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What is Situation Calculus?

@ Origin: introduced by John McCathy (1971 Turing Award
Winner) in 1963

@ Category: a dialect of logic language for dynamic domain
modeling

@ Fundamentals: First Order Logic, Set Theory and Basic
Action Theory

@ Elements: situations, actions and objects
@ Strength: action-based reasoning
@ Application: Artificial Intelligence related fields
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Understanding Situation Calculus

In situation calculus, the world is comprised of situations,
actions and objects.
@ Situation: a possible world history, simply a sequence of actions

@ Action: any possible change to the world. eg.: drop(robot,
vase), clean(people, floor)

@ Object: an entity defined in the domain of a specific application.
eg.: X, robot_A and table
Other significant symbols to manipulate these key components:
@ Fluents: relational fluent, functional fluent and predicate fluent
@ Predicate: usually used to represent action
@ Difference:
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Understanding Situation Calculus

In situation calculus, the world is comprised of situations,
actions and objects.
@ Situation: a possible world history, simply a sequence of actions

@ Action: any possible change to the world. eg.: drop(robot,
vase), clean(people, floor)

@ Object: an entity defined in the domain of a specific application.
eg.: X, robot_A and table
Other significant symbols to manipulate these key components:
@ Fluents: relational fluent, functional fluent and predicate fluent
@ Predicate: usually used to represent action
@ Difference:

hunger_status(person, time) relational fluent
weather_condition(location, season) relational fluent
drop(person, object) predicate
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In order to make programs sound and correct in semantics,
people have proposed type systems in programming
languages.
@ Motivation: "Well-typed programs never go wrong." — Robin
Milner
o Preservation
e Progress
@ Type Systems: a formal mechanism originated from
Alonzo Church’s X calculus proposed in 1940

e Principle: By associating types with each computed value,
a compiler can detect meaningless or invalid code written in
a given programming language.
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Types Do Matter in Programming Languages

In order to make programs sound and correct in semantics,
people have proposed type systems in programming
languages.
@ Motivation: "Well-typed programs never go wrong." — Robin
Milner
o Preservation
e Progress
@ Type Systems: a formal mechanism originated from
Alonzo Church’s X calculus proposed in 1940

e Principle: By associating types with each computed value,
a compiler can detect meaningless or invalid code written in
a given programming language.

@ Example: mix = 29 + "Tan"
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Is Situation Calculus Well-typed?

Let’s take a look at what we have in original situation calculus:
Handy Typing Mechanism

In the original situation calculus, several elements such
as quantifiers are typed. The handy typed elements are
described formally as follows:
A typed notion 7 (z) is used to denote x associated with
a finite set of all possible types:
T(x) Z x: Tyva Tov.. Va1, where Ty, Ta, . . . T,
are types of terms.
Moreover, typed quantifiers are given by virtue of:
oo def P
(Vo : 7)p(x) = (Vz).r(z) D (),
ooy def
(Fx:7)p(x) Z (Fz)r(z) A @(x).
Thus, expressions that contain such typed quantifiers
could be rewritten as sequences of conjunctions and dis-

junctions:
(Vo : 7)p(x) (Ty)v o(To) v ...V o(Th),
(e :7)p(x) = (L) AN P(T2) A A O(Th).

eight Situation Calculus



Motivation Is Situation Calculus Well-typed?
A Lightweight Situation Calculus

Outline

e Motivation

@ A Lightweight Situation Calculus

Li Tan A Well-typed Lightweigh ation Calculus



Motivation Is Situation Calculus Well-typed?
A Lightweight Situation Calculus

A Lightweight Situation Calculus

@ We only consider a lightweight version of its original form,
similarly as Featherweight Java (FJ).

@ Core feartures are grabbed and derivable forms are
skimmed to keep a concise idea.
@ What can be ignored?
o those elements that either can derive from other elements
or similarly be expressed by others
e L = the return value of other fluents and predicates
e any symbol t with arity n =t
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Syntactic Forms

Syntactic Forms

to=... terms:
T variable
Yo universal quantified variable
Y eristential guantified variable
=it negative ferm
t1 Dt subset logical connection
ity Mo conjunction logical connection
t1 Vg disjunction logical connection
T term sequence
bt=... behavioral terms:
—bt negative behavioral term
(1, s) relational fluent
f(®) predicate
do(bt, s) functional fluent
poss(bt,s) predicate fluent
vi=... values:
unit poss predicate value
true true boolean value
false false boolean value
Tu=... types:
Unit type of predicate fluent
Bool type of booleans
Situation type of behavioral terms
Action type of behavioral terms
Object type of terms

ation Calculus
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A New Type System in the Lightweight Situation Calculus T

Evaluation Rules

Evaluation Rules
()bt — ()bt
(Wt)bt — (vt')bt
(t)bt — ()bt
(3ot — ()bt
t — ¢ bt — bt’
=t — —t'? —=bt — —bt!

ty — f’]
t1 Dtz = t] D ta2

t1
ty A io

5}
t1 v t2

t1, t2, ..., th — f;_. ta, .., tn

do(bt,s) — [s + s'|bt

poss(bt,s) — s D [s — &']bt

[
E-Unv

E-EsT
E-NEG
E-SpT
E-Cong
E-Diss
E-SEQ

E-Do
E-Poss
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Semantics of Evaluation Rules

Semantics

Given a world w comprised of situations, actions and
objects, if a term ¢ holds in w, we write w |= £{. Given a

set of situations S = sg.s1,..., Sp, we have:
whEr < re Liw)
w = ¥r Wy € S_. w 'Z T
w = Jr S eSwEr
w k= SwhEr
w Bt Dt SwkEt = wkEt
w k=t At SwEt and wEto
w k=t Vi SwkEt orwlts
wkTt Swhktwkt,.. ., wEt
w = —bt < w B bt
w = r(t,s) cswhklandwgEsinr
w = f(f) swktin f
w | do(bt,s) < ds; € 5,bt holds in s;
w = poss(bt,s) <= 3s; € S,w E (S'z’, o do(bi‘..sz-))
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Typing Rules

WEt: T

Here we continue to use W (rather than the lower case
w used in semantics) instead of conventional I' to denote
a typing context. Formally, we have:

W + true: Bool

W F false: Bool

r:TeW

Wrz:T

Vriz: T, t—z,8) e W
Wk Mz : T) T'(E, s)

iz : T, t-z,5)c W
W (3r:T)r(E s)

Vflz : T, t—x) ¢ W
Wt (Vz: T) f(®)

3fle : T, t—x) € W
WEEz:T) 1@

Wetet:T

Wbt T

Wrk=t:7» WF=obt:T

T-TruE

T-FaLse

T-Var

T-Unwvl

T-EsT1

T-Unv2

T-EsT2

T-NEc

WE (ty: ) D (t2 : Th)

WhvVzety)z: Ty D(Vy€ta)y: I T-sSpT
Wi ['v’;.i'e}_ff ;1.1:: :Tlf“f f’\\ ((;?g:ETii:J y: T2 T-Cona
W ['v’,rule}_f: :f)l.r: :Tlf“i ::i?y:erii) y:Te T-Disa
WE e e TS

Whr:Object— Situation—s Situation, 1:0bject, s:Situation
Wk r(t, s) : Situation

W Wis T-RELFLT
‘FfiObject— Aetion WhHt:Object - .
Wk f(t) : Action T-FunFi
W, bt : Action = s : Situation
W do(bt, s) : Situation
W, bt : Action b s : !
Wk poss(bt, s)

T-Do

T-Poss
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Case Description

Let us consider the following scenario:

In face of an object x on the floor, say a vase, there is a
robot rwho wants to pick up this vase and paints it with
some color, namely c.

Situation Calculus Statements:
fragile(x, s) D broken(x, do(drop(r, x), s)) (1)
color(x, do(paint(x,c),s)) =c¢ (2)
poss(pickup(r, x),s) D
[(Vz)—holding(r, z, s)] A —~heavy(x) A nextTo(r, x, S) (3)

Li Tan A Well-typed Lightweight Situation Calculus



Case Description
Type Checking
Implementation in OCaml

Evaluation

Statements in Our Type System

Situation Calculus Statements with Types:
fragile(x: Object, s: Situation) D

broken(x: Object, do(drop(r: Object, x: Object), s: Situation)) 1)y
color(x: Object, do(paint(x: Object, c: Object), s: Situation)) =
c: Object @y

poss(pickup(r: Object, x: Object), s: Situation) D
[(Vz: Object)—holding(r: Object, z: Object, s: Situation)] A
—heavy(x: Object) A nextTo(r: Object, x: Object, s: Situation) (3
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Type Checking

Let’s take a quick look at how type checking works theoretically:

Left hand side of “2" in (1)":
fragile:Obj— Stn— Stn x:0bj, s:5tn
fragile(x, s)
Right hand side of 27 in (1)
drop:Obj— Atn,r:0Obj,x:0bj, s:5tn, broken:0bj— Stn— Stn

T-RELFLT

drop(r:0Obj,x:0bj), s:5tn, broken:0Obj— Stn—Stn %_EE}NFLT
do(drop(r:Obj,=:0bj),s:Stn), broken:Obj—Stn— St i
(drop(r 7y 7 ), n) roken ¥ T T T-RELFLT

broken(xz:0Obj, dO(d-:‘op(':':()b_j_.r:(?‘bj ), s:5tn))
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Implementation in OCaml

One piece of sample code in OCaml is shown below:
# type unit = Unit of unit;;
# type boeol = Bool of beool;;
# type stn = Situation;;
# type atn = Action;;
# type cbj = Object;;

(* T-RelFlt *)
#let r t s =
match t with
Object -> match s with
Situation -> Situation;;

(* test *)
# let x = Object
and & = Situation
and fragile = r;;
val x : obj = Object
val & : stn = Situation

val fragile : obj -> stn -> stn = <fun>
# fragile (x:obj) (s:stn);;
- ! stn = Situation
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Thank you!
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