A Well-typed Lightweight Situation Calculus

Li Tan

Department of Computer Science and Engineering
University of California, Riverside
Riverside, CA 92507

Student Presentations of CS 207

Li Tan A Well-typed Lightweight Situation Calculus

Outline

o Introduction
@ Situation Calculus
@ Types Do Matter in Programming Languages

Li Tan A Well-typed Lightweight Situation Calculus

Outline

o Introduction
@ Situation Calculus
@ Types Do Matter in Programming Languages
Motivation
@ [s Situation Calculus Well-typed?
@ A Lightweight Situation Calculus

Li Tan A Well-typed Lightweight Situation Calculus

Outline

o Introduction
@ Situation Calculus
@ Types Do Matter in Programming Languages
e Motivation
@ [s Situation Calculus Well-typed?
@ A Lightweight Situation Calculus
e A New Type System in the Lightweight Situation Calculus
@ Syntactic Forms
@ Evaluation Rules
@ Typing Rules

Li Tan A Well-typed Lightweight Situation Calculus

Outline

o Introduction
@ Situation Calculus
@ Types Do Matter in Programming Languages
e Motivation
@ [s Situation Calculus Well-typed?
@ A Lightweight Situation Calculus
e A New Type System in the Lightweight Situation Calculus
@ Syntactic Forms
@ Evaluation Rules
@ Typing Rules
e Evaluation
@ Case Description
@ Type Checking
@ Implementation in OCaml

Li Tan A Well-typed Lightweight Situation Calculus

Introduction
Situation Calculus
Types Do Matter in Programming Languages

Outline

o Introduction
@ Situation Calculus

A Well-typed Lightweight Situation Calculus

Introduction
Situation Calculus
Types Do Matter in Programming Languages

What is Situation Calculus?

eight Situation Calculus

Introduction
Situation Calculus
Types Do Matter in Programming Languages

What is Situation Calculus?

@ Origin: introduced by John McCathy (1971 Turing Award
Winner) in 1963

Li Tan A Well-typed Lightweight Situation Calculus

Introduction
Situation Calculus
Types Do Matter in Programming Languages

What is Situation Calculus?

@ Origin: introduced by John McCathy (1971 Turing Award
Winner) in 1963

@ Category: a dialect of logic language for dynamic domain
modeling

Li Tan A Well-typed Lightweight Situation Calculus

Introduction
Situation Calculus
Types Do Matter in Programming Languages

What is Situation Calculus?

@ Origin: introduced by John McCathy (1971 Turing Award
Winner) in 1963

@ Category: a dialect of logic language for dynamic domain
modeling

@ Fundamentals: First Order Logic, Set Theory and Basic
Action Theory

Li Tan A Well-typed Lightweight Situation Calculus

Introduction
Situation Calculus
Types Do Matter in Programming Languages

What is Situation Calculus?

@ Origin: introduced by John McCathy (1971 Turing Award
Winner) in 1963

@ Category: a dialect of logic language for dynamic domain
modeling

@ Fundamentals: First Order Logic, Set Theory and Basic
Action Theory

@ Elements: situations, actions and objects

Li Tan A Well-typed Lightweight Situation Calculus

Introduction
Situation Calculus
Types Do Matter in Programming Languages

What is Situation Calculus?

@ Origin: introduced by John McCathy (1971 Turing Award
Winner) in 1963

@ Category: a dialect of logic language for dynamic domain
modeling

@ Fundamentals: First Order Logic, Set Theory and Basic
Action Theory

@ Elements: situations, actions and objects
@ Strength: action-based reasoning

Li Tan A Well-typed Lightweight Situation Calculus

Introduction
Situation Calculus
Types Do Matter in Programming Languages

What is Situation Calculus?

@ Origin: introduced by John McCathy (1971 Turing Award
Winner) in 1963

@ Category: a dialect of logic language for dynamic domain
modeling

@ Fundamentals: First Order Logic, Set Theory and Basic
Action Theory

@ Elements: situations, actions and objects
@ Strength: action-based reasoning
@ Application: Artificial Intelligence related fields

Li Tan A Well-typed Lightweight Situation Calculus

Introduction
Situation Calculus
Types Do Matter in Programming Languages

Understanding Situation Calculus

In situation calculus, the world is comprised of situations,
actions and objects.
@ Situation: a possible world history, simply a sequence of actions

@ Action: any possible change to the world. eg.: drop(robot,
vase), clean(people, floor)

@ Object: an entity defined in the domain of a specific application.
eg.: X, robot_A and table
Other significant symbols to manipulate these key components:
@ Fluents: relational fluent, functional fluent and predicate fluent
@ Predicate: usually used to represent action
@ Difference:

Li Tan A Well-typed Lightweight Situation Calculus

Introduction
Situation Calculus
Types Do Matter in Programming Languages

Understanding Situation Calculus

In situation calculus, the world is comprised of situations,
actions and objects.
@ Situation: a possible world history, simply a sequence of actions

@ Action: any possible change to the world. eg.: drop(robot,
vase), clean(people, floor)

@ Object: an entity defined in the domain of a specific application.
eg.: X, robot_A and table
Other significant symbols to manipulate these key components:
@ Fluents: relational fluent, functional fluent and predicate fluent
@ Predicate: usually used to represent action
@ Difference:

hunger_status(person, time) relational fluent
weather_condition(location, season) relational fluent
drop(person, object) predicate

Li Tan A Well-typed Lightweight Situation Calculus

Introduction
Situation Calculus
Types Do Matter in Programming Languages

Outline
o Introduction

@ Types Do Matter in Programming Languages

A Well-typed Lightweight Situation Calculus

Introduction
Situation Calculus
Types Do Matter in Programming Languages

Types Do Matter in Programming Languages

In order to make programs sound and correct in semantics,
people have proposed type systems in programming
languages.

Li Tan A Well-typed Lightweight Situation Calculus

Introduction
Situation Calculus
Types Do Matter in Programming Languages

Types Do Matter in Programming Languages

In order to make programs sound and correct in semantics,
people have proposed type systems in programming
languages.
@ Motivation: "Well-typed programs never go wrong." — Robin
Milner

@ Preservation
o Progress

Li Tan A Well-typed Lightweight Situation Calculus

Introduction
Situation Calculus
Types Do Matter in Programming Languages

Types Do Matter in Programming Languages

In order to make programs sound and correct in semantics,
people have proposed type systems in programming
languages.
@ Motivation: "Well-typed programs never go wrong." — Robin
Milner
o Preservation
e Progress
@ Type Systems: a formal mechanism originated from
Alonzo Church’s X calculus proposed in 1940

e Principle: By associating types with each computed value,
a compiler can detect meaningless or invalid code written in
a given programming language.

Li Tan A Well-typed Lightweight Situation Calculus

Introduction
Situation Calculus
Types Do Matter in Programming Languages

Types Do Matter in Programming Languages

In order to make programs sound and correct in semantics,
people have proposed type systems in programming
languages.
@ Motivation: "Well-typed programs never go wrong." — Robin
Milner
o Preservation
e Progress
@ Type Systems: a formal mechanism originated from
Alonzo Church’s X calculus proposed in 1940

e Principle: By associating types with each computed value,
a compiler can detect meaningless or invalid code written in
a given programming language.

@ Example: mix = 29 + "Tan"

Li Tan A Well-typed Lightweight Situation Calculus

Motivation Is Situation Calculus Well-typed?
A Lightweight Situation Calculus

Outline

e Motivation
@ [s Situation Calculus Well-typed?

Li Tan A Well-typed Lightweigh ation Calculus

Motivation Is Situation Calculus Well-typed?
A Lightweight Situation Calculus

Is Situation Calculus Well-typed?

Let’s take a look at what we have in original situation calculus:
Handy Typing Mechanism

In the original situation calculus, several elements such
as quantifiers are typed. The handy typed elements are
described formally as follows:
A typed notion 7 (z) is used to denote x associated with
a finite set of all possible types:
T(x) Z x: Tyva Tov.. Va1, where Ty, Ta, . . . T,
are types of terms.
Moreover, typed quantifiers are given by virtue of:
oo def P
(Vo : 7)p(x) = (Vz).r(z) D (),
ooy def
(Fx:7)p(x) Z (Fz)r(z) A @(x).
Thus, expressions that contain such typed quantifiers
could be rewritten as sequences of conjunctions and dis-

junctions:
(Vo : 7)p(x) (Ty)v o(To) v ...V o(Th),
(e :7)p(x) = (L) AN P(T2) A A O(Th).

eight Situation Calculus

Motivation Is Situation Calculus Well-typed?
A Lightweight Situation Calculus

Outline

e Motivation

@ A Lightweight Situation Calculus

Li Tan A Well-typed Lightweigh ation Calculus

Motivation Is Situation Calculus Well-typed?
A Lightweight Situation Calculus

A Lightweight Situation Calculus

@ We only consider a lightweight version of its original form,
similarly as Featherweight Java (FJ).

@ Core feartures are grabbed and derivable forms are
skimmed to keep a concise idea.
@ What can be ignored?
o those elements that either can derive from other elements
or similarly be expressed by others
e L = the return value of other fluents and predicates
e any symbol t with arity n =t

Li Tan A Well-typed Lightweight Situation Calculus

Syntactic Forms
Evaluation Rules

A New Type System in the Lightweight Situation Calculus Typing Rules

Outline

e A New Type System in the Lightweight Situation Calculus
@ Syntactic Forms

Li Tan A Well-typed Lightweigh ation Calculus

Syntactic Forms
Evaluation Rules

A New Type System in the Lightweight Situation Calculus Toyalig Fulss

Syntactic Forms

Syntactic Forms

to=... terms:
T variable
Yo universal quantified variable
Y eristential guantified variable
=it negative ferm
t1 Dt subset logical connection
ity Mo conjunction logical connection
t1 Vg disjunction logical connection
T term sequence
bt=... behavioral terms:
—bt negative behavioral term
(1, s) relational fluent
f(®) predicate
do(bt, s) functional fluent
poss(bt,s) predicate fluent
vi=... values:
unit poss predicate value
true true boolean value
false false boolean value
Tu=... types:
Unit type of predicate fluent
Bool type of booleans
Situation type of behavioral terms
Action type of behavioral terms
Object type of terms

ation Calculus

Syntactic Forms
Evaluation Rules

A New Type System in the Lightweight Situation Calculus Typing Rules

Outline

e A New Type System in the Lightweight Situation Calculus

@ Evaluation Rules

Li Tan A Well-typed Lightweigh ation Calculus

Syntactic Forms
Evaluation Rules

A New Type System in the Lightweight Situation Calculus T

Evaluation Rules

Evaluation Rules
()bt — ()bt
(Wt)bt — (vt')bt
(t)bt — ()bt
(3ot — ()bt
t — ¢ bt — bt’
=t — —t'? —=bt — —bt!

ty — f’]
t1 Dtz = t] D ta2

t1
ty A io

5}
t1 v t2

t1, t2, ..., th — f;_. ta, .., tn

do(bt,s) — [s + s'|bt

poss(bt,s) — s D [s — &']bt

[
E-Unv

E-EsT
E-NEG
E-SpT
E-Cong
E-Diss
E-SEQ

E-Do
E-Poss

A New Type System in the Lightweight Situation Calculus

Syntactic Forms
Evaluation Rules
Typing Rules

Semantics of Evaluation Rules

Semantics

Given a world w comprised of situations, actions and
objects, if a term ¢ holds in w, we write w |= £{. Given a

set of situations S = sg.s1,..., Sp, we have:
whEr < re Liw)
w = ¥r Wy € S_. w 'Z T
w = Jr S eSwEr
w k= SwhEr
w Bt Dt SwkEt = wkEt
w k=t At SwEt and wEto
w k=t Vi SwkEt orwlts
wkTt Swhktwkt,.. ., wEt
w = —bt < w B bt
w = r(t,s) cswhklandwgEsinr
w = f(f) swktin f
w | do(bt,s) < ds; € 5,bt holds in s;
w = poss(bt,s) <= 3s; € S,w E (S'z’, o do(bi‘..sz-))

A Well-typed Lightwei

Syntactic Forms
Evaluation Rules

A New Type System in the Lightweight Situation Calculus Typing Rules

Outline

e A New Type System in the Lightweight Situation Calculus

@ Typing Rules

Li Tan A Well-typed Lightweigh ation Calculus

A New Type System in the Lightweight Situation Calculus

Typing Rules

Syntactic Forms
Evaluation Rules
Typing Rules

Typing Rules

WEt: T

Here we continue to use W (rather than the lower case
w used in semantics) instead of conventional I' to denote
a typing context. Formally, we have:

W + true: Bool

W F false: Bool

r:TeW

Wrz:T

Vriz: T, t—z,8) e W
Wk Mz : T) T'(E, s)

iz : T, t-z,5)c W
W (3r:T)r(E s)

Vflz : T, t—x) ¢ W
Wt (Vz: T) f(®)

3fle : T, t—x) € W
WEEz:T) 1@

Wetet:T

Wbt T

Wrk=t:7» WF=obt:T

T-TruE

T-FaLse

T-Var

T-Unwvl

T-EsT1

T-Unv2

T-EsT2

T-NEc

WE (ty:) D (t2 : Th)

WhvVzety)z: Ty D(Vy€ta)y: I T-sSpT
Wi ['v’;.i'e}_ff ;1.1:: :Tlf“f f’\\ ((;?g:ETii:J y: T2 T-Cona
W ['v’,rule}_f: :f)l.r: :Tlf“i ::i?y:erii) y:Te T-Disa
WE e e TS

Whr:Object— Situation—s Situation, 1:0bject, s:Situation
Wk r(t, s) : Situation

W Wis T-RELFLT
‘FfiObject— Aetion WhHt:Object - .
Wk f(t) : Action T-FunFi
W, bt : Action = s : Situation
W do(bt, s) : Situation
W, bt : Action b s : !
Wk poss(bt, s)

T-Do

T-Poss

Li Tan

A Well-typed Lightwei

Case Description
Type Checking
Implementation in OCaml

Evaluation

© Evaluation
@ Case Description

Case Description
Type Checking

. Implementation in OCaml
Evaluation

Case Description

Let us consider the following scenario:

In face of an object x on the floor, say a vase, there is a
robot rwho wants to pick up this vase and paints it with
some color, namely c.

Situation Calculus Statements:
fragile(x, s) D broken(x, do(drop(r, x), s)) (1)
color(x, do(paint(x,c),s)) =c¢ (2)
poss(pickup(r, x),s) D
[(Vz)—holding(r, z, s)] A —~heavy(x) A nextTo(r, x, S) (3)

Li Tan A Well-typed Lightweight Situation Calculus

Case Description
Type Checking
Implementation in OCaml

Evaluation

Statements in Our Type System

Situation Calculus Statements with Types:
fragile(x: Object, s: Situation) D

broken(x: Object, do(drop(r: Object, x: Object), s: Situation)) 1)y
color(x: Object, do(paint(x: Object, c: Object), s: Situation)) =
c: Object @y

poss(pickup(r: Object, x: Object), s: Situation) D
[(Vz: Object)—holding(r: Object, z: Object, s: Situation)] A
—heavy(x: Object) A nextTo(r: Object, x: Object, s: Situation) (3

Li Tan A Well-typed Lightweight Situation Calculus

Case Description
Type Checking

. Implementation in OCaml
Evaluation

Outline

e Evaluation

@ Type Checking

A Well-typed Lightwei

Case Description
Type Checking

. Implementation in OCaml
Evaluation

Type Checking

Let’s take a quick look at how type checking works theoretically:

Left hand side of “2" in (1)":
fragile:Obj— Stn— Stn x:0bj, s:5tn
fragile(x, s)
Right hand side of 27 in (1)
drop:Obj— Atn,r:0Obj,x:0bj, s:5tn, broken:0bj— Stn— Stn

T-RELFLT

drop(r:0Obj,x:0bj), s:5tn, broken:0Obj— Stn—Stn %_EE}NFLT
do(drop(r:Obj,=:0bj),s:Stn), broken:Obj—Stn— St i
(drop(r 7y 7), n) roken ¥ T T T-RELFLT

broken(xz:0Obj, dO(d-:‘op(':':()b_j_.r:(?‘bj), s:5tn))

A Well-typed Lightwei

Case Description
Type Checking

Evaluation Implementation in OCaml

Outline

© Evaluation

@ Implementation in OCaml

Li Tan A Well-typed Lightwei

ion Calculus

Case Description
Type Checking
Implementation in OCaml

Evaluation

Implementation in OCaml

One piece of sample code in OCaml is shown below:
type unit = Unit of unit;;
type boeol = Bool of beool;;
type stn = Situation;;
type atn = Action;;
type cbj = Object;;

(* T-RelFlt *)
#let r t s =
match t with
Object -> match s with
Situation -> Situation;;

(* test *)
let x = Object
and & = Situation
and fragile = r;;
val x : obj = Object
val & : stn = Situation

val fragile : obj -> stn -> stn = <fun>
fragile (x:obj) (s:stn);;
- ! stn = Situation

Case Description
Type Checking
Implementation in OCaml

Evaluation

Thank you!

A Well-typed Lightweight Situation Calculus

	Introduction
	Situation Calculus
	Types Do Matter in Programming Languages

	Motivation
	Is Situation Calculus Well-typed?
	A Lightweight Situation Calculus

	A New Type System in the Lightweight Situation Calculus
	Syntactic Forms
	Evaluation Rules
	Typing Rules

	Evaluation
	Case Description
	Type Checking
	Implementation in OCaml

