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What is Situation Calculus?

Origin: introduced by John McCathy (1971 Turing Award
Winner) in 1963
Category: a dialect of logic language for dynamic domain
modeling
Fundamentals: First Order Logic, Set Theory and Basic
Action Theory
Elements: situations, actions and objects
Strength: action-based reasoning
Application: Artificial Intelligence related fields

Li Tan A Well-typed Lightweight Situation Calculus



Introduction
Motivation

A New Type System in the Lightweight Situation Calculus
Evaluation

Situation Calculus
Types Do Matter in Programming Languages

What is Situation Calculus?

Origin: introduced by John McCathy (1971 Turing Award
Winner) in 1963

Category: a dialect of logic language for dynamic domain
modeling
Fundamentals: First Order Logic, Set Theory and Basic
Action Theory
Elements: situations, actions and objects
Strength: action-based reasoning
Application: Artificial Intelligence related fields

Li Tan A Well-typed Lightweight Situation Calculus



Introduction
Motivation

A New Type System in the Lightweight Situation Calculus
Evaluation

Situation Calculus
Types Do Matter in Programming Languages

What is Situation Calculus?

Origin: introduced by John McCathy (1971 Turing Award
Winner) in 1963
Category: a dialect of logic language for dynamic domain
modeling

Fundamentals: First Order Logic, Set Theory and Basic
Action Theory
Elements: situations, actions and objects
Strength: action-based reasoning
Application: Artificial Intelligence related fields

Li Tan A Well-typed Lightweight Situation Calculus



Introduction
Motivation

A New Type System in the Lightweight Situation Calculus
Evaluation

Situation Calculus
Types Do Matter in Programming Languages

What is Situation Calculus?

Origin: introduced by John McCathy (1971 Turing Award
Winner) in 1963
Category: a dialect of logic language for dynamic domain
modeling
Fundamentals: First Order Logic, Set Theory and Basic
Action Theory

Elements: situations, actions and objects
Strength: action-based reasoning
Application: Artificial Intelligence related fields

Li Tan A Well-typed Lightweight Situation Calculus



Introduction
Motivation

A New Type System in the Lightweight Situation Calculus
Evaluation

Situation Calculus
Types Do Matter in Programming Languages

What is Situation Calculus?

Origin: introduced by John McCathy (1971 Turing Award
Winner) in 1963
Category: a dialect of logic language for dynamic domain
modeling
Fundamentals: First Order Logic, Set Theory and Basic
Action Theory
Elements: situations, actions and objects

Strength: action-based reasoning
Application: Artificial Intelligence related fields

Li Tan A Well-typed Lightweight Situation Calculus



Introduction
Motivation

A New Type System in the Lightweight Situation Calculus
Evaluation

Situation Calculus
Types Do Matter in Programming Languages

What is Situation Calculus?

Origin: introduced by John McCathy (1971 Turing Award
Winner) in 1963
Category: a dialect of logic language for dynamic domain
modeling
Fundamentals: First Order Logic, Set Theory and Basic
Action Theory
Elements: situations, actions and objects
Strength: action-based reasoning

Application: Artificial Intelligence related fields

Li Tan A Well-typed Lightweight Situation Calculus



Introduction
Motivation

A New Type System in the Lightweight Situation Calculus
Evaluation

Situation Calculus
Types Do Matter in Programming Languages

What is Situation Calculus?

Origin: introduced by John McCathy (1971 Turing Award
Winner) in 1963
Category: a dialect of logic language for dynamic domain
modeling
Fundamentals: First Order Logic, Set Theory and Basic
Action Theory
Elements: situations, actions and objects
Strength: action-based reasoning
Application: Artificial Intelligence related fields

Li Tan A Well-typed Lightweight Situation Calculus



Introduction
Motivation

A New Type System in the Lightweight Situation Calculus
Evaluation

Situation Calculus
Types Do Matter in Programming Languages

Understanding Situation Calculus

In situation calculus, the world is comprised of situations,
actions and objects.

Situation: a possible world history, simply a sequence of actions
Action: any possible change to the world. eg.: drop(robot,
vase), clean(people, floor)
Object: an entity defined in the domain of a specific application.
eg.: x, robot_A and table

Other significant symbols to manipulate these key components:

Fluents: relational fluent, functional fluent and predicate fluent
Predicate: usually used to represent action
Difference:

hunger_status(person, time) relational fluent
weather_condition(location, season) relational fluent
drop(person, object) predicate
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Types Do Matter in Programming Languages

In order to make programs sound and correct in semantics,
people have proposed type systems in programming
languages.

Motivation: "Well-typed programs never go wrong." – Robin
Milner

Preservation
Progress

Type Systems: a formal mechanism originated from
Alonzo Church’s λ calculus proposed in 1940

Principle: By associating types with each computed value,
a compiler can detect meaningless or invalid code written in
a given programming language.

Example: mix = 29 + "Tan"
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Is Situation Calculus Well-typed?

Let’s take a look at what we have in original situation calculus:
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A Lightweight Situation Calculus

We only consider a lightweight version of its original form,
similarly as Featherweight Java (FJ).
Core feartures are grabbed and derivable forms are
skimmed to keep a concise idea.
What can be ignored?

those elements that either can derive from other elements
or similarly be expressed by others
v ⇒ the return value of other fluents and predicates
any symbol t with arity n⇒ t
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Case Description

Let us consider the following scenario:
In face of an object x on the floor, say a vase, there is a
robot r who wants to pick up this vase and paints it with
some color, namely c.

Situation Calculus Statements:
fragile(x , s) ⊃ broken(x ,do(drop(r , x), s)) (1)
color(x ,do(paint(x , c), s)) = c (2)
poss(pickup(r , x), s) ⊃
[(∀z)¬holding(r , z, s)] ∧ ¬heavy(x) ∧ nextTo(r , x , s) (3)
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Statements in Our Type System

Situation Calculus Statements with Types:
fragile(x : Object , s: Situation) ⊃
broken(x : Object ,do(drop(r : Object , x : Object), s: Situation)) (1)’

color(x : Object ,do(paint(x : Object , c: Object), s: Situation)) =
c: Object (2)’

poss(pickup(r : Object , x : Object), s: Situation) ⊃
[(∀z: Object)¬holding(r : Object , z: Object , s: Situation)] ∧
¬heavy(x : Object) ∧ nextTo(r : Object , x : Object , s: Situation) (3)’
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Type Checking

Let’s take a quick look at how type checking works theoretically:
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Q & A

Thank you!
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