
Introduction
Motivation

A New Type System in the Lightweight Situation Calculus
Evaluation

A Well-typed Lightweight Situation Calculus

Li Tan

Department of Computer Science and Engineering
University of California, Riverside

Riverside, CA 92507

Student Presentations of CS 207

Li Tan A Well-typed Lightweight Situation Calculus



Introduction
Motivation

A New Type System in the Lightweight Situation Calculus
Evaluation

Outline
1 Introduction

Situation Calculus
Types Do Matter in Programming Languages

2 Motivation
Is Situation Calculus Well-typed?
A Lightweight Situation Calculus

3 A New Type System in the Lightweight Situation Calculus
Syntactic Forms
Evaluation Rules
Typing Rules

4 Evaluation
Case Description
Type Checking
Implementation in OCaml

Li Tan A Well-typed Lightweight Situation Calculus



Introduction
Motivation

A New Type System in the Lightweight Situation Calculus
Evaluation

Outline
1 Introduction

Situation Calculus
Types Do Matter in Programming Languages

2 Motivation
Is Situation Calculus Well-typed?
A Lightweight Situation Calculus

3 A New Type System in the Lightweight Situation Calculus
Syntactic Forms
Evaluation Rules
Typing Rules

4 Evaluation
Case Description
Type Checking
Implementation in OCaml

Li Tan A Well-typed Lightweight Situation Calculus



Introduction
Motivation

A New Type System in the Lightweight Situation Calculus
Evaluation

Outline
1 Introduction

Situation Calculus
Types Do Matter in Programming Languages

2 Motivation
Is Situation Calculus Well-typed?
A Lightweight Situation Calculus

3 A New Type System in the Lightweight Situation Calculus
Syntactic Forms
Evaluation Rules
Typing Rules

4 Evaluation
Case Description
Type Checking
Implementation in OCaml

Li Tan A Well-typed Lightweight Situation Calculus



Introduction
Motivation

A New Type System in the Lightweight Situation Calculus
Evaluation

Outline
1 Introduction

Situation Calculus
Types Do Matter in Programming Languages

2 Motivation
Is Situation Calculus Well-typed?
A Lightweight Situation Calculus

3 A New Type System in the Lightweight Situation Calculus
Syntactic Forms
Evaluation Rules
Typing Rules

4 Evaluation
Case Description
Type Checking
Implementation in OCaml

Li Tan A Well-typed Lightweight Situation Calculus



Introduction
Motivation

A New Type System in the Lightweight Situation Calculus
Evaluation

Situation Calculus
Types Do Matter in Programming Languages

Outline
1 Introduction

Situation Calculus
Types Do Matter in Programming Languages

2 Motivation
Is Situation Calculus Well-typed?
A Lightweight Situation Calculus

3 A New Type System in the Lightweight Situation Calculus
Syntactic Forms
Evaluation Rules
Typing Rules

4 Evaluation
Case Description
Type Checking
Implementation in OCaml

Li Tan A Well-typed Lightweight Situation Calculus



Introduction
Motivation

A New Type System in the Lightweight Situation Calculus
Evaluation

Situation Calculus
Types Do Matter in Programming Languages

What is Situation Calculus?

Origin: introduced by John McCathy (1971 Turing Award
Winner) in 1963
Category: a dialect of logic language for dynamic domain
modeling
Fundamentals: First Order Logic, Set Theory and Basic
Action Theory
Elements: situations, actions and objects
Strength: action-based reasoning
Application: Artificial Intelligence related fields

Li Tan A Well-typed Lightweight Situation Calculus



Introduction
Motivation

A New Type System in the Lightweight Situation Calculus
Evaluation

Situation Calculus
Types Do Matter in Programming Languages

What is Situation Calculus?

Origin: introduced by John McCathy (1971 Turing Award
Winner) in 1963

Category: a dialect of logic language for dynamic domain
modeling
Fundamentals: First Order Logic, Set Theory and Basic
Action Theory
Elements: situations, actions and objects
Strength: action-based reasoning
Application: Artificial Intelligence related fields

Li Tan A Well-typed Lightweight Situation Calculus



Introduction
Motivation

A New Type System in the Lightweight Situation Calculus
Evaluation

Situation Calculus
Types Do Matter in Programming Languages

What is Situation Calculus?

Origin: introduced by John McCathy (1971 Turing Award
Winner) in 1963
Category: a dialect of logic language for dynamic domain
modeling

Fundamentals: First Order Logic, Set Theory and Basic
Action Theory
Elements: situations, actions and objects
Strength: action-based reasoning
Application: Artificial Intelligence related fields

Li Tan A Well-typed Lightweight Situation Calculus



Introduction
Motivation

A New Type System in the Lightweight Situation Calculus
Evaluation

Situation Calculus
Types Do Matter in Programming Languages

What is Situation Calculus?

Origin: introduced by John McCathy (1971 Turing Award
Winner) in 1963
Category: a dialect of logic language for dynamic domain
modeling
Fundamentals: First Order Logic, Set Theory and Basic
Action Theory

Elements: situations, actions and objects
Strength: action-based reasoning
Application: Artificial Intelligence related fields

Li Tan A Well-typed Lightweight Situation Calculus



Introduction
Motivation

A New Type System in the Lightweight Situation Calculus
Evaluation

Situation Calculus
Types Do Matter in Programming Languages

What is Situation Calculus?

Origin: introduced by John McCathy (1971 Turing Award
Winner) in 1963
Category: a dialect of logic language for dynamic domain
modeling
Fundamentals: First Order Logic, Set Theory and Basic
Action Theory
Elements: situations, actions and objects

Strength: action-based reasoning
Application: Artificial Intelligence related fields

Li Tan A Well-typed Lightweight Situation Calculus



Introduction
Motivation

A New Type System in the Lightweight Situation Calculus
Evaluation

Situation Calculus
Types Do Matter in Programming Languages

What is Situation Calculus?

Origin: introduced by John McCathy (1971 Turing Award
Winner) in 1963
Category: a dialect of logic language for dynamic domain
modeling
Fundamentals: First Order Logic, Set Theory and Basic
Action Theory
Elements: situations, actions and objects
Strength: action-based reasoning

Application: Artificial Intelligence related fields

Li Tan A Well-typed Lightweight Situation Calculus



Introduction
Motivation

A New Type System in the Lightweight Situation Calculus
Evaluation

Situation Calculus
Types Do Matter in Programming Languages

What is Situation Calculus?

Origin: introduced by John McCathy (1971 Turing Award
Winner) in 1963
Category: a dialect of logic language for dynamic domain
modeling
Fundamentals: First Order Logic, Set Theory and Basic
Action Theory
Elements: situations, actions and objects
Strength: action-based reasoning
Application: Artificial Intelligence related fields

Li Tan A Well-typed Lightweight Situation Calculus



Introduction
Motivation

A New Type System in the Lightweight Situation Calculus
Evaluation

Situation Calculus
Types Do Matter in Programming Languages

Understanding Situation Calculus

In situation calculus, the world is comprised of situations,
actions and objects.

Situation: a possible world history, simply a sequence of actions
Action: any possible change to the world. eg.: drop(robot,
vase), clean(people, floor)
Object: an entity defined in the domain of a specific application.
eg.: x, robot_A and table

Other significant symbols to manipulate these key components:

Fluents: relational fluent, functional fluent and predicate fluent
Predicate: usually used to represent action
Difference:

hunger_status(person, time) relational fluent
weather_condition(location, season) relational fluent
drop(person, object) predicate

Li Tan A Well-typed Lightweight Situation Calculus



Introduction
Motivation

A New Type System in the Lightweight Situation Calculus
Evaluation

Situation Calculus
Types Do Matter in Programming Languages

Understanding Situation Calculus

In situation calculus, the world is comprised of situations,
actions and objects.

Situation: a possible world history, simply a sequence of actions
Action: any possible change to the world. eg.: drop(robot,
vase), clean(people, floor)
Object: an entity defined in the domain of a specific application.
eg.: x, robot_A and table

Other significant symbols to manipulate these key components:

Fluents: relational fluent, functional fluent and predicate fluent
Predicate: usually used to represent action
Difference:

hunger_status(person, time) relational fluent
weather_condition(location, season) relational fluent
drop(person, object) predicate

Li Tan A Well-typed Lightweight Situation Calculus



Introduction
Motivation

A New Type System in the Lightweight Situation Calculus
Evaluation

Situation Calculus
Types Do Matter in Programming Languages

Outline
1 Introduction

Situation Calculus
Types Do Matter in Programming Languages

2 Motivation
Is Situation Calculus Well-typed?
A Lightweight Situation Calculus

3 A New Type System in the Lightweight Situation Calculus
Syntactic Forms
Evaluation Rules
Typing Rules

4 Evaluation
Case Description
Type Checking
Implementation in OCaml

Li Tan A Well-typed Lightweight Situation Calculus



Introduction
Motivation

A New Type System in the Lightweight Situation Calculus
Evaluation

Situation Calculus
Types Do Matter in Programming Languages

Types Do Matter in Programming Languages

In order to make programs sound and correct in semantics,
people have proposed type systems in programming
languages.

Motivation: "Well-typed programs never go wrong." – Robin
Milner

Preservation
Progress

Type Systems: a formal mechanism originated from
Alonzo Church’s λ calculus proposed in 1940

Principle: By associating types with each computed value,
a compiler can detect meaningless or invalid code written in
a given programming language.

Example: mix = 29 + "Tan"

Li Tan A Well-typed Lightweight Situation Calculus



Introduction
Motivation

A New Type System in the Lightweight Situation Calculus
Evaluation

Situation Calculus
Types Do Matter in Programming Languages

Types Do Matter in Programming Languages

In order to make programs sound and correct in semantics,
people have proposed type systems in programming
languages.

Motivation: "Well-typed programs never go wrong." – Robin
Milner

Preservation
Progress

Type Systems: a formal mechanism originated from
Alonzo Church’s λ calculus proposed in 1940

Principle: By associating types with each computed value,
a compiler can detect meaningless or invalid code written in
a given programming language.

Example: mix = 29 + "Tan"

Li Tan A Well-typed Lightweight Situation Calculus



Introduction
Motivation

A New Type System in the Lightweight Situation Calculus
Evaluation

Situation Calculus
Types Do Matter in Programming Languages

Types Do Matter in Programming Languages

In order to make programs sound and correct in semantics,
people have proposed type systems in programming
languages.

Motivation: "Well-typed programs never go wrong." – Robin
Milner

Preservation
Progress

Type Systems: a formal mechanism originated from
Alonzo Church’s λ calculus proposed in 1940

Principle: By associating types with each computed value,
a compiler can detect meaningless or invalid code written in
a given programming language.

Example: mix = 29 + "Tan"

Li Tan A Well-typed Lightweight Situation Calculus



Introduction
Motivation

A New Type System in the Lightweight Situation Calculus
Evaluation

Situation Calculus
Types Do Matter in Programming Languages

Types Do Matter in Programming Languages

In order to make programs sound and correct in semantics,
people have proposed type systems in programming
languages.

Motivation: "Well-typed programs never go wrong." – Robin
Milner

Preservation
Progress

Type Systems: a formal mechanism originated from
Alonzo Church’s λ calculus proposed in 1940

Principle: By associating types with each computed value,
a compiler can detect meaningless or invalid code written in
a given programming language.

Example: mix = 29 + "Tan"

Li Tan A Well-typed Lightweight Situation Calculus



Introduction
Motivation

A New Type System in the Lightweight Situation Calculus
Evaluation

Is Situation Calculus Well-typed?
A Lightweight Situation Calculus

Outline
1 Introduction

Situation Calculus
Types Do Matter in Programming Languages

2 Motivation
Is Situation Calculus Well-typed?
A Lightweight Situation Calculus

3 A New Type System in the Lightweight Situation Calculus
Syntactic Forms
Evaluation Rules
Typing Rules

4 Evaluation
Case Description
Type Checking
Implementation in OCaml

Li Tan A Well-typed Lightweight Situation Calculus



Introduction
Motivation

A New Type System in the Lightweight Situation Calculus
Evaluation

Is Situation Calculus Well-typed?
A Lightweight Situation Calculus

Is Situation Calculus Well-typed?

Let’s take a look at what we have in original situation calculus:

Li Tan A Well-typed Lightweight Situation Calculus



Introduction
Motivation

A New Type System in the Lightweight Situation Calculus
Evaluation

Is Situation Calculus Well-typed?
A Lightweight Situation Calculus

Outline
1 Introduction

Situation Calculus
Types Do Matter in Programming Languages

2 Motivation
Is Situation Calculus Well-typed?
A Lightweight Situation Calculus

3 A New Type System in the Lightweight Situation Calculus
Syntactic Forms
Evaluation Rules
Typing Rules

4 Evaluation
Case Description
Type Checking
Implementation in OCaml

Li Tan A Well-typed Lightweight Situation Calculus



Introduction
Motivation

A New Type System in the Lightweight Situation Calculus
Evaluation

Is Situation Calculus Well-typed?
A Lightweight Situation Calculus

A Lightweight Situation Calculus

We only consider a lightweight version of its original form,
similarly as Featherweight Java (FJ).
Core feartures are grabbed and derivable forms are
skimmed to keep a concise idea.
What can be ignored?

those elements that either can derive from other elements
or similarly be expressed by others
v ⇒ the return value of other fluents and predicates
any symbol t with arity n⇒ t

Li Tan A Well-typed Lightweight Situation Calculus



Introduction
Motivation

A New Type System in the Lightweight Situation Calculus
Evaluation

Syntactic Forms
Evaluation Rules
Typing Rules

Outline
1 Introduction

Situation Calculus
Types Do Matter in Programming Languages

2 Motivation
Is Situation Calculus Well-typed?
A Lightweight Situation Calculus

3 A New Type System in the Lightweight Situation Calculus
Syntactic Forms
Evaluation Rules
Typing Rules

4 Evaluation
Case Description
Type Checking
Implementation in OCaml

Li Tan A Well-typed Lightweight Situation Calculus



Introduction
Motivation

A New Type System in the Lightweight Situation Calculus
Evaluation

Syntactic Forms
Evaluation Rules
Typing Rules

Syntactic Forms

Li Tan A Well-typed Lightweight Situation Calculus



Introduction
Motivation

A New Type System in the Lightweight Situation Calculus
Evaluation

Syntactic Forms
Evaluation Rules
Typing Rules

Outline
1 Introduction

Situation Calculus
Types Do Matter in Programming Languages

2 Motivation
Is Situation Calculus Well-typed?
A Lightweight Situation Calculus

3 A New Type System in the Lightweight Situation Calculus
Syntactic Forms
Evaluation Rules
Typing Rules

4 Evaluation
Case Description
Type Checking
Implementation in OCaml

Li Tan A Well-typed Lightweight Situation Calculus



Introduction
Motivation

A New Type System in the Lightweight Situation Calculus
Evaluation

Syntactic Forms
Evaluation Rules
Typing Rules

Evaluation Rules

Li Tan A Well-typed Lightweight Situation Calculus



Introduction
Motivation

A New Type System in the Lightweight Situation Calculus
Evaluation

Syntactic Forms
Evaluation Rules
Typing Rules

Semantics of Evaluation Rules

Li Tan A Well-typed Lightweight Situation Calculus



Introduction
Motivation

A New Type System in the Lightweight Situation Calculus
Evaluation

Syntactic Forms
Evaluation Rules
Typing Rules

Outline
1 Introduction

Situation Calculus
Types Do Matter in Programming Languages

2 Motivation
Is Situation Calculus Well-typed?
A Lightweight Situation Calculus

3 A New Type System in the Lightweight Situation Calculus
Syntactic Forms
Evaluation Rules
Typing Rules

4 Evaluation
Case Description
Type Checking
Implementation in OCaml

Li Tan A Well-typed Lightweight Situation Calculus



Introduction
Motivation

A New Type System in the Lightweight Situation Calculus
Evaluation

Syntactic Forms
Evaluation Rules
Typing Rules

Typing Rules

Li Tan A Well-typed Lightweight Situation Calculus



Introduction
Motivation

A New Type System in the Lightweight Situation Calculus
Evaluation

Case Description
Type Checking
Implementation in OCaml

Outline
1 Introduction

Situation Calculus
Types Do Matter in Programming Languages

2 Motivation
Is Situation Calculus Well-typed?
A Lightweight Situation Calculus

3 A New Type System in the Lightweight Situation Calculus
Syntactic Forms
Evaluation Rules
Typing Rules

4 Evaluation
Case Description
Type Checking
Implementation in OCaml

Li Tan A Well-typed Lightweight Situation Calculus



Introduction
Motivation

A New Type System in the Lightweight Situation Calculus
Evaluation

Case Description
Type Checking
Implementation in OCaml

Case Description

Let us consider the following scenario:
In face of an object x on the floor, say a vase, there is a
robot r who wants to pick up this vase and paints it with
some color, namely c.

Situation Calculus Statements:
fragile(x , s) ⊃ broken(x ,do(drop(r , x), s)) (1)
color(x ,do(paint(x , c), s)) = c (2)
poss(pickup(r , x), s) ⊃
[(∀z)¬holding(r , z, s)] ∧ ¬heavy(x) ∧ nextTo(r , x , s) (3)

Li Tan A Well-typed Lightweight Situation Calculus



Introduction
Motivation

A New Type System in the Lightweight Situation Calculus
Evaluation

Case Description
Type Checking
Implementation in OCaml

Statements in Our Type System

Situation Calculus Statements with Types:
fragile(x : Object , s: Situation) ⊃
broken(x : Object ,do(drop(r : Object , x : Object), s: Situation)) (1)’

color(x : Object ,do(paint(x : Object , c: Object), s: Situation)) =
c: Object (2)’

poss(pickup(r : Object , x : Object), s: Situation) ⊃
[(∀z: Object)¬holding(r : Object , z: Object , s: Situation)] ∧
¬heavy(x : Object) ∧ nextTo(r : Object , x : Object , s: Situation) (3)’

Li Tan A Well-typed Lightweight Situation Calculus



Introduction
Motivation

A New Type System in the Lightweight Situation Calculus
Evaluation

Case Description
Type Checking
Implementation in OCaml

Outline
1 Introduction

Situation Calculus
Types Do Matter in Programming Languages

2 Motivation
Is Situation Calculus Well-typed?
A Lightweight Situation Calculus

3 A New Type System in the Lightweight Situation Calculus
Syntactic Forms
Evaluation Rules
Typing Rules

4 Evaluation
Case Description
Type Checking
Implementation in OCaml

Li Tan A Well-typed Lightweight Situation Calculus



Introduction
Motivation

A New Type System in the Lightweight Situation Calculus
Evaluation

Case Description
Type Checking
Implementation in OCaml

Type Checking

Let’s take a quick look at how type checking works theoretically:

Li Tan A Well-typed Lightweight Situation Calculus



Introduction
Motivation

A New Type System in the Lightweight Situation Calculus
Evaluation

Case Description
Type Checking
Implementation in OCaml

Outline
1 Introduction

Situation Calculus
Types Do Matter in Programming Languages

2 Motivation
Is Situation Calculus Well-typed?
A Lightweight Situation Calculus

3 A New Type System in the Lightweight Situation Calculus
Syntactic Forms
Evaluation Rules
Typing Rules

4 Evaluation
Case Description
Type Checking
Implementation in OCaml

Li Tan A Well-typed Lightweight Situation Calculus



Introduction
Motivation

A New Type System in the Lightweight Situation Calculus
Evaluation

Case Description
Type Checking
Implementation in OCaml

Implementation in OCaml

Li Tan A Well-typed Lightweight Situation Calculus



Introduction
Motivation

A New Type System in the Lightweight Situation Calculus
Evaluation

Case Description
Type Checking
Implementation in OCaml

Q & A

Thank you!

Li Tan A Well-typed Lightweight Situation Calculus


	Introduction
	Situation Calculus
	Types Do Matter in Programming Languages

	Motivation
	Is Situation Calculus Well-typed?
	A Lightweight Situation Calculus

	A New Type System in the Lightweight Situation Calculus
	Syntactic Forms
	Evaluation Rules
	Typing Rules

	Evaluation
	Case Description
	Type Checking
	Implementation in OCaml


