

15

is achieved. The set of allowed local moves needs to be chosen carefully: admitting more

powerful moves allows the local optimum to be closer to the global optimum, while re-

stricting to a few simple moves results in faster algorithms and easier analysis. Korupolu,

Plaxton and Rajaraman [30] were the first ones to study the local-search approaches for the

UFL problem. They analyzed a heuristic and showed that the heuristic achieved a ratio

of 5. Arya et al. [3] showed that their local-search algorithm achieved a ratio of 3. These

algorithms do not make use of the LP and have been of special interest for the k-median

problem and the Capacitated Facility location problem. For the k-median problem, the

(3 + ε)-approximation algorithm by Arya et al. [3] remains the algorithm with the best

approximation ratio. For the Capacitated Facility Location problem, the natural LP has a

large integrality gap and the only known O(1)-approximation algorithm by Pal et al. [40]

uses local-search.

Best Result. To date, the best-known approximation algorithms for UFL are due to

Byrka [6] with a ratio of 1.5, and a follow-up work by Li [33] with a ratio of 1.488. Both

algorithms use a combination of two algorithms: one is an LP-rounding algorithm and the

other is the 1.61 greedy algorithm by Jain, Mahdian and Saberi [27]. To explain the hybrid

approach requires the notion of bifactor analysis; for this reason, we postpone the discussion

of Byrka’s and Li’s work for now and introduce the bifactor analysis first.

2.1.4 Bifactor Analysis

Given that the cost of a UFL solution consists of two parts, the facility cost and

the connection cost, a notion of bifactor approximation is appropriate. This notion was

16

introduced by Jain et al. in [26]. An algorithm with a facility cost of FALG (sum of fi for

all open facilities i) and a connection cost of CALG (sum of dij for connected pairs of (i, j)),

is said to be a (γf , γc)- approximation if, for every feasible solution SOL with a facility cost

of FSOL and a connection cost of CSOL, we have

FALG + CALG ≤ γfFSOL + γcCSOL.

In particular, the above holds if we substitute in an optimal fractional solution (x∗,y∗) for

SOL. The solution (x∗,y∗) has facility cost F ∗ =
∑

i∈F fiy
∗
i and connection cost C∗ =∑

j∈C dijx
∗
ij . Therefore, for a (γf , γc)-approximation algorithm ALG, we have

FALG + CALG ≤ γfF ∗ + γcC
∗.

The notion of bifactor approximation is helpful when an algorithm has imbalanced

factors of γf and γc. It is easy to see that such an algorithm has an approximation ratio of

max{γf , γc}. However, more can be said, as there are techniques like cost scaling and greedy

augmentation to balance these two factors, thus achieving a better overall approximation

ratio. The techniques of cost scaling and greedy augmentation, and their use for balancing

the two factors were introduced by Guha, Khuller and Charikar [21, 11]. For example, the

primal-dual algorithm by Jain and Vazirani [29] is a (1,3)-approximation algorithm; using

cost scaling and greedy augmentation, it is possible to show that this algorithm can achieve

a ratio of 1.85 [11].

Finally we return to the hybrid algorithms by Byrka and Aardal [7], and Li [33].

Byrka and Aardal gave an LP-rounding algorithm with bifactor (1.68, 1.37), and showed

that this algorithm, when combined with the (1.11, 1.78)-approximation algorithm by Jain

17

et al. [26], gave a ratio of 1.50. Li showed that by choosing a nontrivial distribution of the

scaling factor of Byrka’s algorithm, the analysis can be refined to show an overall ratio of

1.488. The 1.488 ratio is currently the best known approximation result.

2.1.5 LP-rounding Algorithms

We now present a more detailed description of the LP-rounding algorithms, as our

LP-rounding algorithms for FTFP are built on the LP-rounding algorithms for UFL.

The Motivation of Rounding

Every LP-rounding algorithm for UFL starts with solving the LP (2.1) to obtain

an optimal fraction solution (x∗,y∗). Then we need to round the fractional solution to an

integral solution (x̂, ŷ).

An integral solution with a small cost would have each client connected to a nearby

facility and few facilities open. Consider a client j. To get a handle on the connection cost,

we would like the client j to connect to some neighboring facility i ∈ N(j), where the

neighborhood of j is defined as N(j)
def
= {i ∈ F :x∗ij > 0}. For the sake of the connection

cost, it is desirable that every client has a neighboring facility open, as those are facilities

not too far away. However, this, in general, is not possible, or we would have to open too

many facilities, and thus incur a high facility cost. An alternative is to select a subset of

clients, denoted by C ′ ⊆ C and only require clients in C ′ have a neighboring facility open.

Clients outside C ′ are then connected to a facility via some client in C ′. The connection

cost for clients in C \ C ′ are bounded using the triangle inequality. For this strategy to

18

work, every client j outside C ′ needs to be able to find some client j′ in C ′ such that both

djj′
def
= mini∈F dij + dij′ and dφ(j′)j′ are small. Here φ(j′) is the facility that j′ connects to.

The Clustering Structure

The clustering structure produced by the Shmoys, Tardos and Aardal’s algorithm

is depicted in Figure 2.1. These authors were inspired by the filtering and rounding work

by Lin and Vitter [35]. The structure has three interesting properties:

• First, each cluster of clients has a representative 2.

• Second, the neighborhoods of the representatives are disjoint.

• Third, each client shares a neighbor with its representative.

A Simple 4-approximation

To see how this clustering structure helps rounding, we use a simple 4-approximation

algorithm by Chudak [16] as an example. In this algorithm, clusters are formed by repeat-

edly picking a non-clustered client with the minimum α∗j value as a new representative,

where (α∗,β∗) is the optimal dual solution; clients sharing a neighboring facility with the

new representative then become members of that cluster. Once all clients have been clus-

tered, the algorithm opens the cheapest facility in each representative’s neighborhood. All

clients in the same cluster connect to the only facility open in their representative’s neigh-

borhood.

2In the literature, the representative is called center.

19

Figure 2.1: An illustration of the clustering structure of LP-rounding algorithms for UFL.
Rectangles are facilities and circles are clients. Dashed boxes indicate clusters. The solid
circle in each box denotes the representative of that cluster. An edge is drawn from a client
to a neighboring facility. An ellipse indicates the neighborhood of a representative.

The facility cost of this solution is not more than F ∗ =
∑

i∈F fiy
∗
i , because ev-

ery facility that is opened can have its cost bounded by the average facility cost of the

neighborhood. The connection cost of a representative j′ is not more than α∗j′ , because the

complementary slackness conditions imply that dij′ ≤ α∗j′ for every facility i in N(j′). The

connection cost for a non-representative client j can be bounded by the triangle inequality,

that is di′j ≤ di′j′+dij′+dij , where j′ is the representative of j, and i′ is the facility opened

in j′’s neighborhood, and i is a common neighbor of both j and j′. Using the complemen-

tary slackness conditions, the distance of di′j is not more than α∗j′ + α∗j′ + α∗j , which is not

more than 3α∗j because the representative j′ has the minimum α∗j′ value among all clients

20

in its cluster. Summarizing, the solution has a facility cost at most F ∗ and a connection

cost not more than 3
∑

j∈C α
∗
j = 3 LP∗, where LP∗ = F ∗ + C∗. Since LP∗ ≤ OPT, where

OPT is the optimal integral solution’s cost, the algorithm is a 4-approximation.

2.2 Related Work for FTFL

The Fault-Tolerant Facility Location problem (FTFL) was introduced by Jain and

Vazirani [29]. The LP for FTFL is

minimize
∑
i∈F

fiyi +
∑

i∈F,j∈C
dijxij

subject to yi − xij ≥ 0 ∀i ∈ F, j ∈ C∑
i∈F

xij ≥ rj ∀j ∈ C

yi ≤ 1 ∀i ∈ F
xij ≥ 0, yi ≥ 0 ∀i ∈ F, j ∈ C

(2.3)

The constraint
∑

i∈F xij ≥ rj is present because, unlike in UFL, a client j now needs to be

connected to rj different facilities. The constraint yi ≤ 1 is necessary because in the FTFL

problem a site can open at most 1 facility.

Jain and Vazirani adapted their primal-dual algorithm for UFL to FTFL and ob-

tained a ratio of 3 ln maxj rj . The first O(1)-approximation algorithm was given by Guha,

Meyerson and Munagala [22], using an LP-rounding algorithm similar to the Shmoys, Tardos

and Aardal’s [43] algorithm for the UFL problem. Swamy and Shmoys [46] gave an im-

proved algorithm with a ratio of 2.076. Their algorithm uses the pipage rounding technique.

The current best known approximation ratio is 1.7245, according to Byrka, Srinivasan and

Swamy [10]. Their algorithm uses dependent rounding and a laminar clustering structure.

21

We note that all of the known O(1)-approximation algorithms for FTFL are LP-

rounding algorithms and they require the fractional optimal solution of the LP as the first

step. This step can be computationally expensive. Given the success of primal-dual based

approaches for UFL, it is natural to ask whether such algorithms could be adapted to

FTFL with good ratios. To the best of the author’s knowledge, there has been no success

in obtaining a primal-dual algorithm for FTFL with a sub-logarithmic ratio. This is in

stark contrast to the fact that two different primal-dual algorithms [29, 26] have achieved

constant ratios for UFL.

2.3 Related Work for FTFP

Our problem, the Fault-Tolerant Facility Placement problem (FTFP), was intro-

duced by Xu and Shen [48] 3. The study of FTFP was partly motivated to obtain a better

understanding of the implication of the fault-tolerant requirement on facility location prob-

lems. Xu and Shen’s results [48], and a follow-up work by Liao and Shen [34], seem to be

valid only for a special case of FTFP.

Our work on the FTFP problem begins with a 4-approximation LP-rounding al-

gorithm [49]. In this thesis we present significantly improved results for FTFP. Using LP-

rounding algorithms, we achieved a ratio of 1.575, which matches the best known LP-based

ratio for UFL [8]. The LP-rounding results are explained in Chapter 5. For primal-dual

algorithms, we present our preliminary results in Chapter 6, in which we give an explanation

of the difficulties in obtaining an O(1)-approximation using primal-dual based approaches.

3In their paper they call the problem the Fault-Tolerant Facility Allocation problem, or FTFA.

22

Chapter 3

Linear Program

In this chapter we give the linear program (LP) for the FTFP problem. The

structure of the linear program implies a simple reduction for a special case of FTFP. We

describe this reduction in Section 3.3. For the optimal fractional solution used for our

approximation algorithms, we assume a structural property called completeness. The exact

definition and a procedure to obtain such a solution is given in Section 3.4. The discussion

in this chapter prepares the reader for Chapter 4, where we introduce our main techniques:

demand reduction and adaptive partitioning.

3.1 Notation and Definition

For the reader’s convenience, we repeat the problem definition and the notation

before introducing the LP. In the Fault-Tolerant Facility Placement problem (FTFP), we

denote the set of sites as F, and the set of clients as C. Each client j ∈ C has a demand

rj , meaning that j needs to be connected to rj different facilities. The distance between a

23

site i and a client j is denoted as dij . Opening one facility at a site i incurs a cost of fi.

Making one connection from a client j to a facility at a site i incurs a cost of dij . Thus, an

FTFP instance is fully specified by (F,C, {rj}, {fi}, {dij}). We consider the metric version,

in which the distances satisfy the triangle inequality: for any two sites i1, i2 and any two

clients j1, j2, we have

di1j2 ≤ di1j1 + di2j1 + di2j2 .

A solution to the FTFP problem is a vector (x,y), where xij ∈ {0, 1, 2, . . .} denotes

the number of connections between a site i and a client j, and yi ∈ {0, 1, 2 . . .} denotes

the number of facilities opened at site i. The solution is feasible if yi ≥ xij for every

i ∈ F, j ∈ C and
∑

i∈F xij = rj for all clients j ∈ C. The total cost of the solution is∑
i∈F fiyi+

∑
i∈F,j∈C dijxij . We call the first term

∑
i∈F fiyi the facility cost of the solution,

and the second term
∑

i∈F,j∈C dijxij the connection cost of the solution. Our goal is to find

a feasible solution with the minimum total cost.

3.2 Linear Program for FTFP

The FTFP problem has a natural Integer Programming (IP) formulation. Let yi

represent the number of facilities opened at a site i, and let xij represent the number of

connections from a client j to facilities at a site i. If we relax the integrality constraints, we

obtain the following LP:

minimize cost(x,y) =
∑

i∈F fiyi +
∑

i∈F,j∈C dijxij

subject to yi − xij ≥ 0 ∀i ∈ F, j ∈ C∑
i∈F xij ≥ rj ∀j ∈ C

xij ≥ 0, yi ≥ 0 ∀i ∈ F, j ∈ C

(3.1)

24

The dual program is:

maximize
∑

j∈Crjαj

subject to
∑

j∈C βij ≤ fi ∀i ∈ F
αj − βij ≤ dij ∀i ∈ F, j ∈ C

αj ≥ 0, βij ≥ 0 ∀i ∈ F, j ∈ C

(3.2)

In each of our algorithms, we will fix some optimal solutions of the LPs (3.1) and (3.2) that

we will denote by (x∗,y∗) and (α∗,β∗), respectively.

With (x∗,y∗) fixed, we can define the optimal facility cost as F ∗ =
∑

i∈F fiy
∗
i and

the optimal connection cost as C∗ =
∑

i∈F,j∈C dijx
∗
ij . Then LP∗ = cost(x∗,y∗) = F ∗ + C∗

is the joint optimal value of (3.1) and (3.2). We can also associate with each client j its

fractional connection cost C∗j =
∑

i∈F dijx
∗
ij . Clearly, C∗ =

∑
j∈CC

∗
j . Throughout this

thesis, we will use notation OPT for the optimal integral solution of (3.1). OPT is the value

we wish to approximate, but, since OPT ≥ LP∗, we can instead use LP∗ to estimate the

approximation ratio of our algorithms.

3.3 Special Case with Uniform Demands

If we compare the LP (3.1) and its dual (3.2) for FTFP to the LP (2.1) and its

dual (2.2) for UFL, these two LPs are very similar. In fact, the dual constraints of the

two problems are identical. This makes one wonder whether there is a simple reduction

from FTFP to UFL, so that we can take advantage of almost all known approximation

algorithms for UFL and use them to solve FTFP. Unfortunately, we are not aware of such

a reduction for FTFP with general demands. For the special case when all demands are

equal, we observe that any fractional solution (x,y) to the LP (3.1), when scaled down by

25

R = rj (since all rj ’s are equal), is a feasible solution to an UFL instance with the same set

of sites, the same set of clients, and the same facility opening costs and the same distances.

If we solve that UFL instance with an approximation algorithm, and duplicate the solution

R times, we obtain an integral solution to the FTFP instance. It is not hard to see that

the approximation ratio is preserved. This shows a simple reduction from FTFP to UFL

for the uniform demands case.

3.4 Completeness and Facility Splitting

In this section, we describe a structural property. In our LP-rounding algorithms

for FTFP, we use a fixed fractional optimal solution (x∗,y∗), and we assume that solution

possess this structural property. This property is called completeness. Moreover, we give a

procedure to obtain such a complete solution.

Define (x∗,y∗) to be complete if x∗ij > 0 implies that x∗ij = y∗i for all i, j. In other

words, each connection either uses a site fully or not at all. As shown by Chudak and

Shmoys [15], we can modify the given instance by adding at most |C| sites to obtain an

equivalent instance that has a complete optimal solution, where “equivalent” means that

the values of F ∗, C∗ and LP∗, as well as OPT, are not affected. Roughly, the argument is

this: we notice that, without loss of generality, for each client k there exists at most one

site i such that 0 < x∗ik < y∗i . We can then perform the following facility splitting operation

on site i: introduce a new site i′, let y∗i′ = y∗i − x∗ik, redefine y∗i to be x∗ik, and then for each

client j redistribute x∗ij so that i retains as much connection value as possible and i′ receives

the rest. Specifically, we set

26

y∗i′ ← y∗i − x∗ik, y∗i ← x∗ik, and

x∗i′j ← max(x∗ij − x∗ik, 0), x∗ij ← min(x∗ij , x
∗
ik) for all j 6= k.

This operation eliminates the partial connection between k and i and does not create any

new partial connections. Each client can split at most one site and hence we shall have at

most |C| more sites.

Given the above discussion, without loss of generality, we can assume that the

optimal fractional solution (x∗,y∗) is complete. In fact, this assumption will greatly simplify

some of the arguments in the paper. Additionally, we will frequently use the facility splitting

operation described above in our algorithms to obtain fractional solutions with desirable

properties.

27

Chapter 4

Techniques

In this chapter we introduce two techniques: demand reduction and adaptive parti-

tioning. These techniques together produce a structured fractional solution to the LP (3.1).

This structured solution possesses a number of nice properties, of which we then take ad-

vantage in our LP-rounding algorithms (Chapter 5) to obtain integral solutions with good

approximation ratios. A diagram of our general approach employing the two techniques

to obtain an approximation algorithm is depicted in Figure 4.1. In this process, we start

with an optimal fraction solution (x∗,y∗) and split into two parts; we then solve the frac-

tional part with an integral solution; finally, we combine this solution and the integral part

obtained earlier to get a solution to the original instance.

Our first technique, demand reduction, allows us to confine our attention to a

restricted version of the FTFP problem in which all demands rj ’s are not too large. This

restriction then sets the stage for the application of our second technique, adaptive parti-

tioning, with which we obtain an FTFP instance with facilities created at sites (not opened

28

LP x∗, y∗

x̂, ŷ
r̂j =

∑
i x̂ij

ẋ, ẏ
ṙj =

∑
i ẋij

x̄, ȳẍ, ÿ
x̂+ ẍ
ŷ + ÿ

ρ-approximate
solution

LP-solver

round down
to integer

fractional part

adaptive
partitioning

LP-rounding

demand reduction

Figure 4.1: A diagram of the general approach using demand reduction and adaptive par-
titioning to design LP-rounding algorithms for the FTFP problem.

yet) and unit demand points derived from clients. Then, our job is to decide which facilities

to open and how to connect unit demands to open facilities. We would like to point out

that we still need to observe the fault-tolerant requirement, that is unit demands originated

from the same client must connect to different facilities. We shall see that our adaptive

partitioning step deals with the fault-tolerant requirement smoothly.

4.1 Demand Reduction

This section presents the demand reduction technique that reduces the FTFP prob-

lem for arbitrary demands to a special case where demands are bounded by |F|, the number

of sites. (The formal statement is a little more technical – see Theorem 5.) The demand

reduction step prepares us for our second technique, adaptive partitioning (Section 4.4),

as well as our LP-rounding algorithms (Chapter 5), since those steps process individual

29

demands of each client one by one, and thus they critically rely on the demands being

bounded polynomially in terms of |F| and |C| to keep the overall running time polynomial.

The reduction is based on an optimal fractional solution (x∗,y∗) to the LP (3.1).

From the optimality of this solution, we can also assume that
∑

i∈F x
∗
ij = rj for all j ∈ C.

As explained in Chapter 3, we can assume that (x∗,y∗) is complete, that is x∗ij > 0 implies

x∗ij = y∗i for all i, j. We split this solution into two parts, namely (x∗,y∗) = (x̂, ŷ) + (ẋ, ẏ),

where

ŷi ← by∗i c, x̂ij ← bx∗ijc and

ẏi ← y∗i − by∗i c, ẋij ← x∗ij − bx∗ijc

for all i, j. Now we construct two FTFP instances Î and İ with the same parameters as

the original instance, except that the demand of each client j is r̂j =
∑

i∈F x̂ij in instance

Î and ṙj =
∑

i∈F ẋij = rj − r̂j in instance İ. It is obvious that if we have integral solutions

to both Î and İ then, when added together, they form an integral solution to the original

instance. Moreover, we have the following lemma.

Lemma 4 (i) (x̂, ŷ) is a feasible integral solution to instance Î.

(ii) (ẋ, ẏ) is a feasible fractional solution to instance İ.

(iii) ṙj ≤ |F| for every client j.

Proof. (i) For feasibility, we need to verify that the constraints of the LP (3.1) are satisfied.

Directly from the definition, we have r̂j =
∑

i∈F x̂ij . For any i and j, by the feasibility of

(x∗,y∗) we have x̂ij = bx∗ijc ≤ by∗i c = ŷi.

(ii) From the definition, we have ṙj =
∑

i∈F ẋij . It remains to show that ẏi ≥ ẋij

30

for all i, j. If x∗ij = 0, then ẋij = 0 and we are done. Otherwise, by completeness, we have

x∗ij = y∗i . Then ẏi = y∗i − by∗i c = x∗ij − bx∗ijc = ẋij .

(iii) From the definition of ẋij we have ẋij < 1. Then the bound follows from the

definition of ṙj .

Notice that our construction relies on the completeness assumption; in fact, it is

easy to give an example where (ẋ, ẏ) would not be feasible if we used a non-complete optimal

solution (x∗,y∗). Note also that the solutions (x̂, ŷ) and (ẋ, ẏ) are in fact optimal for their

corresponding instances, for if a better solution to Î or İ existed, it could give us a solution

to I with a smaller objective value. We would also like to comment that completeness,

although simplifying our argument here and afterwards, is not essential. For our demand

reduction, we can deal with non-complete fractional solutions by taking ŷi = (y∗i − 1)+
1

and x̂ij = min{bx∗ijc, ŷi}, and ẏi = y∗i − ŷi, ẋij = x∗ij − x̂ij . For this set of fractional values,

item (i) and (ii) of Lemma 4 remain valid, and (iii) now reads: ṙj < 2|F| for every client j.

Theorem 5 Suppose that there is a polynomial-time algorithm A that, for any instance

of FTFP with maximum demand bounded by |F|, computes an integral solution that ap-

proximates the fractional optimum of this instance within factor ρ ≥ 1. Then there is a

ρ-approximation algorithm A′ for FTFP.

Proof. Given an FTFP instance with arbitrary demands, Algorithm A′ works as follows:

it solves the LP (3.1) to obtain a fractional optimal solution (x∗,y∗), which we may assume

to be complete, then it constructs instances Î and İ described above, applies algorithm A

to İ, and finally combines (by adding the values) the integral solution (x̂, ŷ) of Î and the

1The notation (·)+ means taking maximum of the term or 0.

31

integral solution of İ produced by A. This clearly produces a feasible integral solution

for the original instance I. The solution produced by A has a cost at most ρ · cost(ẋ, ẏ),

because (ẋ, ẏ) is feasible for İ. Thus the cost of A′ is at most

cost(x̂, ŷ) + ρ · cost(ẋ, ẏ) ≤ ρ(cost(x̂, ŷ) + cost(ẋ, ẏ)) = ρ · LP∗ ≤ ρ ·OPT,

where the first inequality follows from ρ ≥ 1. This completes the proof.

The demand reduction step has two nice consequences which we describe in the

next two sections. In Section 4.2 we give a reduction from FTFP to FTFL. In Section 4.3,

we give a precise statement that confirms an intuitively appealing argument: when all

demands rj are large, the fractional optimal solution is very close to an integral solution.

In other words, we can round the fractional solution to an integral solution with almost the

same cost.

4.2 Reduction from FTFP to FTFL

Given the demand reduction technique, we may assume that we are working with

a restricted version of FTFP, in which every demand rj is not more than the number of

sites |F|. In this case, we can reduce FTFP to FTFL. The restriction on the demands rj is

essential to keep the size of the FTFL instance polynomially bounded by |F| · |C|, where |F|

is the number of sites and |C| is the number of clients.

For the reduction, we simply create |F| facilities (not opened yet) at each site.

Thus, we have an FTFL instance where every client j has a demand rj , and a set of

facilities that could be opened. We are then able to use any known LP-rounding algorithm

32

for FTFL to solve this FTFL instance. The solution to this FTFL instance can be converted

trivially to a solution to that FTFP instance. Moreover, the approximation ratio for FTFL is

preserved for FTFP. Given that FTFL has an LP-rounding 1.7245-approximation algorithm

by Byrka, Srinivasan and Swamy [10], it is immediate that FTFP has an approximation

algorithm with the same ratio. However, as we will show in Chapter 5, FTFP can be

approximated with a better ratio of 1.575. Thus, from the standpoint of approximation,

FTFP is more amenable than FTFL.

4.3 Asymptotic Approximation Ratio for Large Demands

When all demands are large, we expect that the fractional optimal solution to LP

(3.1) is very close to an integral solution. Thus, it is reasonable to expect that, in this case,

the optimal fractional solution can be rounded to an integral solution with almost the same

cost. We turn this intuition into a concrete statement, which is Theorem 6.

Theorem 6 Given an FTFP instance (F,C, {rj}, {fi}, {dij}), let m = |F| be the number

of sites, and let Q = minj∈C rj be the minimum demand; then there is an approximation

algorithm with a ratio of (1 +O(m/Q)). In particular, when Q is large compared to m, this

ratio approaches 1.

Proof. First, we solve the LP (3.1) to obtain an optimal fractional solution (x∗,y∗). Then,

we apply demand reduction to obtain two instances: Î and İ. For the Î instance, we

already have an optimal integral solution, namely (x̂, ŷ). We now deal with the İ instance.

33

From Lemma 4 we know that for every client j, the value of ṙj is no more than

m = |F|. Thus, we can solve the İ instance by creating m copies of UFL instances with the

same parameters (F,C, {fi}, {dij}); see Figure 4.2 for an illustration.

LP x∗, y∗

x̂, ŷ
r̂j =

∑
i x̂ij

ẋ, ẏ
ṙj =

∑
i ẋij

ẍ, ÿ
x̂+ ẍ
ŷ + ÿ

LP-solver

round down
to integer

fractional part

F,C, fi, dij

F,C, fi, dij

F,C, fi, dij

UFL Instance

c-approx

(1 + c|F |/Q)-approx
solution

Figure 4.2: Illustration of the approach of reducing FTFP to UFL for the special FTFP
instance with all demands rj being large.

Clearly, by combining the integral solutions to the m copies of UFL instances, we

obtain an integral solution to the İ instance. We might have to remove some redundant

facilities and connections, but this only reduces the total cost. Using a c-approximation

algorithm for UFL 2, we obtain a solution to the İ instance with a cost not more than

cm · LP∗UFL, where LP∗UFL is the cost of an optimal fractional solution to the UFL instance.

Moreover, it is easy to see that (x∗/Q,y∗/Q) is a feasible fractional solution to the UFL

2For the claim about the cost of the integral solution to İ being no more than cm · LP∗UFL to hold,
we actually need more than the UFL algorithm being c-approximation. What we need is that the integral
solution to the UFL instance should have a cost no more than c times the cost of an optimal fractional
solution. However, all LP-rounding algorithms for UFL satisfy this requirement.

34

instance, because we have rj ≥ Q for every client j. It follows that

LP∗UFL ≤ LP∗/Q,

where LP∗ is the cost of an optimal fractional solution to the original FTFP instance I.

Therefore, we have an integral solution to the instance İ with a cost at most (cm/Q)LP∗.

Let S1 be this integral solution, and let S2 = (x̂, ŷ) be the solution to the instance Î. By

combining S1 and S2, we obtain a feasible integral solution to the instance I. The total

cost of this combined solution is no more than

cost(S1) + cost(S2) ≤ (cm/Q)LP∗ + OPT ≤ (1 + cm/Q)OPT = 1 +O(m/Q)OPT.

As usual, OPT denotes the cost of an optimal integral solution to the original FTFP instance

I. We have LP∗ ≤ OPT because the cost of an optimal fractional solution is a lower bound

on the cost of any feasible integral solution.

4.4 Adaptive Partitioning

In this section we develop our second technique, which we call adaptive partitioning.

Given an FTFP instance and an optimal fractional solution (x∗,y∗) to the LP (3.1), we split

each client j into rj individual unit demand points (or just demands), and we split each site

i into not more than |F| + 2R|C|2 facility points (or facilities), where R = maxj∈C rj . We

denote the demand set by C and the facility set by F, respectively. We will also partition

(x∗,y∗) into a fractional solution (x̄, ȳ) for the split instance. We will typically use symbols

ν and µ to index demands and facilities respectively, that is x̄ = (x̄µν) and ȳ = (ȳµ). An

illustration is given in Figure 4.3.

35

site

i

client

j

y∗i
x∗ij

facility

µ

unit demand

νx̄µν

Figure 4.3: A diagram of adaptive partitioning. A site i is split into a set of facilities µ,
and a client j is split into a set of unit demands ν. The adaptive partitioning process also
defines fractional values for each facility µ and for each pair of µ and ν.

As before, the neighborhood of a demand ν is N(ν) =
{
µ ∈ F : x̄µν > 0

}
, see Fig-

ure 4.4.

x̄µν = ȳµ > 0

x̄ = 0

N(ν)

non-neighbor

ν

Figure 4.4: Illustration of the neighborhood N(ν) of a demand ν.

We will use notation ν ∈ j to mean that ν is a demand of client j; similarly, µ ∈ i

means that facility µ is on site i. Different demands of the same client (that is, ν, ν ′ ∈ j) are

called siblings. Further, we use the convention that fµ = fi for µ ∈ i, α∗ν = α∗j for ν ∈ j and

dµν = dµj = dij for µ ∈ i and ν ∈ j. We define Cavg
ν =

∑
µ∈N(ν) dµν x̄µν =

∑
µ∈F dµν x̄µν .

One can think of Cavg
ν as the average connection cost of demand ν, if we chose a connection

36

to facility µ with probability x̄µν . In our partitioned fractional solution we guarantee for

every ν that
∑

µ∈F x̄µν = 1.

Some demands in C will be designated as primary demands and the set of primary

demands will be denoted by P . By definition we have P ⊆ C. In addition, we will use the

overlap structure between demand neighborhoods to define a mapping that assigns each

demand ν ∈ C to some primary demand κ ∈ P . As shown in the rounding algorithms

in later sections, for each primary demand we guarantee exactly one open facility in its

neighborhood, while for a non-primary demand, there is constant probability that none of

its neighbors open. In this case we estimate its connection cost by the distance to the facility

opened in its assigned primary demand’s neighborhood. For this reason the connection cost

of a primary demand must be “small” compared to the non-primary demands assigned

to it. We also need sibling demands assigned to different primary demands to satisfy the

fault-tolerance requirement. Specifically, this partitioning will be constructed to satisfy a

number of properties that are detailed below.

(PS) Partitioned solution. Vector (x̄, ȳ) is a partition of (x∗,y∗), with unit-value demands,

that is,

1.
∑

µ∈F x̄µν = 1 for each demand ν ∈ C.

2.
∑

µ∈i,ν∈j x̄µν = x∗ij for each site i ∈ F and client j ∈ C.

3.
∑

µ∈i ȳµ = y∗i for each site i ∈ F.

(CO) Completeness. Solution (x̄, ȳ) is complete, that is x̄µν 6= 0 implies x̄µν = ȳµ, for all

µ ∈ F, ν ∈ C.

37

(PD) Primary demands. Primary demands satisfy the following conditions:

1. For any two different primary demands κ, κ′ ∈ P we have N(κ) ∩N(κ′) = ∅.

2. For each site i ∈ F,
∑

µ∈i
∑

κ∈P x̄µκ ≤ y∗i .

3. Each demand ν ∈ C is assigned to one primary demand κ ∈ P such that

(a) N(ν) ∩N(κ) 6= ∅, and

(b) Cavg
ν + α∗ν ≥ C

avg
κ + α∗κ.

(SI) Siblings. For any pair ν, ν ′ of different siblings we have

1. N(ν) ∩N(ν ′) = ∅.

2. If ν is assigned to a primary demand κ then N(ν ′)∩N(κ) = ∅. In particular, by

Property (PD.3(a)), this implies that different sibling demands are assigned to

different primary demands.

As we shall demonstrate in Chapter 5, these properties allow us to extend known

UFL rounding algorithms to obtain an integral solution to our FTFP problem with a match-

ing approximation ratio. Our partitioning is “adaptive” in the sense that it is constructed

one demand at a time, and the connection values for the demands of a client depend on

the choice of earlier demands, of this or other clients, and their connection values. We

would like to point out that the adaptive partitioning process for the 1.575-approximation

algorithm (Section 5.3) is more subtle than that for the 3-approximation (Section 5.1) and

the 1.736-approximation algorithms (Section 5.2), due to the introduction of close and far

neighborhood.

38

Implementation of Adaptive Partitioning. We now describe an algorithm for parti-

tioning the instance and the fractional solution so that the properties (PS), (CO), (PD),

and (SI) are satisfied. Recall that F and C, respectively, denote the sets of facilities and

demands that will be created in this stage, and (x̄, ȳ) is the partitioned solution to be

computed.

The adaptive partitioning algorithm consists of two phases: Phase 1 is called the

partitioning phase and Phase 2 is called the augmenting phase. Phase 1 is done in iterations,

where in each iteration we find the “best” client j and create a new demand ν out of it.

This demand either becomes a primary demand itself, or it is assigned to some existing

primary demand. We call a client j exhausted when all its rj demands have been created

and assigned to some primary demands. Phase 1 completes when all clients are exhausted.

In Phase 2 we ensure that every demand has a total connection values x̄µν equal to 1, that

is condition (PS.1).

For each site i we will initially create one “big” facility µ with initial value ȳµ = y∗i .

While we partition the instance, creating new demands and connections, this facility may

end up being split into more facilities to preserve completeness of the fractional solution.

Also, we will gradually decrease the fractional connection vector for each client j, to ac-

count for the demands already created for j and their connection values. These decreased

connection values will be stored in an auxiliary vector x̃. The intuition is that x̃ represents

the part of x∗ that still has not been allocated to existing demands and future demands can

use x̃ for their connections. For technical reasons, x̃ will be indexed by facilities (rather

than sites) and clients, that is x̃ = (x̃µj). At the beginning, we set x̃µj←x∗ij for each j ∈ C,

39

where µ ∈ i is the single facility created initially at site i. At each step, whenever we create

a new demand ν for a client j, we will define its values x̄µν and appropriately reduce the

values x̃µj , for all facilities µ. We will deal with two types of neighborhoods, with respect

to x̃ and x̄, that is Ñ(j) = {µ ∈ F : x̃µj > 0} for j ∈ C and N(ν) = {µ ∈ F : x̄µν > 0} for

ν ∈ C. During this process we preserve the completeness (CO) of the fractional solutions

x̃ and x̄. More precisely, the following properties will hold for every facility µ after every

iteration,

(c1) For each demand ν either x̄µν = 0 or x̄µν = ȳµ. This is the same condition as condition

(CO), yet we repeat it here as (c1) needs to hold after every iteration, while condition

(CO) only applies to the final partitioned fractional solution (x̄, ȳ).

(c2) For each client j, either x̃µj = 0 or x̃µj = ȳµ.

A full description of the algorithm is given in Pseudocode 1. Initially, the set U

of non-exhausted clients contains all clients, the set C of demands is empty, the set F of

facilities consists of one facility µ on each site i with ȳµ = y∗i , and the set P of primary

demands is empty (Lines 1–4). In one iteration of the while loop (Lines 5–8), for each client j

we compute a quantity called tcc(j) (tentative connection cost), that represents the average

distance from j to the set Ñ1(j) of the nearest facilities µ whose total connection value to

j (the sum of x̃µj ’s) equals 1. This set is computed by Procedure NearestUnitChunk()

(see Pseudocode 2, Lines 1–9), which adds facilities to Ñ1(j) in order of non-decreasing

distance, until the total connection value is exactly 1. (The procedure actually uses the ȳµ

values, which are equal to the connection values, by the completeness condition (c2).) This

40

may require splitting the last added facility and adjusting the connection values so that

conditions (c1) and (c2) are preserved.

Pseudocode 1 Algorithm: Adaptive Partitioning

Input: F, C, (x∗,y∗)
Output: F, C, (x̄, ȳ) . Unspecified x̄µν ’s and x̃µj ’s are assumed to be 0

1: r̃← r, U←C,F←∅,C←∅, P ←∅ . Phase 1
2: for each site i ∈ F do
3: create a facility µ at i and add µ to F
4: ȳµ← y∗i and x̃µj←x∗ij for each j ∈ C
5: while U 6= ∅ do
6: for each j ∈ U do
7: Ñ1(j)←NearestUnitChunk(j,F, x̃, x̄, ȳ) . see Pseudocode 2
8: tcc(j)←

∑
µ∈Ñ1(j)

dµj · x̃µj
9: p← arg minj∈U{tcc(j) + α∗j}

10: create a new demand ν for client p
11: if Ñ1(p) ∩N(κ) 6= ∅ for some primary demand κ ∈ P then
12: assign ν to κ
13: x̄µν← x̃µp and x̃µp← 0 for each µ ∈ Ñ(p) ∩N(κ)
14: else
15: make ν primary, P ←P ∪ {ν}, assign ν to itself
16: set x̄µν← x̃µp and x̃µp← 0 for each µ ∈ Ñ1(p)

17: C←C ∪ {ν}, r̃p← r̃p − 1
18: if r̃p = 0 then U←U \ {p}
19: for each client j ∈ C do . Phase 2
20: for each demand ν ∈ j do . each client j has rj demands
21: if

∑
µ∈N(ν) x̄µν < 1 then AugmentToUnit(ν, j,F, x̃, x̄, ȳ) . see Pseudocode 2

The next step is to pick a client p with minimum tcc(p) +α∗p and create a demand

ν for p (Lines 9–10). If Ñ1(p) overlaps the neighborhood of some existing primary demand

κ (if there are multiple such κ’s, pick any of them), we assign ν to κ, and ν acquires all the

connection values x̃µp between client p and facility µ in Ñ(p) ∩N(κ) (Lines 11–13). Note

that although we check for overlap with Ñ1(p), we then move all facilities in the intersection

with Ñ(p), a bigger set, into N(ν). An example is given in Figure 4.5.

41

Pseudocode 2 Helper functions used in Pseudocode 1

1: function NearestUnitChunk(j,F, x̃, x̄, ȳ) . upon return,
∑

µ∈Ñ1(j)
x̃µj = 1

2: Let Ñ(j) = {µ1, ..., µq} where dµ1j ≤ dµ2j ≤ . . . ≤ dµqj
3: Let l be such that

∑l
k=1 ȳµk ≥ 1 and

∑l−1
k=1 ȳµk < 1

4: Create a new facility σ at the same site as µl and add it to F . split µl
5: Set ȳσ←

∑l
k=1 ȳµk − 1 and ȳµl← ȳµl − ȳσ

6: For each ν ∈ C with x̄µlν > 0 set x̄µlν← ȳµl and x̄σν← ȳσ
7: For each j′ ∈ C with x̃µlj′ > 0 (including j) set x̃µlj′← ȳµl and x̃σj′← ȳσ
8: (All other new connection values are set to 0)
9: return Ñ1(j) = {µ1, . . . , µl−1, µl}

10: function AugmentToUnit(ν, j,F, x̃, x̄, ȳ) . ν is a demand of client j
11: while

∑
µ∈F x̄µν < 1 do . upon return,

∑
µ∈N(ν) x̄µν = 1

12: Let η be any facility such that x̃ηj > 0
13: if 1−

∑
µ∈F x̄µν ≥ x̃ηj then

14: x̄ην← x̃ηj , x̃ηj← 0
15: else
16: Create a new facility σ at the same site as η and add it to F . split η
17: Let ȳσ← 1−

∑
µ∈F x̄µν , ȳη← ȳη − ȳσ

18: Set x̄σν← ȳσ, x̄ην← 0, x̃ηj← ȳη, x̃σj← 0
19: For each ν ′ 6= ν with x̄ην′ > 0, set x̄ην′← ȳη, x̄σν′← ȳσ
20: For each j′ 6= j with x̃ηj′ > 0, set x̃ηj′← ȳη, x̃σj′← ȳσ
21: (All other new connection values are set to 0)

The other case is when Ñ1(p) is disjoint from the neighborhoods of all existing

primary demands. Then, in Lines 15–16, ν becomes itself a primary demand and we assign

ν to itself. It also inherits the connection values to all facilities µ ∈ Ñ1(p) from p (recall

that x̃µp = ȳµ), with all other x̄µν values set to 0. An example for this case is given in

Figure 4.6.

At this point all primary demands satisfy Property (PS.1), but this may not be

true for non-primary demands. For those demands we still may need to adjust the x̄µν values

so that the total connection value for ν, that is conn(ν)
def
=
∑

µ∈F x̄µν , is equal 1. This is

accomplished by Procedure AugmentToUnit() (definition in Pseudocode 2, Lines 10–21)

that allocates to ν ∈ j some of the remaining connection values x̃µj of client j (Lines 19–21).

42

p

1
2

3

4

5

6
7

N(κ)

Ñ(p)
Ñ1(p)

p

1
5 6

7

ν
2

3
4

Figure 4.5: An example of the first case in Phase 1 of adaptive partitioning. Here p is the
client that creates a demand ν in this iteration, and Ñ1(p) overlaps with N(κ) for some
primary demand κ. Facilities 2 and 4 are in the intersection of Ñ1(p) and N(κ) for the
overlap check. We move these two facilities, and additionally facility 3, into N(ν), because
facility 3 is also in the intersection of Ñ(p) and N(κ).

p
1

2

3
4

N1(p)

N(p)

p
3

4

ν
1

2

Figure 4.6: An example of the second case in Phase 1 of adaptive partitioning. Here p is
the client that creates a demand ν and ν becomes a primary demand with a neighborhood
of Ñ1(p), which consists of facilities 1 and 2 in this example. The neighborhood Ñ(p) keeps
the remaining facilities; that is facilities 3 and 4 in this example.

AugmentToUnit() will repeatedly pick any facility η with x̃ηj > 0. If x̃ηj ≤ 1− conn(ν),

then the connection value x̃ηj is reassigned to ν. Otherwise, x̃ηj > 1 − conn(ν), in which

case we split η so that connecting ν to one of the created copies of η will make conn(ν)

equal 1, and we’ll be done. An example in Figure 4.7 illustrates this process.

Notice that we start with |F| facilities and in each iteration of the while loop in

Line 5 (Pseudocode 1) each client causes at most one split. We have a total of not more than

R|C| iterations as in each iteration we create one demand. (Recall that R = maxj rj .) In

Phase 2 we do an augment step for each demand ν and this creates not more than R|C| new

facilities. So the total number of facilities we created will be at most |F|+R|C|2 +R|C| ≤

43

Ñ(j)

j

N(ν)

ν

1

2

3

4

5

6

7

Ñ(j)

j

N(ν)

ν

1

3

46

2

5

7

Figure 4.7: An example of one step in Phase 2 of adaptive partitioning. In this example,
we move facilities 2, 5 and 7 from Ñ(j) to N(ν), to make N(ν) have a total fractional value
of 1.

|F|+ 2R|C|2, which is polynomial in |F|+ |C| due to our earlier bound on R.

Example. We now illustrate our partitioning algorithm with an example, where the FTFP

instance has four sites and four clients. The demands are r1 = 1 and r2 = r3 = r4 = 2.

The facility costs are fi = 1 for all i. The distances are defined as follows: dii = 3 for

i = 1, 2, 3, 4 and dij = 1 for all i 6= j. Solving the LP(3.1), we obtain the fractional solution

given in Table 4.1a.

x∗ij 1 2 3 4 y∗i

1 0 4
3

4
3

4
3

4
3

2 1
3 0 1

3
1
3

1
3

3 1
3

1
3 0 1

3
1
3

4 1
3

1
3

1
3 0 1

3

(a)

x̄µν 1′ 2′ 2′′ 3′ 3′′ 4′ 4′′ ȳµ

1̇ 0 1 0 1 0 1 0 1

1̈ 0 0 1
3 0 1

3 0 1
3

1
3

2̇ 1
3 0 0 0 1

3 0 1
3

1
3

3̇ 1
3 0 1

3 0 0 0 1
3

1
3

4̇ 1
3 0 1

3 0 1
3 0 0 1

3

(b)

Table 4.1: An example of an execution of the partitioning algorithm. (a) An optimal
fractional solution x∗, y∗. (b) The partitioned solution. j′ and j′′ denote the first and
second demand of a client j, and ı̇ and ı̈ denote the first and second facility at site i.

44

It is easily seen that the fractional solution in Table 4.1a is optimal and complete

(x∗ij > 0 implies x∗ij = y∗i). The dual optimal solution has all α∗j = 4/3 for j = 1, 2, 3, 4.

Now we perform Phase 1, the adaptive partitioning, following the description in

Pseudocode 1. To streamline the presentation, we assume that all ties are broken in favor of

lower-numbered clients, demands or facilities. First we create one facility at each of the four

sites, denoted as 1̇, 2̇, 3̇ and 4̇ (Line 2–4, Pseudocode 1). We then execute the “while” loop

in Line 5 Pseudocode 1. This loop will have seven iterations. Consider the first iteration.

In Line 7–8 we compute tcc(j) for each client j = 1, 2, 3, 4 in U . When computing Ñ1(2),

facility 1̇ will get split into 1̇ and 1̈ with ȳ1̇ = 1 and ȳ1̈ = 1/3. (This will happen in Line 4–7

of Pseudocode 2.) Then, in Line 9 we will pick client p = 1 and create a demand denoted as

1′ (see Table 4.1b). Since there are no primary demands yet, we make 1′ a primary demand

with N(1′) = Ñ1(1) = {2̇, 3̇, 4̇}. Notice that client 1 is exhausted after this iteration and U

becomes {2, 3, 4}.

In the second iteration we compute tcc(j) for j = 2, 3, 4 and pick client p = 2,

from which we create a new demand 2′. We have Ñ1(2) = {1̇}, which is disjoint from

N(1′). So we create a demand 2′ and make it primary, and set N(2′) = {1̇}. In the

third iteration we compute tcc(j) for j = 2, 3, 4 and again we pick client p = 2. Since

Ñ1(2) = {1̈, 3̇, 4̇} overlaps with N(1′), we create a demand 2′′ and assign it to 1′. We also

set N(2′′) = N(1′) ∩ Ñ(2) = {3̇, 4̇}. After this iteration client 2 is exhausted and we have

U = {3, 4}.

In the fourth iteration we compute tcc(j) for client j = 3, 4. We pick p = 3 and

create demand 3′. Since Ñ1(3) = {1̇} overlaps N(2′), we assign 3′ to 2′ and set N(3′) = {1̇}.

45

In the fifth iteration we compute tcc(j) for client j = 3, 4 and pick p = 3 again. At this

time Ñ1(3) = {1̈, 2̇, 4̇}, which overlaps with N(1′). So we create a demand 3′′ and assign it

to 1′, as well as set N(3′′) = {2̇, 4̇}.

In the last two iterations we will pick client p = 4 twice and create demands 4′

and 4′′. For 4′ we have Ñ1(4) = {1̇} so we assign 4′ to 2′ and set N(4′) = {1̇}. For 4′′ we

have Ñ1(4) = {1̈, 2̇, 3̇} and we assign it to 1′, as well as set N(4′′) = {2̇, 3̇}.

Now that all clients are exhausted we perform Phase 2, the augmenting phase, to

construct a fractional solution in which all demands have total connection value equal to 1.

We iterate through each of the seven demands created, that is 1′, 2′, 2′′, 3′, 3′′, 4′, 4′′. 1′ and

2′ already have neighborhoods with total connection value of 1, so nothing will change in

the first two iterations. 2′′ has 3̇, 4̇ in its neighborhood, with total connection value of 2/3,

and Ñ(2) = {1̈} at this time, so we add 1̈ into N(2′′) to make N(2′′) = {1̈, 3̇, 4̇} and now 2′′

has total connection value of 1. Similarly, 3′′ and 4′′ each get 1̈ added to their neighborhood

and end up with total connection value of 1. The other two demands, namely 3′ and 4′,

each have 1̇ in its neighborhood so each of them has already its total connection value equal

1. This completes Phase 2.

The final partitioned fractional solution is given in Table 4.1b. We have created a

total of five facilities 1̇, 1̈, 2̇, 3̇, 4̇, and seven demands, 1′, 2′, 2′′, 3′, 3′′, 4′, 4′′. It can be verified

that all the stated properties are satisfied.

Correctness. We now show that all the required properties (PS), (CO), (PD) and (SI) are

satisfied by the above construction.

Properties (PS) and (CO) follow directly from the algorithm. (CO) is implied by

46

the completeness condition (c1) that the algorithm maintains after each iteration. Condi-

tion (PS.1) is a result of calling Procedure AugmentToUnit() in Line 21. To see that

(PS.2) holds, note that at each step the algorithm maintains the invariant that, for ev-

ery i ∈ F and j ∈ C, we have
∑

µ∈i
∑

ν∈j x̄µν +
∑

µ∈i x̃µj = x∗ij . In the end, we will

create rj demands for each client j, with each demand ν ∈ j satisfying (PS.1), and thus∑
ν∈j
∑

µ∈F x̄µν = rj . This implies that x̃µj = 0 for every facility µ ∈ F, and (PS.2) follows.

(PS.3) holds because every time we split a facility µ into µ′ and µ′′, the sum of ȳµ′ and ȳµ′′

is equal to the old value of ȳµ.

Now we deal with properties in group (PD). First, (PD.1) follows directly from the

algorithm, Pseudocode 1 (Lines 14–16), since every primary demand has its neighborhood

fixed when created, and that neighborhood is disjoint from those of the existing primary

demands.

Property (PD.2) follows from (PD.1), (CO) and (PS.3). In more detail, it can be

justified as follows. By (PD.1), for each µ ∈ i there is at most one κ ∈ P with x̄µκ > 0

and we have x̄µκ = ȳµ due do (CO). Let K ⊆ i be the set of those µ’s for which such

κ ∈ P exists, and denote this κ by κµ. Then, using conditions (CO) and (PS.3), we have∑
µ∈i
∑

κ∈P x̄µκ =
∑

µ∈K x̄µκµ =
∑

µ∈K ȳµ ≤
∑

µ∈i ȳµ = y∗i .

Property (PD.3(a)) follows from the way the algorithm assigns primary demands.

When demand ν of client p is assigned to a primary demand κ in Lines 11–13 of Pseu-

docode 1, we move all facilities in Ñ(p) ∩ N(κ) (the intersection is nonempty) into N(ν),

and we never remove a facility from N(ν). We postpone the proof for (PD.3(b)) to Lemma 9.

Finally we argue that the properties in group (SI) hold. (SI.1) is easy, since for

47

any client j, each facility µ is added to the neighborhood of at most one demand ν ∈ j,

by setting x̄µν to ȳµ, while other siblings ν ′ of ν have x̄µν′ = 0. Note that right after a

demand ν ∈ p is created, its neighborhood is disjoint from the neighborhood of p, that is

N(ν)∩ Ñ(p) = ∅, by Lines 11–13 of the algorithm. Thus all demands of p created later will

have neighborhoods disjoint from the set N(ν) before the augmenting phase 2. Furthermore,

Procedure AugmentToUnit() preserves this property, because when it adds a facility to

N(ν) then it removes it from Ñ(p), and in case of splitting, one resulting facility is added

to N(ν) and the other to Ñ(p). Property (SI.2) is shown below in Lemma 7.

It remains to show Properties (PD.3(b)) and (SI.2). We show them in the lemmas

below, thus completing the description of our adaptive partitioning process.

Lemma 7 Property (SI.2) holds after the Adaptive Partitioning stage.

Proof. Let ν1, . . . , νrj be the demands of a client j ∈ C, listed in the order of creation,

and, for each q = 1, 2, . . . , rj , denote by κq the primary demand that νq is assigned to.

After the completion of Phase 1 of Pseudocode 1 (Lines 5–18), we have N(νs) ⊆ N(κs)

for s = 1, . . . , rj . Since any two primary demands have disjoint neighborhoods, we have

N(νs) ∩N(κq) = ∅ for any s 6= q, that is Property (SI.2) holds right after Phase 1.

After Phase 1 all neighborhoods N(κs), s = 1, . . . , rj have already been fixed and

they do not change in Phase 2. None of the facilities in Ñ(j) appear in any of N(κs) for

s = 1, . . . , rj , by the way we allocate facilities in Lines 13 and 16. Therefore during the

augmentation process in Phase 2, when we add facilities from Ñ(j) to N(ν), for some ν ∈ j

(Line 19–21 of Pseudocode 1), all the required disjointedness conditions will be preserved.

48

We need one more lemma before proving our last property (PD.3(b)). For a client

j and a demand ν, we use notation tccν(j) for the value of tcc(j) at the time when ν was

created. (It is not necessary that ν ∈ j but we assume that j is not exhausted at that time.)

Lemma 8 Let η and ν be two demands, with η created no later than ν, and let j ∈ C be a

client that is not exhausted when ν is created. Then we have

(a) tccη(j) ≤ tccν(j), and

(b) if ν ∈ j then tccη(j) ≤ Cavg
ν .

Proof. We focus first on the time when demand η is about to be created, right after the

call to NearestUnitChunk() in Pseudocode 1, Line 7. Let Ñ(j) = {µ1, ..., µq} with all

facilities µs ordered according to non-decreasing distance from j. Consider the following

linear program,

minimize
∑
s

dµsjzs

subject to
∑
s

zs ≥ 1

0 ≤ zs ≤ x̃µsj for all s

This is a fractional minimum knapsack covering problem (with knapsack size equal 1) and

its optimal fractional solution is the greedy solution, whose value is exactly tccη(j).

On the other hand, we claim that tccν(j) can be thought of as the value of some

feasible solution to this linear program, and that the same is true for Cavg
ν if ν ∈ j. Indeed,

each of these quantities involves some later values x̃µj , where µ could be one of the facilities

µs or a new facility obtained from splitting. For each s, however, the sum of all values x̃µj ,

over the facilities µ that were split from µs, cannot exceed the value x̃µsj at the time when

49

η was created, because splitting facilities preserves this sum and creating new demands for

j can only decrease it. Therefore both quantities tccν(j) and Cavg
ν (for ν ∈ j) correspond

to some choice of the zs variables (adding up to 1), and the lemma follows.

Lemma 9 Property (PD.3(b)) holds after the Adaptive Partitioning stage.

Proof. Suppose that demand ν ∈ j is assigned to some primary demand κ ∈ p. Then

Cavg
κ + α∗κ = tccκ(p) + α∗p ≤ tccκ(j) + α∗j ≤ Cavg

ν + α∗ν .

We now justify this derivation. By definition we have α∗κ = α∗p. Further, by the algorithm, if

κ is a primary demand of client p, then Cavg
κ is equal to tcc(p) computed when κ is created,

which is exactly tccκ(p). Thus the first equation is true. The first inequality follows from

the choice of p in Line 9 in Pseudocode 1. The last inequality holds because α∗j = α∗ν (due

to ν ∈ j), and because tccκ(j) ≤ Cavg
ν , which follows from Lemma 8.

We have thus proved that all properties (PS), (CO), (PD) and (SI) hold for our

partitioned fractional solution (x̄, ȳ). In the following sections we show how to use these

properties to round the fractional solution to an approximate integral solution. For the 3-

approximation algorithm (Section 5.1) and the 1.736-approximation algorithm (Section 5.2),

the first phase of the algorithm is exactly the same partitioning process as described above.

However, the 1.575-approximation algorithm (Section 5.3) demands a more sophisticated

partitioning process as the interplay between close and far neighborhood of sibling demands

result in more delicate properties that our partitioned fractional solution must satisfy.

50

Chapter 5

LP-rounding Algorithms

In Section 4.4 of Chapter 4, we have seen that the adaptive partitioning technique

produces a fractional solution for individual facilities and unit demand points with a number

of structural properties. In this chapter we show how those properties help in designing LP-

rounding algorithms with good approximation ratios. We start with a simple algorithm with

ratio 3 that illustrates the main steps of a rounding algorithm and the use of the structural

properties to derive an approximation ratio. A more refined rounding algorithm with ratio

1.736 is presented next, using the same partitioned fractional solution as a starting point.

Our best approximation algorithm with ratio 1.575 is presented last. This algorithm needs

a fractional solution with more sophisticated structure, compared to the one used by the

first two algorithms.

51

5.1 Algorithm EGUP with Ratio 3

The algorithm we describe in this section achieves ratio 3. Although this is still

quite far from our best ratio 1.575 that we derive later, we include this algorithm in the

paper to illustrate, in a relatively simple setting, how the properties of our partitioned

fractional solution are used in rounding it to an integral solution with cost not too far

away from an optimal solution. The rounding approach we use here is an extension of the

corresponding method for UFL described in [23].

Algorithm EGUP. At a high level, we would open exactly one facility for each primary

demand κ, and each non-primary demand is connected to the facility opened for the primary

demand it was assigned to.

More precisely, we apply a rounding process, guided by the fractional values (ȳµ)

and (x̄µν), that produces an integral solution. This integral solution is obtained by choosing

a subset of facilities in F to open, and for each demand in C, specifying an open facility

that this demand will be connected to. For each primary demand κ ∈ P , we want to open

one facility φ(κ) ∈ N(κ). To this end, we use randomization: for each µ ∈ N(κ), we choose

φ(κ) = µ with probability x̄µκ, ensuring that exactly one µ ∈ N(κ) is chosen. Note that∑
µ∈N(κ) x̄µκ = 1, so this distribution is well-defined. We open this facility φ(κ) and connect

to φ(κ) all demands that are assigned to κ.

In our description above, the algorithm is presented as a randomized algorithm.

It can be de-randomized using the method of conditional expectations, which is commonly

used in approximation algorithms for facility location problems and standard enough that

52

presenting it here would be redundant. Readers less familiar with this field are recommended

to consult [15], where the method of conditional expectations is applied in a context very

similar to ours.

Analysis. We now bound the expected facility cost and connection cost by establishing

the two lemmas below.

Lemma 10 The expectation of facility cost FEGUP of our solution is at most F ∗.

Proof. By Property (PD.1), the neighborhoods of primary demands are disjoint. Also, for

any primary demand κ ∈ P , the probability that a facility µ ∈ N(κ) is chosen as the open

facility φ(κ) is x̄µκ. Hence the expected total facility cost is

E[FEGUP] =
∑

κ∈P
∑

µ∈N(κ)fµx̄µκ

=
∑

κ∈P
∑

µ∈Ffµx̄µκ

=
∑

i∈Ffi
∑

µ∈i
∑

κ∈P x̄µκ

≤
∑

i∈Ffiy
∗
i = F ∗,

where the inequality follows from Property (PD.2).

Lemma 11 The expectation of connection cost CEGUP of our solution is at most C∗+2·LP∗.

Proof. For a primary demand κ, its expected connection cost is Cavg
κ because we choose

facility µ with probability x̄µκ.

Consider a non-primary demand ν assigned to a primary demand κ ∈ P . Let µ

be any facility in N(ν) ∩N(κ). Since µ is in both N(ν) and N(κ), we have dµν ≤ α∗ν and

dµκ ≤ α∗κ (This follows from the complementary slackness conditions since α∗ν = β∗µν + dµν

53

for each µ ∈ N(ν).). Thus, applying the triangle inequality, for any fixed choice of facility

φ(κ) we have

dφ(κ)ν ≤ dφ(κ)κ + dµκ + dµν ≤ dφ(κ)κ + α∗κ + α∗ν .

Therefore the expected distance from ν to its facility φ(κ) is

E[dφ(κ)ν] ≤ Cavg
κ + α∗κ + α∗ν

≤ Cavg
ν + α∗ν + α∗ν = Cavg

ν + 2α∗ν ,

where the second inequality follows from Property (PD.3(b)). From the definition of Cavg
ν

and Property (PS.2), for any j ∈ C we have

∑
ν∈j

Cavg
ν =

∑
ν∈j

∑
µ∈F

dµν x̄µν

=
∑
i∈F

dij
∑
ν∈j

∑
µ∈i

x̄µν

=
∑
i∈F

dijx
∗
ij = C∗j .

Thus, summing over all demands, the expected total connection cost is

E[CEGUP] ≤
∑

j∈C
∑

ν∈j(C
avg
ν + 2α∗ν)

=
∑

j∈C(C∗j + 2rjα
∗
j) = C∗ + 2 · LP∗,

completing the proof of the lemma.

Theorem 12 Algorithm EGUP is a 3-approximation algorithm.

Proof. By Property (SI.2), different demands from the same client are assigned to different

primary demands, and by (PD.1) each primary demand opens a different facility. This

ensures that our solution is feasible, namely each client j is connected to rj different facilities

(some possibly located on the same site). As for the total cost, Lemma 10 and Lemma 11

imply that the total cost is at most F ∗ + C∗ + 2 · LP∗ = 3 · LP∗ ≤ 3 ·OPT.

54

5.2 Algorithm ECHS with Ratio 1.736

In this section we improve the approximation ratio to 1 + 2/e ≈ 1.736. The im-

provement comes from a slightly modified rounding process and refined analysis. Note that

the facility opening cost of Algorithm EGUP does not exceed that of the fractional opti-

mum solution, while the connection cost could be far from the optimum, since we connect

a non-primary demand to a facility in the neighborhood of its assigned primary demand

and then estimate the distance using the triangle inequality. The basic idea to improve

the estimate of the connection cost, following the approach of Chudak and Shmoys [15], is

to connect each non-primary demand to its nearest neighbor when one is available, and to

only use the facility opened by its assigned primary demand when none of its neighbors is

open.

Algorithm ECHS. As before, the algorithm starts by solving the linear program and

applying the adaptive partitioning algorithm described in Section 4.4 to obtain a partitioned

solution (x̄, ȳ). Then we apply the rounding process to compute an integral solution (see

Pseudocode 3).

We start, as before, by opening exactly one facility φ(κ) in the neighborhood of

each primary demand κ (Line 2). For any non-primary demand ν assigned to κ, we refer

to φ(κ) as the target facility of ν. In Algorithm EGUP, ν was connected to φ(κ), but in

Algorithm ECHS we may be able to find an open facility in ν’s neighborhood and connect

ν to this facility. Specifically, the two changes in the algorithm are as follows:

(1) Each facility µ that is not in the neighborhood of any primary demand is opened,

55

independently, with probability ȳµ (Lines 4–5). Notice that if ȳµ > 0 then, due to

completeness of the partitioned fractional solution, we have ȳµ = x̄µν for some demand

ν. This implies that ȳµ ≤ 1, because x̄µν ≤ 1, by (PS.1).

(2) When connecting demands to facilities, a primary demand κ is connected to the only

facility φ(κ) opened in its neighborhood, as before (Line 3). For a non-primary demand

ν, if its neighborhood N(ν) has an open facility, we connect ν to the closest open

facility in N(ν) (Line 8). Otherwise, we connect ν to its target facility (Line 10).

Pseudocode 3 Algorithm ECHS: Constructing Integral Solution

1: for each κ ∈ P do
2: choose one φ(κ) ∈ N(κ), with each µ ∈ N(κ) chosen as φ(κ) with probability ȳµ
3: open φ(κ) and connect κ to φ(κ)

4: for each µ ∈ F−
⋃
κ∈P N(κ) do

5: open µ with probability ȳµ (independently)

6: for each non-primary demand ν ∈ C do
7: if any facility in N(ν) is open then
8: connect ν to the nearest open facility in N(ν)
9: else

10: connect ν to φ(κ) where κ is ν’s assigned primary demand

Analysis. We shall first argue that the integral solution thus constructed is feasible, and

then we bound the total cost of the solution. Regarding feasibility, the only constraint that

is not explicitly enforced by the algorithm is the fault-tolerance requirement; namely that

each client j is connected to rj different facilities. Let ν and ν ′ be two different sibling

demands of client j and let their assigned primary demands be κ and κ′ respectively. Due

to (SI.2) we know κ 6= κ′. From (SI.1) we have N(ν) ∩ N(ν ′) = ∅. From (SI.2), we have

N(ν) ∩ N(κ′) = ∅ and N(ν ′) ∩ N(κ) = ∅. From (PD.1) we have N(κ) ∩ N(κ′) = ∅. It

follows that (N(ν) ∪N(κ)) ∩ (N(ν ′) ∪N(κ′)) = ∅. Since the algorithm connects ν to some

56

facility in N(ν)∪N(κ) and ν ′ to some facility in N(ν ′)∪N(κ′), ν and ν ′ will be connected

to different facilities.

We now show that the expected cost of the computed solution is bounded by

(1 + 2/e) · LP∗. By (PD.1), every facility may appear in at most one primary demand’s

neighborhood, and the facilities open in Line 4–5 of Pseudocode 3 do not appear in any pri-

mary demand’s neighborhood. Therefore, by linearity of expectation, the expected facility

cost of Algorithm ECHS is

E[FECHS] =
∑
µ∈F

fµȳµ =
∑
i∈F

fi
∑
µ∈i

ȳµ =
∑
i∈F

fiy
∗
i = F ∗,

where the third equality follows from (PS.3).

To bound the connection cost, we adapt an argument of Chudak and Shmoys [15].

Consider a demand ν and denote by Cν the random variable representing the connection

cost for ν. Our goal now is to estimate E[Cν], the expected value of Cν . Demand ν can

either get connected directly to some facility in N(ν) or indirectly to its target facility

φ(κ) ∈ N(κ), where κ is the primary demand to which ν is assigned. We will analyze these

two cases separately.

In our analysis, in this section and the next one, we will use notation

D(A, σ)=
∑
µ∈A

dµσȳµ/
∑
µ∈A

ȳµ

for the average distance between a demand σ and a set A of facilities. Note that, in

particular, we have Cavg
ν = D(N(ν), ν).

We first estimate the expected cost dφ(κ)ν of the indirect connection. Let Λν denote

57

the event that some facility in N(ν) is opened. Then

E[Cν | ¬Λν] = E[dφ(κ)ν | ¬Λν] = D(N(κ) \N(ν), ν). (5.1)

Note that ¬Λν implies that N(κ) \N(ν) 6= ∅, since N(κ) contains exactly one open facility,

namely φ(κ).

Lemma 13 Let ν be a demand assigned to a primary demand κ, and assume that N(κ) \

N(ν) 6= ∅. Then

E[Cν | ¬Λν] ≤ Cavg
ν + 2α∗ν .

Proof. By (5.1), we need to show that D(N(κ) \ N(ν), ν) ≤ Cavg
ν + 2α∗ν . There are two

cases to consider.

Case 1: There exists some µ′ ∈ N(κ)∩N(ν) such that dµ′κ ≤ Cavg
κ . In this case, for every

µ ∈ N(κ) \N(ν), we have

dµν ≤ dµκ + dµ′κ + dµ′ν ≤ α∗κ + Cavg
κ + α∗ν ≤ Cavg

ν + 2α∗ν ,

using the triangle inequality, complementary slackness, and (PD.3(b)). By summing

over all µ ∈ N(κ) \N(ν), it follows that D(N(κ) \N(ν), ν) ≤ Cavg
ν + 2α∗ν .

Case 2: Every µ′ ∈ N(κ) ∩ N(ν) has dµ′κ > Cavg
κ . Since Cavg

κ = D(N(κ), κ), this implies

that D(N(κ) \N(ν), κ) ≤ Cavg
κ . Therefore, choosing an arbitrary µ′ ∈ N(κ) ∩N(ν),

we obtain

D(N(κ) \N(ν), ν) ≤ D(N(κ) \N(ν), κ) + dµ′κ + dµ′ν ≤ Cavg
κ +α∗κ +α∗ν ≤ Cavg

ν + 2α∗ν ,

where we again use the triangle inequality, complementary slackness, and (PD.3(b)).

58

Since the lemma holds in both cases, the proof is now complete.

We now continue our estimation of the connection cost. The next step of our

analysis is to show that

E[Cν] ≤ Cavg
ν +

2

e
α∗ν . (5.2)

The argument is divided into three cases. The first, easy case is when ν is a primary

demand κ. According to the algorithm (see Pseudocode 3, Line 2), we have Cκ = dµκ with

probability ȳµ, for µ ∈ N(κ). Therefore E[Cκ] = Cavg
κ , so (5.2) holds.

Next, we consider a non-primary demand ν. Let κ be the primary demand that ν

is assigned to. We first deal with the sub-case when N(κ) \ N(ν) = ∅, which is the same

as N(κ) ⊆ N(ν). Property (CO) implies that x̄µν = ȳµ = x̄µκ for every µ ∈ N(κ), so

we have
∑

µ∈N(κ) x̄µν =
∑

µ∈N(κ) x̄µκ = 1, due to (PS.1). On the other hand, we have∑
µ∈N(ν) x̄µν = 1, and x̄µν > 0 for all µ ∈ N(ν). Therefore N(κ) = N(ν) and Cν has

exactly the same distribution as Cκ. So this case reduces to the first case, namely we have

E[Cν] = Cavg
ν , and (5.2) holds.

The last, and only non-trivial case is when N(κ) \N(ν) 6= ∅. We handle this case

in the following lemma.

Lemma 14 Assume that N(κ) \N(ν) 6= ∅. Then the expected connection cost of ν, condi-

tioned on the event that at least one of its neighbor opens, satisfies

E[Cν | Λν] ≤ Cavg
ν .

Proof. The proof is similar to an analogous result in [15, 7]. For the sake of completeness we

sketch here a simplified argument, adapted to our terminology and notation. The idea is to

59

consider a different random process that is easier to analyze and whose expected connection

cost is not better than that in the algorithm.

We partition N(ν) into groups G1, ..., Gk, where two different facilities µ and µ′

are put in the same Gs, where s ∈ {1, . . . , k}, if they both belong to the same set N(κ)

for some primary demand κ. If some µ is not a neighbor of any primary demand, then it

constitutes a singleton group. For each s, let d̄s = D(Gs, ν) be the average distance from

ν to Gs. Assume that G1, ..., Gk are ordered by non-decreasing average distance to ν, that

is d̄1 ≤ d̄2 ≤ ... ≤ d̄k. For each group Gs, we select it, independently, with probability

gs =
∑

µ∈Gs ȳµ. For each selected group Gs, we open exactly one facility in Gs, where each

µ ∈ Gs is opened with probability ȳµ/
∑

η∈Gs ȳη.

So far, this process is the same as that in the algorithm (if restricted to N(ν)).

However, we connect ν in a slightly different way, by choosing the smallest s for which

Gs was selected and connecting ν to the open facility in Gs. This can only increase our

expected connection cost, assuming that at least one facility in N(ν) opens, so

E[Cν | Λν] ≤ 1

P[Λν]

(
d̄1g1 + d̄2g2(1− g1) + . . .+ d̄kgk(1− g1)(1− g2) . . . (1− gk)

)
≤ 1

P[Λν]
·
k∑
s=1

d̄sgs ·

(
k∑
t=1

gt

t−1∏
z=1

(1− gz)

)
(5.3)

=
k∑
s=1

d̄sgs (5.4)

= Cavg
ν . (5.5)

The proof for inequality (5.3) is given in A.2 (note that
∑k

s=1 gs = 1), equality (5.4) follows

from P[Λν] = 1−
∏k
t=1(1−gt) =

∑k
t=1 gt

∏t−1
z=1(1−gz), and (5.5) follows from the definition

of the distances d̄s, probabilities gs, and simple algebra.

60

Next, we show an estimate on the probability that none of ν’s neighbors is opened

by the algorithm.

Lemma 15 The probability that none of ν’s neighbors is opened satisfies P[¬Λν] ≤ 1/e.

Proof. We use the same partition of N(ν) into groups G1, ..., Gk as in the proof of

Lemma 14. Denoting by gs the probability that a group Gs is selected (and thus that

it has an open facility), we have

P[¬Λν] =

k∏
s=1

(1− gs) ≤ e−
∑k
s=1 gs = e

−
∑
µ∈N(ν) ȳµ =

1

e
.

In this derivation, we first use that 1− x ≤ e−x holds for all x, the second equality follows

from
∑k

s=1 gs =
∑

µ∈N(ν) ȳµ and the last equality follows from
∑

µ∈N(ν) ȳµ = 1.

We are now ready to estimate the unconditional expected connection cost of ν (in

the case when N(κ) \N(ν) 6= ∅) as follows,

E[Cν] = E[Cν | Λν] · P[Λν] + E[Cν | ¬Λν] · P[¬Λν]

≤ Cavg
ν · P[Λν] + (Cavg

ν + 2α∗ν) · P[¬Λν] (5.6)

= Cavg
ν + 2α∗ν · P[¬Λν]

≤ Cavg
ν +

2

e
· α∗ν . (5.7)

In the above derivation, inequality (5.6) follows from Lemmas 13 and 14, and inequality

(5.7) follows from Lemma 15.

We have thus shown that the bound (5.2) holds in all three cases. Summing over

all demands ν of a client j, we can now bound the expected connection cost of client j:

E[Cj] =
∑

ν∈j E[Cν] ≤
∑

ν∈j(C
avg
ν + 2

e · α
∗
ν) = C∗j + 2

e · rjα
∗
j .

61

Finally, summing over all clients j, we obtain our bound on the expected connection cost,

E[CECHS] ≤ C∗ +
2

e
· LP∗.

Therefore we have established that our algorithm constructs a feasible integral solution with

an overall expected cost

E[FECHS + CECHS] ≤ F ∗ + C∗ +
2

e
· LP∗ = (1 + 2/e) · LP∗ ≤ (1 + 2/e) ·OPT.

Summarizing, we obtain the main result of this section.

Theorem 16 Algorithm ECHS is a (1 + 2/e)-approximation algorithm for FTFP.

5.3 Algorithm EBGS with Ratio 1.575

In this section we give our main result, a 1.575-approximation algorithm for FTFP,

where 1.575 is the value of minγ≥1 max{γ, 1 + 2/eγ , 1/e+1/eγ

1−1/γ }, rounded to three decimal

digits. This matches the ratio of the best known LP-rounding algorithm for UFL by Byrka et

al. [8].

Recall that in Section 5.2 we showed how to compute an integral solution with

facility cost bounded by F ∗ and connection cost bounded by C∗ + 2/e · LP∗. Thus, while

our facility cost does not exceed the optimal fractional facility cost, our connection cost is

significantly larger than the connection cost in the optimal fractional solution. A natural

idea is to balance these two ratios by reducing the connection cost at the expense of the

facility cost. One way to do this would be to increase the probability of opening facilities,

from ȳµ (used in Algorithm ECHS) to, say, γȳµ, for some γ > 1. This increases the expected

62

facility cost by a factor of γ but, as it turns out, it also reduces the probability that an

indirect connection occurs for a non-primary demand to 1/eγ (from the previous value 1/e

in ECHS). As a consequence, for each primary demand κ, the new algorithm will select a

facility to open from the nearest facilities µ in N(κ) such that the connection values x̄µν

sum up to 1/γ, instead of 1 as in Algorithm ECHS. It is easily seen that this will improve

the estimate on connection cost for primary demands. These two changes, along with a

more refined analysis, are the essence of the approach in [8], expressed in our terminology.

Our approach can be thought of as a combination of the above ideas with the tech-

niques of demand reduction and adaptive partitioning that we introduced earlier. However,

our adaptive partitioning technique needs to be carefully modified, because now we will

be using a more intricate neighborhood structure, with the neighborhood of each demand

divided into two disjoint parts, and with restrictions on how parts from different demands

can overlap.

We begin by describing properties that our partitioned fractional solution (x̄, ȳ)

needs to satisfy. Assume that γ is some constant such that 1 < γ < 2. As mentioned earlier,

the neighborhood N(ν) of each demand ν will be divided into two disjoint parts. The first

part, called the close neighborhood and denoted N cls(ν), contains the facilities in N(ν) near-

est to ν with the total connection value equal 1/γ, that is
∑

µ∈Ncls(ν) x̄µν = 1/γ. The second

part, called the far neighborhood and denoted N far(ν), contains the remaining facilities in

N(ν) (so
∑

µ∈N far(ν) x̄µν = 1 − 1/γ). We restate these definitions formally below in Prop-

erty (NB). Recall that for any set A of facilities and a demand ν, by D(A, ν) we denote the

average distance between ν and the facilities in A, that is D(A, ν) =
∑

µ∈A dµν ȳµ/
∑

µ∈A ȳµ.

63

We will use notations Cavg
cls (ν) = D(N cls(ν), ν) and Cavg

far (ν) = D(N far(ν), ν) for the average

distances from ν to its close and far neighborhoods, respectively. By the definition of these

sets and the completeness property (CO), these distances can be expressed as

Cavg
cls (ν) = γ

∑
µ∈Ncls(ν)

dµν x̄µν and Cavg
far (ν) =

γ

γ − 1

∑
µ∈N far(ν)

dµν x̄µν .

We will also use notation Cmax
cls (ν) = maxµ∈Ncls(ν) dµν for the maximum distance from ν to

its close neighborhood. The average distance from a demand ν to its overall neighborhood

N(ν) is denoted as Cavg(ν) = D(N(ν), ν) =
∑

µ∈N(ν) dµν x̄µν . It is easy to see that

Cavg(ν) =
1

γ
Cavg

cls (ν) +
γ − 1

γ
Cavg

far (ν). (5.8)

Our partitioned solution (x̄, ȳ) must satisfy the same partitioning and complete-

ness properties as before, namely properties (PS) and (CO) in Section 4.4. In addition, it

must satisfy a new neighborhood property (NB) and modified properties (PD’) and (SI’),

listed below.

(NB) Neighborhoods. For each demand ν ∈ C, its neighborhood is divided into close and

far neighborhood, that is N(ν) = N cls(ν) ∪N far(ν), where

• N cls(ν) ∩N far(ν) = ∅,

•
∑

µ∈Ncls(ν) x̄µν = 1/γ, and

• if µ ∈ N cls(ν) and µ′ ∈ N far(ν) then dµν ≤ dµ′ν .

Note that the first two conditions, together with (PS.1), imply that
∑

µ∈N far(ν) x̄µν =

1− 1/γ. When defining N cls(ν), in case of ties, which can occur when some facilities

64

in N(ν) are at the same distance from ν, we use a tie-breaking rule that is explained

in the proof of Lemma 17 (the only place where the rule is needed).

(PD’) Primary demands. Primary demands satisfy the following conditions:

1. For any two different primary demands κ, κ′ ∈ P we have N cls(κ)∩N cls(κ
′) = ∅.

2. For each site i ∈ F,
∑

κ∈P
∑

µ∈i∩Ncls(κ) x̄µκ ≤ y∗i . In the summation, as before,

we overload notation i to stand for the set of facilities created on site i.

3. Each demand ν ∈ C is assigned to one primary demand κ ∈ P such that

(a) N cls(ν) ∩N cls(κ) 6= ∅, and

(b) Cavg
cls (ν) + Cmax

cls (ν) ≥ Cavg
cls (κ) + Cmax

cls (κ).

(SI’) Siblings. For any pair ν, ν ′ ∈ C of different siblings we have

1. N(ν) ∩N(ν ′) = ∅.

2. If ν is assigned to a primary demand κ then N(ν ′) ∩N cls(κ) = ∅. In particular,

by Property (PD’.3(a)), this implies that different sibling demands are assigned

to different primary demands, since N cls(ν
′) is a subset of N(ν ′).

Modified adaptive partitioning. To obtain a fractional solution with the above prop-

erties, we employ a modified adaptive partitioning algorithm. As in Section 4.4, we have

two phases. In Phase 1 we split clients into demands and create facilities on sites, while

in Phase 2 we augment each demand’s connection values x̄µν so that the total connection

value of each demand ν is 1. As the partitioning algorithm proceeds, for any demand ν,

N(ν) denotes the set of facilities with x̄µν > 0; hence the notation N(ν) actually represents

65

a dynamic set which gets fixed once the partitioning algorithm concludes both Phase 2. On

the other hand, N cls(ν) and N far(ν) refer to the close and far neighborhoods at the time

when N(ν) is fixed.

Similar to the algorithm in Section 4.4, Phase 1 runs in iterations. Fix some

iteration and consider any client j. As before, Ñ(j) is the neighborhood of j with respect

to the yet unpartitioned solution, namely the set of facilities µ such that x̃µj > 0. Order

the facilities in this set as Ñ(j) = {µ1, ..., µq} with non-decreasing distance from j, that

is dµ1j ≤ dµ2j ≤ . . . ≤ dµqj . Without loss of generality, there is an index l for which∑l
s=1 x̃µsj = 1/γ, since we can always split one facility to achieve this. Then we define

Ñcls(j) = {µ1, ..., µl}. (Unlike close neighborhoods of demands, Ñcls(j) can vary over time.)

We also use notation

tcccls(j) = D(Ñcls(j), j) = γ
∑

µ∈Ñcls(j)

dµj x̃µj and dmaxcls(j) = max
µ∈Ñcls(j)

dµj .

When the iteration starts, we first find a not-yet-exhausted client p that minimizes

the value of tcccls(p)+dmaxcls(p) and create a new demand ν for p. Now we have two cases:

Case 1: Ñcls(p) ∩ N(κ) 6= ∅ for some existing primary demand κ ∈ P . In this case we

assign ν to κ. As before, if there are multiple such κ, we pick any of them. We also

fix x̄µν← x̃µp and x̃µp← 0 for each µ ∈ Ñ(p)∩N(κ). Note that although we check for

overlap between Ñcls(p) and N(κ), the facilities we actually move into N(ν) include

all facilities in the intersection of Ñ(p), a bigger set, with N(κ).

At this time, the total connection value between ν and µ ∈ N(ν) is at most 1/γ, since∑
µ∈N(κ) ȳµ = 1/γ (this follows from the definition of neighborhoods for new primary

66

demands in Case 2 below) and we have N(ν) ⊆ N(κ) at this point. Later in Phase 2

we will add additional facilities from Ñ(p) to N(ν) to make ν’s total connection value

equal to 1.

Case 2: Ñcls(p) ∩N(κ) = ∅ for all existing primary demands κ ∈ P . In this case we make

ν a primary demand (that is, add it to P) and assign it to itself. We then move the

facilities from Ñcls(p) to N(ν), that is for µ ∈ Ñcls(p) we set x̄µν← x̃µp and x̃µp← 0.

It is easy to see that the total connection value of ν to N(ν) is now exactly 1/γ, that is∑
µ∈N(ν) ȳµ = 1/γ. Moreover, facilities remaining in Ñ(p) are all farther away from ν

than those in N(ν). As we add only facilities from Ñ(p) to N(ν) in Phase 2, the final

N cls(ν) contains the same set of facilities as the current set N(ν). (More precisely,

N cls(ν) consists of the facilities that either are currently in N(ν) or were obtained

from splitting the facilities currently in N(ν).)

Once all clients are exhausted, that is, each client j has rj demands created, Phase 1

concludes. We then run Phase 2, the augmenting phase, following the same steps as in

Section 4.4. For each client j and each demand ν ∈ j with total connection value to

N(ν) less than 1 (that is,
∑

µ∈N(ν) x̄µν < 1), we use our AugmentToUnit() procedure to

add additional facilities (possibly split, if necessary) from Ñ(j) to N(ν) to make the total

connection value between ν and N(ν) equal 1.

This completes the description of the partitioning algorithm. Summarizing, for

each client j ∈ C we created rj demands on the same point as j, and we created a number

of facilities at each site i ∈ F. Thus computed sets of demands and facilities are denoted

67

C and F, respectively. For each facility µ ∈ i we defined its fractional opening value

ȳµ, 0 ≤ ȳµ ≤ 1, and for each demand ν ∈ j we defined its fractional connection value

x̄µν ∈ {0, ȳµ}. The connections with x̄µν > 0 define the neighborhood N(ν). The facilities

in N(ν) that are closest to ν and have total connection value from ν equal 1/γ form the

close neighborhood N cls(ν), while the remaining facilities in N(ν) form the far neighborhood

N far(ν). It remains to show that this partitioning satisfies all the desired properties.

Correctness of partitioning. We now argue that our partitioned fractional solution (x̄, ȳ)

satisfies all the stated properties. Properties (PS), (CO) and (NB) are directly enforced by

the algorithm.

(PD’.1) holds because for each primary demand κ ∈ p, N cls(κ) is the same set

as Ñcls(p) at the time when κ was created, and Ñcls(p) is removed from Ñ(p) right after

this step. Further, the partitioning algorithm makes κ a primary demand only if Ñcls(p) is

disjoint from the set N(κ′) of all existing primary demands κ′ at that iteration, but these

neighborhoods are the same as the final close neighborhoods N cls(κ
′).

The justification of (PD’.2) is similar to that for (PD.2) from Section 4.4. All close

neighborhoods of primary demands are disjoint, due to (PD’.1), so each facility µ ∈ i can

appear in at most one N cls(κ), for some κ ∈ P . Condition (CO) implies that ȳµ = x̄µκ

for µ ∈ N cls(κ). As a result, the summation on the left-hand side is not larger than∑
µ∈i ȳµ = y∗i .

Regarding (PD’.3(a)), at first glance this property seems to follow directly from

the algorithm, as we only assign a demand ν to a primary demand κ when N(ν) at that

iteration overlaps with N(κ) (which is equal to the final value of N cls(κ)). However, it is

68

a little more subtle, as the final N cls(ν) may contain facilities added to N(ν) in Phase 2.

Those facilities may turn out to be closer to ν than some facilities in N(κ) ∩ Ñ(j) (not

Ñcls(j)) that we added to N(ν) in Phase 1. If the final N cls(ν) consists only of facilities

added in Phase 2, we no longer have the desired overlap of N cls(κ) and N cls(ν). Luckily

this bad scenario never occurs. We postpone the proof of this property to Lemma 17. The

proof of (PD’.3(b)) is similar to that of Lemma 9, and we defer it to Lemma 18.

(SI’.1) follows directly from the algorithm because for each demand ν ∈ j, all

facilities added to N(ν) are immediately removed from Ñ(j) and each facility is added to

N(ν) of exactly one demand ν ∈ j. Splitting facilities obviously preserves (SI’.1).

The proof of (SI’.2) is similar to that of Lemma 7. If κ = ν then (SI’.2) follows from

(SI’.1), so we can assume that κ 6= ν. Suppose that ν ′ ∈ j is assigned to κ′ ∈ P and consider

the situation after Phase 1. By the way we reassign facilities in Case 1, at this time we have

N(ν) ⊆ N(κ) = N cls(κ) and N(ν ′) ⊆ N(κ′) = N cls(κ
′), so N(ν ′)∩N cls(κ) = ∅, by (PD’.1).

Moreover, we have Ñ(j) ∩N cls(κ) = ∅ after this iteration, because any facilities that were

also in N cls(κ) were removed from Ñ(j) when ν was created. In Phase 2, augmentation

does not change N cls(κ) and all facilities added to N(ν ′) are from the set Ñ(j) at the end

of Phase 1, which is a subset of the set Ñ(j) after this iteration, since Ñ(j) can only shrink.

So the condition (SI’.2) will remain true.

Lemma 17 Property (PD’.3(a)) holds.

Proof. Let j be the client for which ν ∈ j. We consider an iteration when we create ν

from j and assign it to κ, and within this proof, notation Ñcls(j) and Ñ(j) will refer to the

value of the sets at this particular time. At this time, N(ν) is initialized to Ñ(j) ∩ N(κ).

69

Recall that N(κ) is now equal to the final N cls(κ) (taking into account facility splitting).

We would like to show that the set Ñcls(j) ∩N cls(κ) (which is not empty) will be included

in N cls(ν) at the end. Technically speaking, this will not be true due to facility splitting, so

we need to rephrase this claim and the proof in terms of the set of facilities obtained after

the algorithm completes.

E− E+

B

A

N(ν)
1/γ

Figure 5.1: Illustration of the sets N(ν), A, B, E− and E+ in the proof of Lemma 17. Let
X b Y mean that the facility sets X is obtained from Y by splitting facilities. We then
have A b Ñ(j), B b Ñcls(j) ∩N cls(κ), E− b Ñcls(j)−N cls(κ), E+ b Ñ(j)− Ñcls(j).

We define the sets A, B, E− and E+ as the subsets of F (the final set of facilities)

that were obtained from splitting facilities in the sets Ñ(j), Ñcls(j)∩N cls(κ), Ñcls(j)−N cls(κ)

and Ñ(j)− Ñcls(j), respectively. (See Figure 5.1.) We claim that at the end B ⊆ N cls(ν),

with the caveat that the ties in the definition of N cls(ν) are broken in favor of the facilities

in B. (This is the tie-breaking rule that we mentioned in the definition of N cls(ν).) This

will be sufficient to prove the lemma because B 6= ∅, by the algorithm.

We now prove this claim. In this paragraph N(ν) denotes the final set N(ν) after

both phases are completed. Thus the total connection value of N(ν) to ν is 1. Note first that

70

B ⊆ N(ν) ⊆ A, because we never remove facilities from N(ν) and we only add facilities from

Ñ(j). Also, B ∪ E− represents the facilities obtained from Ñcls(j), so
∑

µ∈B∪E− ȳµ = 1/γ.

This and B ⊆ N(ν) implies that the total connection value of B ∪ (N(ν) ∩ E−) to ν is

at most 1/γ. But all facilities in B ∪ (N(ν) ∩ E−) are closer to ν (taking into account

our tie breaking in property (NB)) than those in E+ ∩N(ν). It follows that B ⊆ N cls(ν),

completing the proof.

Lemma 18 Property (PD’.3(b)) holds.

Proof. This proof is similar to that for Lemma 9. For a client j and demand η, we will

write tccηcls(j) and dmaxηcls(j) to denote the values of tcccls(j) and dmaxcls(j) at the time

when η was created. (Here η may or may not be a demand of client j).

Suppose ν ∈ j is assigned to a primary demand κ ∈ p. By the way primary

demands are constructed in the partitioning algorithm, Ñcls(p) becomesN(κ), which is equal

to the final value of N cls(κ). So we have Cavg
cls (κ) = tccκcls(p) and Cmax

cls (κ) = dmaxκcls(p).

Further, since we choose p to minimize tcccls(p) + dmaxcls(p), we have that tccκcls(p) +

dmaxκcls(p) ≤ tccκcls(j) + dmaxκcls(j).

Using an argument analogous to that in the proof of Lemma 8, our modified

partitioning algorithm guarantees that tccκcls(j) ≤ tccνcls(j) ≤ Cavg
cls (ν) and dmaxκcls(j) ≤

dmaxνcls(j) ≤ Cmax
cls (ν) since ν was created later. Therefore, we have

Cavg
cls (κ) + Cmax

cls (κ) = tccκcls(p) + dmaxκcls(p)

≤ tccκcls(j) + dmaxκcls(j) ≤ tccνcls(j) + dmaxνcls(j) ≤ C
avg
cls (ν) + Cmax

cls (ν),

completing the proof.

71

Now we have completed the proof that the computed partitioning satisfies all the

required properties.

Algorithm EBGS. The complete algorithm starts with solving the LP(3.1) and computing

the partitioning described earlier in this section. Given the partitioned fractional solution

(x̄, ȳ) with the desired properties, we start the process of opening facilities and making

connections to obtain an integral solution. To this end, for each primary demand κ ∈ P ,

we open exactly one facility φ(κ) in N cls(κ), where each µ ∈ N cls(κ) is chosen as φ(κ) with

probability γȳµ. For all facilities µ ∈ F−
⋃
κ∈P N cls(κ), we open them independently, each

with probability γȳµ.

We claim that all probabilities are well-defined, that is γȳµ ≤ 1 for all µ. Indeed,

if ȳµ > 0 then ȳµ = x̄µν for some ν, by Property (CO). If µ ∈ N cls(ν) then the definition

of close neighborhoods implies that x̄µν ≤ 1/γ. If µ ∈ N far(ν) then x̄µν ≤ 1 − 1/γ ≤ 1/γ,

because γ < 2. Thus γȳµ ≤ 1, as claimed.

Next, we connect demands to facilities. Each primary demand κ ∈ P will connect

to the only open facility φ(κ) in N cls(κ). For each non-primary demand ν ∈ C−P , if there

is an open facility in N cls(ν) then we connect ν to the nearest such facility. Otherwise, we

connect ν to the nearest far facility in N far(ν) if one is open. Otherwise, we connect ν to

its target facility φ(κ), where κ is the primary demand that ν is assigned to.

Analysis. By the algorithm, for each client j, all its rj demands are connected to open

facilities. If two different siblings ν, ν ′ ∈ j are assigned, respectively, to primary demands

κ, κ′ then, by Properties (SI’.1), (SI’.2), and (PD’.1) we have

(N(ν) ∪N cls(κ)) ∩ (N(ν ′) ∪N cls(κ
′)) = ∅.

72

This condition guarantees that ν and ν ′ are assigned to different facilities, regardless whether

they are connected to a neighbor facility or to its target facility. Therefore the computed

solution is feasible.

We now estimate the cost of the solution computed by Algorithm EBGS. The

lemma below bounds the expected facility cost.

Lemma 19 The expectation of facility cost FEBGS of Algorithm EBGS is at most γF ∗.

Proof. By the algorithm, each facility µ ∈ F is opened with probability γȳµ, independently

of whether it belongs to the close neighborhood of a primary demand or not. Therefore, by

linearity of expectation, we have that the expected facility cost is

E[FEBGS] =
∑
µ∈F

fµγȳµ = γ
∑
i∈F

fi
∑
µ∈i

ȳµ = γ
∑
i∈F

fiy
∗
i = γF ∗,

where the third equality follows from (PS.3).

In the remainder of this section we focus on the connection cost. Let Cν be the

random variable representing the connection cost of a demand ν. Our objective is to show

that the expectation of ν satisfies

E[Cν] ≤ Cavg(ν) ·max

{
1/e+ 1/eγ

1− 1/γ
, 1 +

2

eγ

}
. (5.9)

If ν is a primary demand then, due to the algorithm, we have E[Cν] = Cavg
cls (ν) ≤ Cavg(ν),

so (5.9) is easily satisfied.

Thus for the rest of the argument we will focus on the case when ν is a non-primary

demand. Recall that the algorithm connects ν to the nearest open facility in N cls(ν) if at

least one facility in N cls(ν) is open. Otherwise the algorithm connects ν to the nearest open

73

facility in N far(ν), if any. In the event that no facility in N(ν) opens, the algorithm will

connect ν to its target facility φ(κ), where κ is the primary demand that ν was assigned

to, and φ(κ) is the only facility open in N cls(κ). Let Λν denote the event that at least one

facility in N(ν) is open and Λνcls be the event that at least one facility in N cls(ν) is open.

¬Λν denotes the complement event of Λν , that is, the event that none of ν’s neighbors

opens. We want to estimate the following three conditional expectations:

E[Cν | Λνcls], E[Cν | Λν ∧ ¬Λνcls], and E[Cν | ¬Λν],

and their associated probabilities.

We start with a lemma dealing with the third expectation, E[Cν | ¬Λν] = E[dφ(κ)ν |

Λν]. The proof of this lemma relies on Properties (PD’.3(a)) and (PD’.3(b)) of modified

partitioning and follows the reasoning in the proof of a similar lemma in [8, 7].

Lemma 20 Assuming that no facility in N(ν) opens, the expected connection cost of ν is

E[Cν | ¬Λν] ≤ Cavg
cls (ν) + 2Cavg

far (ν). (5.10)

Proof. It suffices to show a stronger inequality

E[Cν | ¬Λν] ≤ Cavg
cls (ν) + Cmax

cls (ν) + Cavg
far (ν), (5.11)

which then implies (5.10) because Cmax
cls (ν) ≤ Cavg

far (ν). The proof of (5.11) is similar to that

in [7]. For the sake of completeness, we provide it here, formulated in our terminology and

notation.

Assume that the event ¬Λν is true, that is Algorithm EBGS does not open any

facility in N(ν). Let κ be the primary demand that ν was assigned to. Also let

K = N cls(κ) \N(ν), Vcls = N cls(κ) ∩N cls(ν) and Vfar = N cls(κ) ∩N far(ν).

74

Then K,Vcls, Vfar form a partition of N cls(κ), that is, they are disjoint and their union is

N cls(κ). Moreover, we have that K is not empty, because Algorithm EBGS opens some

facility in N cls(κ) and this facility cannot be in Vcls∪Vfar, by our assumption. We also have

that Vcls is not empty due to (PD’.3(a)).

Recall that D(A, η) =
∑

µ∈A dµηȳµ/
∑

µ∈A ȳµ is the average distance between a

demand η and the facilities in a set A. We shall show that

D(K, ν) ≤ Cavg
cls (κ) + Cmax

cls (κ) + Cavg
far (ν). (5.12)

This is sufficient, because, by the algorithm, D(K, ν) is exactly the expected connection cost

for demand ν conditioned on the event that none of ν’s neighbors opens, that is the left-hand

side of (5.11). Further, (PD’.3(b)) states that Cavg
cls (κ) +Cmax

cls (κ) ≤ Cavg
cls (ν) +Cmax

cls (ν), and

thus (5.12) implies (5.11).

The proof of (5.12) is by analysis of several cases.

Case 1: D(K,κ) ≤ Cavg
cls (κ). For any facility µ ∈ Vcls (recall that Vcls 6= ∅), we have

dµκ ≤ Cmax
cls (κ) and dµν ≤ Cmax

cls (ν) ≤ Cavg
far (ν). Therefore, using the case assumption, we

get D(K, ν) ≤ D(K,κ) + dµκ + dµν ≤ Cavg
cls (κ) + Cmax

cls (κ) + Cavg
far (ν).

Case 2: There exists a facility µ ∈ Vcls such that dµκ ≤ Cavg
cls (κ). Since µ ∈ Vcls, we infer

that dµν ≤ Cmax
cls (ν) ≤ Cavg

far (ν). Using Cmax
cls (κ) to bound D(K,κ), we have D(K, ν) ≤

D(K,κ) + dµκ + dµν ≤ Cmax
cls (κ) + Cavg

cls (κ) + Cavg
far (ν).

Case 3: In this case we assume that neither of Cases 1 and 2 applies, that is D(K,κ) >

Cavg
cls (κ) and every µ ∈ Vcls satisfies dµκ > Cavg

cls (κ). This implies that D(K ∪ Vcls, κ) >

Cavg
cls (κ) = D(N cls(κ), κ). Since sets K, Vcls and Vfar form a partition of N cls(κ), we obtain

75

that in this case Vfar is not empty andD(Vfar, κ) < Cavg
cls (κ). Let δ = Cavg

cls (κ)−D(Vfar, κ) > 0.

We now have two sub-cases:

Case 3.1:D(Vfar, ν) ≤ Cavg
far (ν)+δ. Substituting δ, this implies thatD(Vfar, ν)+D(Vfar, κ) ≤

Cavg
cls (κ)+Cavg

far (ν). From the definition of the average distanceD(Vfar, κ) andD(Vfar, ν),

we obtain that there exists some µ ∈ Vfar such that dµκ + dµν ≤ Cavg
cls (κ) + Cavg

far (ν).

Thus D(K, ν) ≤ D(K,κ) + dµκ + dµν ≤ Cmax
cls (κ) + Cavg

cls (κ) + Cavg
far (ν).

Case 3.2: D(Vfar, ν) > Cavg
far (ν) + δ. The case assumption implies that Vfar is a proper

subset of N far(ν), that is N far(ν) \ Vfar 6= ∅. Let ŷ = γ
∑

µ∈Vfar ȳµ. We can express

Cavg
far (ν) using ŷ as follows

Cavg
far (ν) = D(Vfar, ν)

ŷ

γ − 1
+D(N far(ν) \ Vfar, ν)

γ − 1− ŷ
γ − 1

.

Then, using the case condition and simple algebra, we have

Cmax
cls (ν) ≤ D(N far(ν) \ Vfar, ν)

≤ Cavg
far (ν)− ŷδ

γ − 1− ŷ
≤ Cavg

far (ν)− ŷδ

1− ŷ
, (5.13)

where the last step follows from 1 < γ < 2.

On the other hand, since K, Vcls, and Vfar form a partition of N cls(κ), we have

Cavg
cls (κ) = (1− ŷ)D(K∪Vcls, κ)+ ŷD(Vfar, κ). Then using the definition of δ we obtain

D(K ∪ Vcls, κ) = Cavg
cls (κ) +

ŷδ

1− ŷ
. (5.14)

Now we are essentially done. If there exists some µ ∈ Vcls such that dµκ ≤ Cavg
cls (κ) +

ŷδ/(1− ŷ), then we have

76

D(K, ν) ≤ D(K,κ) + dµκ + dµν

≤ Cmax
cls (κ) + Cavg

cls (κ) +
ŷδ

1− ŷ
+ Cmax

cls (ν)

≤ Cmax
cls (κ) + Cavg

cls (κ) + Cavg
far (ν),

where we used (5.13) in the last step. Otherwise, from (5.14), we must have D(K,κ) ≤

Cavg
cls (κ) + ŷδ/(1− ŷ). Choosing any µ ∈ Vcls, it follows that

D(K, ν) ≤ D(K,κ) + dµκ + dµν

≤ Cavg
cls (κ) +

ŷδ

1− ŷ
+ Cmax

cls (κ) + Cmax
cls (ν)

≤ Cavg
cls (κ) + Cmax

cls (κ) + Cavg
far (ν),

again using (5.13) in the last step.

This concludes the proof of (5.10). As explained earlier, Lemma 20 follows.

Next, we derive some estimates for the expected cost of direct connections. The

next technical lemma is a generalization of Lemma 14. In Lemma 14 we bound the expected

distance to the closest open facility in N(ν), conditioned on at least one facility in N(ν)

being open. The lemma below provides a similar estimate for an arbitrary set A of facilities

in N(ν), conditioned on that at least one facility in set A is open. Recall that D(A, ν) =∑
µ∈A dµν ȳµ/

∑
µ∈A ȳµ is the average distance from ν to a facility in A.

Lemma 21 For any non-empty set A ⊆ N(ν), let ΛνA be the event that at least one facility

in A is opened by Algorithm EBGS, and denote by Cν(A) the random variable representing

the distance from ν to the closest open facility in A. Then the expected distance from ν to

the nearest open facility in A, conditioned on at least one facility in A being opened, is

E[Cν(A) | ΛνA] ≤ D(A, ν).

77

Proof. The proof follows the same reasoning as the proof of Lemma 14, so we only sketch

it here. We start with a similar grouping of facilities in A: for each primary demand κ, if

N cls(κ)∩A 6= ∅ then N cls(κ)∩A forms a group. Facilities in A that are not in a neighborhood

of any primary demand form singleton groups. We denote these groups G1, ..., Gk. It is

clear that the groups are disjoint because of (PD’.1). Denoting by d̄s = D(Gs, ν) the

average distance from ν to a group Gs, we can assume that these groups are ordered so

that d̄1 ≤ ... ≤ d̄k.

Each group can have at most one facility open and the events representing opening

of any two facilities that belong to different groups are independent. To estimate the

distance from ν to the nearest open facility in A, we use an alternative random process to

make connections, that is easier to analyze. Instead of connecting ν to the nearest open

facility in A, we will choose the smallest s for which Gs has an open facility and connect ν

to this facility. (Thus we selected an open facility with respect to the minimum d̄s, not the

actual distance from ν to this facility.) This can only increase the expected connection cost,

thus denoting gs =
∑

µ∈Gs γȳµ for all s = 1, . . . , k, and letting P[ΛνA] be the probability that

A has at least one facility open, we have

E[Cν(A) | ΛνA] ≤ 1

P[ΛνA]
(d̄1g1 + d̄2g2(1− g1) + . . .+ d̄kgk(1− g1) . . . (1− gk−1)) (5.15)

≤ 1

P[ΛνA]

∑k
s=1 d̄sgs∑k
s=1 gs

(1−
k∏
s=1

(1− gs)) (5.16)

=

∑k
s=1 d̄sgs∑k
s=1 gs

=

∑
µ∈A dµνγȳµ∑
µ∈A γȳµ

=

∑k
s=1 dµν ȳµ∑
µ∈A ȳµ

= D(A, ν).

Inequality (5.16) follows from inequality (A.3) in A.2. The rest of the derivation follows

78

from P[ΛνA] = 1−
∏k
s=1(1− gs), and the definition of d̄s, gs and D(A, ν).

A consequence of Lemma 21 is the following corollary which bounds the other two

expectations of Cν , when at least one facility is opened in N cls(ν), and when no facility in

N cls(ν) opens but a facility in N far(ν) is opened.

Corollary 22 (a) E[Cν | Λνcls] ≤ C
avg
cls (ν), and (b) E[Cν | Λν ∧ ¬Λνcls] ≤ C

avg
far (ν).

Proof. When there is an open facility in N cls(ν), the algorithm connect ν to the nearest

open facility in N cls(ν). When no facility in N cls(ν) opens but some facility in N far(ν)

opens, the algorithm connects ν to the nearest open facility in N far(ν). The rest of the

proof follows from Lemma 21. By setting the set A in Lemma 21 to N cls(ν), we have

E[Cν | Λνcls] ≤ D(N cls(ν), ν),= Cavg
cls (ν),

proving part (a), and by setting the set A to N far(ν), we have

E[Cν | Λν ∧ ¬Λνcls] ≤ D(N far(ν), ν) = Cavg
far (ν),

which proves part (b).

Given the estimate on the three expected distances when ν connects to its close

facility in N cls(ν) in (5.3), or its far facility in N far(ν) in (5.3), or its target facility φ(κ)

in (5.10), the only missing pieces are estimates on the corresponding probabilities of each

event, which we do in the next lemma. Once done, we shall put all pieces together and

proving the desired inequality on E[Cν], that is (5.9).

The next Lemma bounds the probabilities for events that no facilities in N cls(ν)

and N(ν) are opened by the algorithm.

79

Lemma 23 (a) P[¬Λνcls] ≤ 1/e, and (b) P[¬Λν] ≤ 1/eγ.

Proof. (a) To estimate P[¬Λνcls], we again consider a grouping of facilities in N cls(ν), as

in the proof of Lemma 21, according to the primary demand’s close neighborhood that

they fall in, with facilities not belonging to such neighborhoods forming their own singleton

groups. As before, the groups are denoted G1, . . . , Gk. It is easy to see that
∑k

s=1 gs =∑
µ∈Ncls(ν) γȳµ = 1. For any group Gs, the probability that a facility in this group opens

is
∑

µ∈Gs γȳµ = gs because in the algorithm at most one facility in a group can be chosen

and each is chosen with probability γȳµ. Therefore the probability that no facility opens is∏k
s=1(1− gs), which is at most e−

∑k
s=1 gs = 1/e. Therefore we have P[¬ΛνA] ≤ 1/e.

(b) This proof is similar to the proof of (a). The probability P[¬Λν] is at most

e−
∑k
s=1 gs = 1/eγ , because we now have

∑k
s=1 gs = γ

∑
µ∈N(ν) ȳµ = γ · 1 = γ.

We are now ready to bound the overall connection cost of Algorithm EBGS, namely

inequality (5.9).

Lemma 24 The expected connection of ν is

E[Cν] ≤ Cavg(ν) ·max
{1/e+ 1/eγ

1− 1/γ
, 1 +

2

eγ

}
.

Proof. Recall that, to connect ν, the algorithm uses the closest facility in N cls(ν) if one is

opened; otherwise it will try to connect ν to the closest facility in N far(ν). Failing that, it

will connect ν to φ(κ), the sole facility open in the neighborhood of κ, the primary demand

ν was assigned to. Given that, we estimate E[Cν] as follows:

80

E[Cν] = E[Cν | Λνcls] · P[Λνcls] + E[Cν | Λν ∧ ¬Λνcls] · P[Λν ∧ ¬Λνcls]

+ E[Cν | ¬Λν] · P[¬Λν]

≤ Cavg
cls (ν) · P[Λνcls] + Cavg

far (ν) · P[Λν ∧ ¬Λνcls] (5.17)

+ [Cavg
cls (ν) + 2Cavg

far (ν)] · P[¬Λν]

= [Cavg
cls (ν) + Cavg

far (ν)] · P[¬Λν] + [Cavg
far (ν)− Cavg

cls (ν)] · P[¬Λνcls] + Cavg
cls (ν)

≤ [Cavg
cls (ν) + Cavg

far (ν)] · 1

eγ
+ [Cavg

far (ν)− Cavg
cls (ν)] · 1

e
+ Cavg

cls (ν) (5.18)

=
(

1− 1

e
+

1

eγ

)
· Cavg

cls (ν) +
(1

e
+

1

eγ

)
· Cavg

far (ν).

Inequality (5.17) follows from Corollary 22 and Lemma 20. Inequality (5.18) follows from

Lemma 23 and Cavg
far (ν)− Cavg

cls (ν) ≥ 0.

Now define ρ = Cavg
cls (ν)/Cavg(ν). It is easy to see that ρ is between 0 and 1.

Continuing the above derivation, applying (5.8), we get

E[Cν] ≤ Cavg(ν) ·
(

(1− ρ)
1/e+ 1/eγ

1− 1/γ
+ ρ(1 +

2

eγ
)

)
≤ Cavg(ν) ·max

{
1/e+ 1/eγ

1− 1/γ
, 1 +

2

eγ

}
,

and the proof is now complete.

With Lemma 24 proven, we are now ready to bound our total connection cost.

For any client j we have

∑
ν∈j

Cavg(ν) =
∑
ν∈j

∑
µ∈F

dµν x̄µν

=
∑
i∈F

dij
∑
µ∈i

∑
ν∈j

x̄µν =
∑
i∈F

dijx
∗
ij = C∗j .

Summing over all clients j we obtain that the total expected connection cost is

E[CEBGS] ≤ C∗max

{
1/e+ 1/eγ

1− 1/γ
, 1 +

2

eγ

}
.

81

Recall that the expected facility cost is bounded by γF ∗, as argued earlier. Hence the total

expected cost is bounded by max{γ, 1/e+1/eγ

1−1/γ , 1 + 2
eγ } · LP∗. Picking γ = 1.575 we obtain

the desired ratio.

Theorem 25 Algorithm EBGS is a 1.575-approximation algorithm for FTFP.

82

Chapter 6

Primal-dual Algorithms

In this chapter, we present the results on primal-dual algorithms. Unlike the LP-

rounding algorithms in Chapter 5, primal-dual algorithms do not require solving the LP

explicitly and are computationally more efficient. Primal-dual algorithms work by making

simultaneous updates to a primal solution, which is integral, and a dual solution, which

may be fractional, and eventually arriving at a feasible primal solution and a feasible dual

solution. It is then possible to compare the primal solution’s cost to the optimal value.

Assuming that the primal problem is a minimization problem, the optimal value of the

primal program is lower bounded by the cost of any feasible dual solution.

We present a natural greedy algorithm and employ a technique called dual-fitting

to analyze the approximation ratio. We also give an example showing one possible limitation

of this analysis. In Section 6.1, we review the related work by Jain et al. [26] about the

greedy algorithm and the dual-fitting analysis for UFL. In Section 6.2, we explain how a

similar algorithm can be used to solve FTFP, and derive an approximation ratio using the

83

dual-fitting analysis. Lastly, in Section 6.3, we provide an example illustrating the difference

between UFL and FTFP when the dual-fitting analysis is used to derive the approximation

ratio.

6.1 Greedy Algorithm and Dual-fitting Analysis for UFL

Jain et al. [26] analyzed a greedy algorithm with a ratio of 1.861 for UFL using

dual-fitting. The algorithm works by repeatedly picking the most cost-effective star until all

clients are connected. A star consists of a facility i and a set of clients C ′. The cost of the

star (i, C ′) is fi +
∑

j∈C′ dij . The cost-effectiveness, or average-cost, is the cost of the star

divided by the number of clients in that star. Clients in the just-selected star are connected

to the facility, and the opening cost of that facility is then set to zero. The greedy algorithm

can be interpreted as an equivalent algorithm that grows a dual solution and updates the

corresponding primal solution. Each client j is associated with a dual variable αj , and αj

is fixed to the average cost of the star when j gets connected. Clearly, the sum of αj for all

clients j is equal to the cost of the primal solution, which is the cost to open facilities and

the cost to make connections.

The next step is to find a suitable common factor γ to make the dual solution

{αj/γ} feasible. For this purpose, Jain et al. derived an upper bound on the optimal

values of a series of linear programs, which are used to capture the hardest instance for the

algorithm. These linear programs are called the factor-revealing LPs, and the supremum of

their optimal values is shown to be equal to γ, which is an upper bound on the approximation

ratio of the algorithm.

84

The greedy algorithm, as stated, is very flexible and can be applied with only

minor modifications to solve problems with fault-tolerant requirements, for example the

FTFL problem and the FTFP problem. However, it seems rather difficult to generalize the

analysis to the more general problems, and we have to settle for a much worse approximation

ratio except for some special cases. In the literature, there is no published result on the

approximation ratio of the greedy algorithm for FTFL, although an Hn-approximation

ratio 1 is not difficult to obtain. For the uniform demands case, Swamy and Shmoys [46]

showed that the dual-fitting analysis for UFL can be generalized for FTFL to obtain the

same ratio of 1.52. For the FTFP problem studied in this thesis, the uniform demands case

is trivial, as it is nothing but a UFL problem. We have the following results in the next two

sections: for the general demands case, we show a logarithmic ratio for the greedy algorithm

using the dual-fitting analysis; we then present an example illustrating the difficulty in

obtaining an O(1)-approximation ratio for the FTFP problem when dual-fitting is used.

6.2 Greedy algorithm for FTFP with Ratio O(log n)

6.2.1 Greedy Algorithm for FTFP

In this section, we show that a greedy algorithm for FTFP similar to the one for

UFL in Section 6.1 gives an approximation ratio of Hn ≈ ln(n), where n = |C| is the number

of clients. The greedy algorithm proceeds by picking a star and connecting member clients

to the site of that star. A star is a site i together with a subset of clients C ′. The cost of a

star will be given as we present the greedy algorithm below.

1The term Hn is the nth harmonic number, defined as Hn = 1 + 1/2 + 1/3 + . . . + 1/n ≈ lnn.

85

Call a client j fully-connected if j has made rj connections. Let U be the set of

not fully-connected clients. The greedy algorithm for FTFP iterates until all clients are

fully-connected. In one iteration, let yi be the number of facilities opened at site i, and

xij be the number of connections between site i and client j. Then, the following stars are

available to the algorithm:

• For every site i ∈ F, and every nonempty subset of clients C ′ ⊆ U , we have one star

S = (i, C ′) with a cost c(S) = fi +
∑

j∈C′ dij . We call this type of star a paid star.

• For every site i ∈ F, and every nonempty subset of clients C ′ ⊆ U such that xij < yi

for every j ∈ C ′, we have one star S = (i, C ′) with a cost c(S) =
∑

j∈C′ dij . In other

words, the facility is free in this star, and we call this type of star a free star.

The average cost of a star S = (i, C ′) is always c(S)/|C ′|, that is, the cost of the star divided

by the number of clients in that star. The greedy algorithm then picks some star S = (i, C ′)

with the minimum average cost. If this star is a paid star, the algorithm opens one more

facility at the site i. Regardless of whether the star is paid or free, the algorithm make one

more connection from every client j in C ′ to the site i.

To see that the algorithm can be implemented to run in polynomial time, we have

two observations to allow multiple iterations to be completed in one step and the number

of steps are polynomial in the problem size.

Our first observation is that once a star becomes the best star, it remains the best

until we can no longer select the same star. The latter might happen when one of the two

cases hold:

86

• Case 1: The star is a free star. Then, without loss of generality, we may assume that

this star contains exactly one client. This star will not be available to the algorithm

after the client j has connected to all free facilities at that site i, that is, xij = yi.

• Case 2: The star is a paid star. Then the star cannot be selected once one or more of

the member clients become fully-connected and are removed from the set U .

Our second observation is that, although the number of possible stars is exponen-

tial, the best paid star can be identified by considering each site with the nearest 1, 2, . . . , k

clients for some integer k, where adding the (k+1)th client would increase the average cost.

For free stars, since the greedy algorithm has not specified how to break ties when multiple

stars have the same average cost, we may assume that the best free star is a star with just

one client. Therefore, we can find the best free star by considering each (i, j) pair for every

site i and every client j with xij < yi. The overall best star is then the better of the best

paid star and the best free star. It follows that we can accomplish multiple iterations in a

single step, and the number of steps is polynomially bounded by |F| · |C|. Therefore, the

greedy algorithm runs in polynomial time.

6.2.2 Analysis

We now derive an approximation ratio of the greedy algorithm just described. For

this purpose, we adapt the dual-fitting analysis for UFL to FTFP, though we have to settle

for a much less satisfying ratio of Hn.

When we run the greedy algorithm, we associate each demand of a client j with a

number αlj , which is the average cost of the star when the lth demand of client j is connected.

87

Let αj = α
rj
j , and order the clients non-decreasingly by their αj values, that is,

α1 ≤ α2 ≤ . . . ≤ αn.

For the αj values ordered non-decreasingly, one invariant that the greedy algorithm main-

tains is: for every j = 1, . . . , n, where n = |C| is the number of clients, we have

n∑
l=j

(αj − dil)+ ≤ fi ∀i ∈ F.

The notation (·)+ means taking the maximum of the value or 0. The reason is that, when

the last demand of client j is connected, all the clients j + 1, . . . , n are still active so their

total contribution to the site i cannot exceed fi.

Let us take a closer look at the numbers {αj}. We know that the algorithm’s total

cost is exactly
∑n

j=1

∑rj
l=1 α

l
j , which is not more than

∑n
j=1 rjαj , because we take αj to be

α
rj
j . If we can show that

∑n
j=1 rjαj is not more than γ ·OPT, where OPT is the cost of an

integral optimal solution, then we claim our algorithm returns an integral solution within

a factor of γ from the optimal value OPT.

We show that
∑n

j=1 rjαj is within a factor of γ from OPT by showing that {αj/γ}

is a feasible dual solution to the following program, which is a different way to write the

dual program of the LP (3.1).

maximize
∑
j

rjαj (6.1)

subject to

n∑
j=1

(αj − dij)+ ≤ fi ∀i ∈ F

We repeat the LP (3.1) below for the reader’s convenience.

88

minimize
∑
i∈F

fiyi +
∑

i∈F,j∈C
dijxij

subject to yi − xij ≥ 0 ∀i ∈ F, j ∈ C∑
i∈F xij ≥ rj ∀j ∈ C

xij ≥ 0, yi ≥ 0 ∀i ∈ F, j ∈ C

Obviously, we want such a value γ to be as small as possible, because in the dual-fitting

analysis, we take γ as our approximation ratio and we want the ratio to be small. To find

the minimum γ that would always shrink {αj} to be dual feasible, we need to find a worst

case instance that maximizes γ. Moreover, the worst case instance must contain a star

whose feasibility requirement realizes the value of γ. It is also clear that this star must also

be the worst star in that instance.

As a first step, we can drop the max{0, ·} operation, because we can always find

a new star by dropping those clients j whose (αj − dij) terms are negative. That new star

would still be a worst case star. Suppose that the worst case star has k clients, and contains

a site i. We then have
k∑
j=1

αj − dij ≤ fi.

In the summation above, we rename the clients in the new star to be 1, . . . , k. These clients

are still ordered non-decreasingly by their αj values. Now, our goal is to find the supremum

of the following program for all possible values of k = 1, 2,

maximize

∑k
j=1 αj

fi +
∑k

j=1 dij

subject to
k∑
l=j

(αl − dil)+ ≤ fi for j = 1, . . . , k

89

Because we are dealing with a particular star, we can abstract away the site i to obtain the

following program:

maximize

∑k
j=1 αj

f +
∑k

j=1 dj
(6.2)

subject to
k∑
l=j

(αj − dl)+ ≤ f for j = 1, . . . , k

Because (6.2) is a maximization program, we claim that we can again drop the max{0, ·}

operation: doing so would relax the constraints, and therefore can only make the optimal

value larger. The real optimal value of (6.2) is then upper bounded by the optimal value of

the relaxed program (6.3).

maximize

∑k
j=1 αj

f +
∑k

j=1 dj
(6.3)

subject to
k∑
l=j

(αj − dl) ≤ f for j = 1, . . . , k

For each j = 1, . . . , k, the corresponding constraint in (6.3) can be rewritten as:

(k − j + 1)αj ≤ f +
k∑
l=j

dl ≤ f +
k∑
l=1

dl. (6.4)

The first inequality is a rewrite of the constraint in (6.3), and the second is straightforward.

We now have αj ≤ (1/(k − j + 1))(f +
∑k

j=1 dj), and it is then easy to see that

n∑
j=1

αj/(f +

k∑
j=1

dj) ≤ (1/k + 1/(k − 1) + . . .+ 1) = Hk ≤ Hn. (6.5)

Thus, we can take γ = Hn, and we have that {αj/γ} is a feasible dual solution to

(6.1). It follows that the greedy algorithm is an Hn-approximation.

The Hn-approximation is hardly the best possible approximation ratio for the

greedy algorithm. In deriving the Hn ratio, we have not even used the triangle inequality,

90

though we are working on metric FTFP. On the other hand, similar attempts made by other

researchers to obtain a sub-logarithmic ratio for FTFL were not successful, as described in

Section 6.1. Although FTFP seems to be easier to approximate than FTFL when LP-

rounding algorithms are used, as we have shown in Chapter 5, it seems that the fault-

tolerant requirement in both problems presents a hurdle for primal-dual based algorithms.

In the following section, we provide an example illustrating some of the difficulties when

adapting the dual-fitting analysis to the FTFP problem.

6.3 Limitation of Dual-fitting for FTFP

For FTFP, the greedy algorithm that repeatedly picks the best star until all clients

become fully-connected can be implemented in polynomial time. In Section 6.2, we showed

that this algorithm is an Hn-approximation where n = |C| is the number of clients. Since the

same greedy algorithm is shown to have an O(1)-approximation ratio for UFL [36], a natural

question is whether the greedy algorithm can be shown to have an O(1) approximation ratio.

Here, we give an example that hints at a negative answer.

We assume that the greedy algorithm is analyzed using the dual-fitting technique,

which associates every client j with a number αj , interpreted as a dual solution to the

LP (3.2). However, the dual solution {αj} in general may not be feasible. The dual-fitting

technique aims at finding the smallest possible number γ such that, after the dual solution

{αj} is shrunk (divided) by γ, all dual constraints are satisfied, that is,

∑
j∈C

(αj/γ − dij)+ ≤ fi for all i ∈ F .

91

The number γ is taken as the approximation ratio.

In the greedy algorithm, a star with the minimum average cost is picked at each

iteration, and each member client of that star then gets one more connection. The dual

value αj associated with each client j in the dual-fitting analysis can be seen as a way to

charge the cost to individual clients. Although charging each member client an equal share

works well for UFL, the same may not be true for FTFP. In general, the dual-fitting analysis

does have the freedom of distributing the cost of fi into member clients. Nonetheless, we

assume that the cost of fi is distributed among members only, and not to clients outside

this star. We call this assumption the local charging assumption. Our second assumption

is that the proposed dual solution αj is taken as the average of individual αlj values, that

is, αj =
∑rj

l=1 α
l
j/rj . Suppose that the lth demand of j is satisfied while j is in a star with

a site i; then αlj = dij + f j,li , where f j,li is the portion of fi attributed to j in the analysis.

Taking the average implies the computed αj values make
∑

j∈C rjαj equal to the cost of

the integral solution produced by the greedy algorithm. Under these two assumptions, the

example we give below shows that the dual-fitting analysis cannot show an approximation

ratio better than O(log n/ log log n). In particular, this analysis cannot be used to show an

approximation ratio of O(1).

We now give our example, illustrated in Figure 6.1. Our example has one site and

k groups of clients. Opening one facility at that site costs f1. The first group has n1 clients,

each with a demand of r1, and all those clients are at distance d1 = 0 from the site. The

distances from each of the groups to the site are listed below. Distances that are not shown

explicitly are assumed to follow the triangle inequality. Notice that the distances are chosen

92

f1 n1 = kk, r1

n2 = kk−1, r2

n3 = kk−2, r3

nk = k, rk

demands r1 � r2 � . . .� rk

d1 = 0

d2 = d1 + f1/n1

d3 = d2 + f1/n2

dk = dk−1 + f1/nk−1

Figure 6.1: An example showing that the greedy algorithm for FTFP analyzed using dual-
fitting, could give a ratio of Ω(log n/ log logn), assuming that the facility cost of a star can
only be charged to clients within the star.

in a way to force a particular choice of the best stars.

d1 = 0

d2 = f1/n1

d3 = f1/n2 + d2 = f1/n2 + f1/n1 = f1(
1

n2
+

1

n1
)

. . .

dk = f1/nk−1 + dk−1 = f1(
1

nk−1
+ . . .+

1

n1
)

For the numbers, we need r1 � r2 � . . .� rk, and n1 = uk, n2 = uk−1, . . . , nk = u1 = u for

some number u. We actually take u = k in the end, and this may not be the best possible

93

choice.

Call a star with facility cost zero trivial. A star is non-trivial if the facility has

non-zero cost. Now the greedy algorithm executes like this: first we have a non-trivial star

of (f1, n1) with r1 replicas. Then we have a trivial star of a zero-cost facility and all n2

clients in group 2 with r1 replicas. The second non-trivial star is (f1, n2), with r2 − r1

replicas. Notice that the r1 replicas of trivial stars with group 2 satisfy the first r1 demand

of the n2 clients in that group. After that, the n2 clients of group 2 each have a residual

demand of r2 − r1 ≈ r2 (since r2 � r1), and are then satisfied by the r2 − r1 replicas of the

(f1, n2) stars. The process repeats until the kth group finishes with rk new facilities.

According to our local charging assumption, we have α1 = f1, with α1 defined as

the total dual value of the n1 clients in group 1, regardless of how the analysis distributes

the facility cost within that group. Similarly, α2 = f1 + n2d2, and so on. Substituting in

the numbers, we have

α1 = f1

α2 = f1 + n2d2 = f1 + f1/n1 · n2 = f1(1 + n2/n1)

α3 = f1 + n3d3 = f1 + f1(
1

n2
+

1

n1
)n3 = f1(1 +

n3

n2
+
n3

n1
)

. . .

αk = f1 + nkdk = f1 + f1nk(
1

nk−1
+ . . .

1

n1
)

Notice that r1 � r2 � . . .� rk implies that αj is decided by the max among αlj , so in the

following calculation we ignore the terms involving trivial stars.

Now going back to the dual constraint. The constraint requires the shrinking

94

factor γ to satisfy the following inequality:

α1

γ
− d1 +

α2

γ
− d2 + . . .+

αk
γ
− dk ≤ f1, (6.6)

which we use to derive an upper bound on γ. Substituting in the αj values derived above,

we have

γ ≥ (

k∑
j=1

αj)/(f1 +

k∑
j=1

dj)

≥ f1 + n1d1 + f1 + n2d2 + f1 + n3d3 + . . .+ f1 + nkdk
f1 + n1d1 + n2d2 + . . .+ nkdk

= 1 + (k − 1)f1/(f1 + n1d1 + n2d2 + . . .+ nkdk)

= 1 + (k − 1)f1/

(
f1 + n2f1/n1 + . . .+ nkf1(

1

nk−1
+

1

nk−2
+ . . .+

1

n1
)

)
= 1 + (k − 1)/

(
1 + n2/n1 + . . .+ nk(

1

nk−1
+

1

nk−2
+ . . .+

1

n1
)

)
= 1 + (k − 1)/

(
1 + 1/u+ . . .+ (

1

u
+ . . .+

1

uk−1
)

)
= 1 + (k − 1)/

(
1 + k/u+ (k − 1)/u2 + . . .+ 1/uk−1

)
≥ 1 + (k − 1)/

(
1 + k/u+ k/u2 + . . .+ k/uk−1

)
= 1 + (k − 1)/

(
1 + 1 + 1/k + . . .+ 1/kk−2

)
≈ k/2

Thus, for k groups we can force a shrinking factor γ as big as k/2. Earlier we have shown

that the approximation ratio of the greedy algorithm is not more than Hn. Is this a

contradiction? No, because we have the number of clients n = kk +kk−1 + . . .+1 ≈ kk, and

hence k = O(log n/ log log n). Therefore, the example shows that the dual-fitting analysis

with the local-charging assumption cannot hope to get a ratio better thanO(log n/ log logn).

Notice this example is similar in spirit to Mahdian et al.’s [26] Ω(log n/ log logn) example for

Hochbaum’s algorithm for the UFL problem. In both their example and ours, we have the

95

numbers of clients across groups decrease exponentially; while the distances are increasing

at about the same rate. This choice seems to strike the right balance when devising bad

examples for the greedy algorithm. The reason is that, in these examples, we want a fast

growing sequence; while on the other hand, we also need the sequence to be not too short.

Notice that our example only shows that a particular type of analysis, that is dual-

fitting with the local charging assumption, cannot be used to show an O(1) approximation

ratio for the greedy algorithm. Our example did not rule out the possibility to analyze the

greedy algorithm using a different technique and give an O(1) ratio. This concludes our

discussions on primal-dual algorithm and this chapter.

96

Chapter 7

Conclusion

In this thesis we have studied the Fault-Tolerant Facility Placement problem

(FTFP), a generalization of the well-known Uncapacitated Facility Location problem (UFL).

We showed that the known LP-rounding algorithms for UFL can be adapted to FTFP while

preserving the approximation ratio. To accomplish this reduction, we developed two tech-

niques, namely demand reduction and adaptive partitioning, which could be of more general

interest. Our results show that FTFP seems easier in terms of approximation, compared to

another related problem, FTFL. It would be interesting to see if similar ideas can be used

to design an LP-rounding algorithm for FTFL with a matching ratio.

We have also studied the primal-dual approaches, and provided a possible expla-

nation of the difficulty in obtaining a constant approximation ratio using those techniques.

In anticipating future research, we agree with Byrka et al. [10] who remarked that

both UFL and FTFL are likely to have approximation algorithms with a ratio matching the

1.463 lower bound. Due to our results by demand reduction, if FTFL can be approximated

97

with a ratio of 1.463 with respect to the optimal fractional solution, then the same ratio

holds for FTFP as well.

98

Bibliography

[1] Karen Aardal, Fabián Chudak, and David Shmoys. A 3-approximation algorithm for
the k-level uncapacitated facility location problem. Inf. Process. Lett., 72:161–167,
1999.

[2] Karen Aardal, Martine Labb, Janny Leung, and Maurice Queyranne. On the two-level
uncapacitated facility location problem. Informs J. Comput., 8:289–301, 1996.

[3] Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh Munagala, and
Vinayaka Pandit. Local search heuristic for k-median and facility location problems.
In Proc. 33rd Symp. Theory of Computing (STOC), pages 21–29, 2001.

[4] Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh Munagala, and
Vinayaka Pandit. Local search heuristics for k-median and facility location problems.
SIAM J. Comput., 33(3):544–562, 2004.

[5] M.L. Balinski. On finding integer solutions to linear programs. In Proceedings of
the IBM Scientific Computing Symposium on Combinatorial Problems, pages 225–248,
1966.

[6] Jaroslaw Byrka. An optimal bifactor approximation algorithm for the metric uncapac-
itated facility location problem. In Proc. 10th International Workshop on Approxima-
tion Algorithms for Combinatorial Optimization Problems (APPROX), pages 29–43,
2007.

[7] Jaroslaw Byrka and Karen Aardal. An optimal bifactor approximation algorithm for
the metric uncapacitated facility location problem. SIAM J. Comput., 39(6):2212–2231,
2010.

[8] Jaroslaw Byrka, MohammadReza Ghodsi, and Aravind Srinivasan. LP-rounding algo-
rithms for facility-location problems. CoRR, abs/1007.3611, 2010.

[9] Jaroslaw Byrka and Bartosz Rybicki. Improved lp-rounding approximation algorithm
for k-level uncapacitated facility location. In Proc. 39rd International Colloquium on
Automata, Languages, and Programming (ICALP), pages 157–169, 2012.

99

[10] Jaroslaw Byrka, Aravind Srinivasan, and Chaitanya Swamy. Fault-tolerant facility
location, a randomized dependent LP-rounding algorithm. In Proc. 14th Conference on
Integer Programming and Combinatorial Optimization (IPCO), pages 244–257, 2010.

[11] Moses Charikar and Sudipto Guha. Improved combinatorial algorithms for facility
location problems. SIAM J. Comput., 34(4):803–824, 2005.

[12] Moses Charikar, Sudipto Guha, Éva Tardos, and David B. Shmoys. A constant-factor
approximation algorithm for the k-median problem. J. Comput. Syst. Sci., 65(1):129–
149, 2002.

[13] Moses Charikar, Samir Khuller, David Mount, and Giri Narasimhan. Algorithms for
facility location problems with outliers. In Proc. 12th Symp. on Discrete Algorithms
(SODA), pages 642–651, 2001.

[14] Moses Charikar and Shi Li. A dependent lp-rounding approach for the k-median prob-
lem. In Proc. 39rd International Colloquium on Automata, Languages, and Program-
ming (ICALP), pages 194–205, 2012.

[15] Fabián Chudak and David Shmoys. Improved approximation algorithms for the unca-
pacitated facility location problem. SIAM J. Comput., 33(1):1–25, 2004.

[16] Fabián A. Chudak. Improved approximation algorithms for uncapitated facility loca-
tion. In Proc. 6th Conference on Integer Programming and Combinatorial Optimization
(IPCO), pages 180–194, 1998.

[17] Vašek Chvátal. Linear Programming. W. H. Freeman and Company, 1983.

[18] David Shmoys David Williamson. The Design of Approximation Algorithms. Cam-
bridge University Press, 2011.

[19] Dimitris Fotakis. On the competitive ratio for online facility location. Algorithmica,
50(1):1–57, 2007.

[20] Dimitris Fotakis. A primal-dual algorithm for online non-uniform facility location. J.
of Discrete Algorithms, 5(1):141–148, 2007.

[21] Sudipto Guha and Samir Khuller. Greedy strikes back: improved facility location
algorithms. In Proc. 9th Symp. on Discrete Algorithms (SODA), pages 649–657, 1998.

[22] Sudipto Guha, Adam Meyerson, and Kamesh Munagala. A constant factor approxima-
tion algorithm for the fault-tolerant facility location problem. J. Algorithms, 48(2):429–
440, 2003.

[23] Anupam Gupta. Lecture notes: CMU 15-854b, spring 2008, 2008.

[24] G.H. Hardy, John Littlewood, and George Pólya. Inequalities. Cambridge University
Press, 1988.

100

[25] Dorit Hochbaum. Heuristics for the fixed cost median problem. Math. Program.,
22:148–162, 1982.

[26] Kamal Jain, Mohammad Mahdian, Evangelos Markakis, Amin Saberi, and Vijay Vazi-
rani. Greedy facility location algorithms analyzed using dual fitting with factor-
revealing LP. J. ACM, 50(6):795–824, 2003.

[27] Kamal Jain, Mohammad Mahdian, and Amin Saberi. A new greedy approach for
facility location problems. In Proc. 34th Symp. Theory of Computing (STOC), pages
731–740, 2002.

[28] Kamal Jain and Vijay Vazirani. Approximation algorithms for metric facility location
and k-median problems using the primal-dual schema and lagrangian relaxation. J.
ACM, 48(2):274–296, 2001.

[29] Kamal Jain and Vijay Vazirani. An approximation algorithm for the fault tolerant
metric facility location problem. Algorithmica, 38(3):433–439, 2003.

[30] Madhukar Korupolu, C. Greg Plaxton, and Rajmohan Rajaraman. Analysis of a local
search heuristic for facility location problems. In Proc. 9th Symp. on Discrete Algo-
rithms (SODA), pages 1–10, 1998.

[31] Ravishankar Krishnaswamy and Maxim Sviridenko. Inapproximability of the multi-
level uncapacitated facility location problem. In Proc. 23th Symp. on Discrete Algo-
rithms (SODA), pages 718–734, 2012.

[32] Alfred Kuehn and Michael Hamburger. A heuristic program for locating warehouses.
Management Science, 9(4):643–666, 1963.

[33] Shi Li. A 1.488 approximation algorithm for the uncapacitated facility location prob-
lem. In Proc. 38rd International Colloquium on Automata, Languages, and Program-
ming (ICALP), pages 77–88, 2011.

[34] Kewen Liao and Hong Shen. Unconstrained and constrained fault-tolerant resource
allocation. In Proc. 17th Annual International Conference on Computing and Combi-
natorics (COCOON), pages 555–566, 2011.

[35] Jyh-Han Lin and Jeffrey Vitter. e-approximations with minimum packing constraint
violation (extended abstract). In Proc. 24th Symp. Theory of Computing (STOC),
pages 771–782, 1992.

[36] Mohammad Mahdian, Evangelos Markakis, Amin Saberi, and Vijay Vazirani. A greedy
facility location algorithm analyzed using dual fitting. In Proc. 4th International Work-
shop on Approximation Algorithms for Combinatorial Optimization Problems (AP-
PROX), pages 127–137, 2001.

[37] Mohammad Mahdian, Yinyu Ye, and Jiawei Zhang. Approximation algorithms for
metric facility location problems. SIAM J. Comput., 36(2):411–432, 2006.

101

[38] Alan Manne. Plant location under economies-of-scale-decentralization and computa-
tion. Management Science, 11(2):213–235, 1964.

[39] Adam Meyerson. Online facility location. In Proc. 42st Symp. Foundations of Computer
Science (FOCS), pages 426–431, 2001.

[40] Martin Pál, Éva Tardos., and Tom Wexler. Facility location with nonuniform hard
capacities. In Proc. 42st Symp. Foundations of Computer Science (FOCS), pages 329–
338, 2001.

[41] Richard Francis Pitu Mirchandani. Discrete Location Theory. Wiley-Interscience, 1990.

[42] David Shmoys. The design and analysis of approximation algorithms: Facility location
as a case study. In AMS Proceedings of Symposia in Applied Mathematics, volume 61,
pages 85–97, 2004.

[43] David Shmoys, Éva Tardos, and Karen Aardal. Approximation algorithms for facility
location problems (extended abstract). In Proc. 29th Symp. Theory of Computing
(STOC), pages 265–274, 1997.

[44] David B. Shmoys. Approximation algorithms for facility location problems. In Proc. 3th
International Workshop on Approximation Algorithms for Combinatorial Optimization
Problems (APPROX), pages 27–33, 2000.

[45] Maxim Sviridenko. An improved approximation algorithm for the metric uncapaci-
tated facility location problem. In Proc. 9th Conference on Integer Programming and
Combinatorial Optimization (IPCO), pages 240–257, 2002.

[46] Chaitanya Swamy and David Shmoys. Fault-tolerant facility location. ACM Trans.
Algorithms, 4(4):1–27, 2008.

[47] Jens Vygen. Approximation algorithms for facility location problems (lecture notes).
Technical Report No. 05950, Research Institute for Discrete Mathematics, University
of Bonn, 2005.

[48] Shihong Xu and Hong Shen. The fault-tolerant facility allocation problem. In Proc.
20th International Symp. on Algorithms and Computation (ISAAC), pages 689–698,
2009.

[49] Li Yan and Marek Chrobak. Approximation algorithms for the fault-tolerant facility
placement problem. Inf. Process. Lett., 111(11):545–549, 2011.

[50] Jiawei Zhang. Approximating the two-level facility location problem via a quasi-greedy
approach. Math. Program., 108(1):159–176, 2006.

[51] Jiawei Zhang, Bo Chen, and Yinyu Ye. A multiexchange local search algorithm for the
capacitated facility location problem. Math. Oper. Res., 30(2):389–403, 2005.

102

Appendix A

Technical Background

A.1 Integer Programming and Linear Programming

In this section, we give a short introduction to Integer Programming and Linear

Programming, with an emphasis on their application to the design and analysis of ap-

proximation algorithms for optimization problems. Figure A.1 gives an overview of the

discussions below.

NP-hard Optimization Problem

Integer Program

Linear Program (LP) with Fractional Solution

LP-rounding Primal-dual

Figure A.1: An overview of application of Integer Programming and Linear Programming
for NP-hard optimization problems.

103

A.1.1 Optimization and Integer Programming

Most optimization problems have a natural integer program in which we use vari-

ables to describe the solution that we seek, and write the constraints imposed by the fea-

sibility requirements. The objective function is the cost function of the solution. Both the

feasibility requirements and the cost function are specified by the problem. For example,

in the Vertex Cover problem, we are given a graph G = (V,E) and we are to find a subset

W of V , such that every edge e ∈ E has at least one endpoint in W ; we want such a set

W to have the minimum size. To formulate this problem as an integer program, we use

xv ∈ {0, 1} to denote whether a node v ∈ V is in W or not. The constraint is that, for

every edge e = (u, v), we have xu + xv ≥ 1. The objective is to minimize
∑

v∈V xv. The

integer program for Vertex Cover is written as

minimize
∑
v∈V

xv

subject to xu + xv ≥ 1 ∀(u, v) ∈ E
xv ∈ {0, 1} ∀v ∈ V

In general, an integer program cannot be solved exactly in polynomial time, as Integer

Programming is NP-hard. However, if we relax the integrality constraint and allow the

variables to take fractional values, we then obtain a Linear Program (LP). LP is polynomi-

ally solvable, for example, using the ellipsoid method or the interior point method. Thus,

we can first solve the LP optimally, obtaining a fractional optimal solution. The value of

the fractional optimal solution is then a lower bound on the value of the integral optimal

solution, assuming a minimization problem. Our next step is then to round the fractional

solution appropriately, so that we maintain feasibility, while keeping the cost from increas-

104

ing too much. The exact rounding procedure is problem specific and we shall not delve

into this topic here. The rounding relevant to the FTFP problem is presented in detail in

Chapter 5.

A.1.2 Linear Programming, Duality and Complementary Slackness Con-

ditions

We now give a brief overview of linear programming; see [17] for an introductory

book on this topic. A general Linear Program can be written as

minimize
n∑
j=1

cjxj

subject to

n∑
j=1

aijxj ≥ bi, for i = 1, . . . ,m

xj ≥ 0 for j = 1, . . . , n

(A.1)

For the LP above, we can take its dual as

maximize
m∑
i=1

biyi

subject to
m∑
i=1

aijyi ≤ cj for j = 1, . . . , n

yi ≥ 0 for i = 1, . . . ,m

(A.2)

The LP (A.1) is called the primal program and the LP (A.2) is called the dual program.

Regarding the objective function value of the two programs, we have the Weak Duality

Theorem:

Theorem 26 For every feasible solution x to the primal (A.1) and y to the dual (A.2),

we have that cTx ≥ bTy.

The Strong Duality Theorem is that:

105

Theorem 27 If both the primal (A.1) and the dual (A.2) are feasible, then both of them

have optimal solution x∗ and y∗ and their objective function values are equal, that is cTx∗ =

bTy∗.

One way to characterize optimal primal and dual solutions is the Complementary Slackness

Conditions. The complementary slackness conditions says that:

Theorem 28 Two feasible solutions x and y are both optimal to LP (A.1) and (A.2)

respectively, if and only if, for every primal variable xj, either xj = 0 or the corresponding

constraint in the dual is tight, that is
∑m

i=1 aijyi = cj; and for every dual variable yi, either

yi = 0 or the corresponding constraint in the primal is tight, that is
∑n

j=1 aijxj = bi.

The complementary slackness conditions provide a simple way to validate the optimality

when one is presented with a primal solution and a dual solution that are claimed to

be optimal. In addition, the complementary slackness conditions play a crucial role in

the design and analysis of approximation algorithms. For example, suppose we have an

algorithm that computes a feasible integral solution x to the primal program (A.1) and a

feasible fractional solution to the dual program (A.2). Moreover, we know that the two

solutions satisfy a relaxed version of the complementary slackness conditions, that for some

numbers γ and ρ, we have

either yi = 0 or bi ≤
∑
j

aijxj ≤ γ bi, for i = 1, . . . ,m;

either xj = 0 or ρ cj ≤
∑
i

aijyi ≤ cj , for j = 1, . . . , n.

Then the integral solution x has a cost of not more than γ/ρ times the optimal value. In

particular, we have
∑

j cjxj ≤ γ/ρ
∑

i biyi and the value of a feasible dual solution, namely

106

∑
i biyi, is a lower bound on the optimal value of the primal program.

To show an application of the complementary slackness conditions, we look at their

use in the design and analysis of algorithms for the Uncapacitated Facility Location problem

(UFL). Recall that we define the neighborhood N(j) of a client j as the set of facilities with

x∗ij > 0, where (x∗,y∗) is some fractional optimal solution to the LP (2.1) and (α∗,β∗) is

some optimal fractional dual solution to the LP (2.2). Given a client j, the complementary

slackness conditions give an upper bound of α∗j on dij for every facility i ∈ N(j). To see

this bound, notice that the dual constraint says αj − βij ≤ dij . If the primal solution has

x∗ij > 0, then the inequality is actually an equality and we have α∗j − β∗ij = dij . Together

with β∗ij ≥ 0, we have α∗j ≥ dij for every facility i such that x∗ij > 0. By definition, those

are facilities in the neighborhood N(j). Therefore we have dij ≤ α∗j for every i ∈ N(j).

An important application of using the relaxed complementary slackness conditions

is demonstrated by Jain and Vazirani [28] with their algorithm for the UFL problem. Their

algorithm that outputs an integral solution (x,y) to the primal program (2.1) and a feasible

(possibly fractional) solution (α,β) to the dual program (2.2). Moreover, the two solutions

satisfy the conditions that

either
∑
j

βij = fi or yi = 0;

either (1/3) dij ≤ αj − βij ≤ dij or xij = 0.

The solution (x,y) is then a 3-approximation.

107

A.2 Proof of Inequality (5.3)

In Sections 5.2 and 5.3 we make use of the following inequality to derive the

approximation ratio.

d̄1g1 + d̄2g2(1− g1) + . . .+ d̄kgk(1− g1)(1− g2) . . . (1− gk) (A.3)

≤ 1∑k
s=1 gs

(∑k
s=1 d̄sgs

)(∑k
t=1 gt

∏t−1
z=1(1− gz)

)
.

for 0 < d̄1 ≤ d̄2 ≤ . . . ≤ d̄k, and 0 < g1, ..., gs ≤ 1.

Here we give a new proof of this inequality, much simpler than the existing proof

in [15], and also simpler than the argument by Sviridenko [45]. We derive this inequality

from the following generalized version of the Chebyshev Sum Inequality:

∑
ipi
∑

jpjajbj ≤
∑

ipiai
∑

jpjbj , (A.4)

where each summation runs from 1 to l and the sequences (ai), (bi) and (pi) satisfy the

following conditions: pi ≥ 0, ai ≥ 0, bi ≥ 0 for all i, a1 ≤ a2 ≤ . . . ≤ al, and b1 ≥ b2 ≥ . . . ≥

bl. Given the inequality (A.4), we can obtain our inequality (A.3) by simple substitution

pi← gi, ai← d̄i, bi←Πi−1
s=1(1− gs),

for i = 1, ..., k.

For the sake of completeness, we include the proof of inequality (A.4), due to

Hardy, Littlewood and Polya [24]. The idea is to evaluate the following sum:

108

S =
∑

ipi
∑

jpjajbj −
∑

ipiai
∑

jpjbj

=
∑

i

∑
jpipjajbj −

∑
i

∑
jpiaipjbj

=
∑

j

∑
ipjpiaibi −

∑
j

∑
ipjajpibi

= 1
2 ·
∑

i

∑
j(pipjajbj − piaipjbj + pjpiaibi − pjajpibi)

= 1
2 ·
∑

i

∑
jpipj(ai − aj)(bi − bj) ≤ 0.

The last inequality holds because (ai − aj)(bi − bj) ≤ 0, since the sequences (ai) and (bi)

are ordered oppositely.

109

