
A

Scalable Energy Efficiency with Resilience for High Performance
Computing Systems: A Quantitative Methodology

LI TAN, University of California, Riverside

ZIZHONG CHEN, University of California, Riverside

SHUAIWEN LEON SONG, Pacific Northwest National Laboratory

Ever-growing performance of supercomputers nowadays brings demanding requirements of energy efficiency
and resilience, due to rapidly expanding size and duration in use of the large-scale computing systems. Many
application/architecture-dependent parameters that determine energy efficiency and resilience individually
have causal effects with each other, which directly affect the trade-offs among performance, energy efficiency
and resilience at scale. To enable high-efficiency management for large-scale High Performance Computing
(HPC) systems nowadays, quantitatively understanding the entangled effects among performance, energy
efficiency, and resilience is thus required. While previous work focuses on exploring energy saving and re-
silience enhancing opportunities separately, little has been done to theoretically and empirically investigate
the interplay between energy efficiency and resilience at scale. In this paper, by extending the Amdahl’s
Law and the Karp-Flatt Metric, taking resilience into consideration, we quantitatively model the integrated
energy efficiency in terms of performance per Watt, and showcase the trade-offs among typical HPC param-
eters, such as number of cores, frequency/voltage, and failure rates. Experimental results for a wide spec-
trum of HPC benchmarks on two HPC systems show that the proposed models are accurate in extrapolating
resilience-aware performance and energy efficiency, and capable of capturing the interplay among various
energy saving and resilience factors. Moreover, the models can help find the optimal HPC configuration for
the highest integrated energy efficiency, in the presence of failures and applied resilience techniques.

CCS Concepts: rComputer systems organization → Distributed architectures; rHardware → Power

estimation and optimization; Fault tolerance;

Additional Key Words and Phrases: energy, power, DVFS, undervolting, performance, resilience, failures,
checkpoint and restart, scalability, HPC

1. INTRODUCTION

As the exascale supercomputers are expected to embark around 2020 [Esmaeilzadeh
et al. 2011], High Performance Computing (HPC) systems nowadays expand rapidly
in size and duration in use, which brings demanding requirements of energy efficiency
and resilience at scale, along with the ever-growing performance boost. These require-
ments are becoming prevalent and challenging, considering two crucial facts that: (a)
The costs of powering an HPC system grow greatly with its expanding scale, and (b) the
failure rates of an HPC system are dramatically increased due to a larger amount of
interconnected computing nodes. Therefore, it is desirable to consider both dimensions
of energy efficiency and resilience, when building scalable, cost-efficient, and robust

New Paper, Not an Extension of a Conference Paper. This work is partially supported by the
NSF grants CCF-1305622, ACI-1305624, and CCF-1513201, by the DOE/ASCR Beyond Standard Model
Project 62855 from Pacific Northwest National Laboratory, and also by the SZSTI basic research program
JCYJ20150630114942313.
Author’s addresses: L. Tan and Z. Chen, Department of Computer Science and Engineering, University of
California, 900 University Avenue, Riverside, California 92521; S. L. Song, High Performance Computing
Group, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
c© YYYY ACM. 1544-3566/YYYY/01-ARTA $15.00
DOI: 0000001.0000001

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.



A:2 L. Tan et al.

large-scale HPC systems. Specifically, for a given HPC system, our ultimate goal is to
achieve the optimal performance-power-failure ratio while exploiting parallelism.

Nevertheless, for the concerns of energy efficiency and resilience in scalable HPC
systems, alleviating one dimension does not necessarily improve the other. Energy effi-
ciency and resilience are essentially mutually-constrained during the efforts of finding
the balanced HPC configuration for the integrated optimal performance-power-failure
ratio. Despite the straightforward fact that both of energy efficiency and resilience are
correlated with execution time of HPC runs, altering some HPC parameters that are
closely related to both dimensions, such as supply voltage of hardware components and
number of cores used, can be beneficial to one dimension but harmful to the other.

For instance, energy savings can be achieved via Dynamic Frequency and Voltage
Scaling (DVFS) techniques [Weiser et al. 1994] [Rountree et al. 2009] [Tan et al. 2014]
[Tan and Chen 2015], for CMOS-based processing components including CPU, GPU,
and memory. In general practice, DVFS is often frequency-oriented towards idle time
of the components, which means the voltage will be changed if the paired frequency
is altered but will be kept the same otherwise. Nowadays state-of-the-art processors
with cutting-edge nano-technology are allowed to be supplied with a significantly low
voltage, close to the transistor’s threshold voltage, e.g., Intel’s Near-Threshold Voltage
(NTV) design [Kaul et al. 2012]. Further energy savings can be achieved through a
fixed-frequency scheme with further reduced voltage, named undervolting [Wilkerson
et al. 2008] [Alameldeen et al. 2011] [Bacha and Teodorescu 2013] [Tan et al. 2015],
at the cost of increased failures of the components. However, it is not clear that which
variation from undervolting is more dominant for high energy efficiency: power sav-
ings from further voltage reduction or performance loss from the overhead on error
detection and recovery. It is thus desirable to investigate the potential of achieving
high energy efficiency in HPC by undervolting, with hardware/software-level resilience
techniques applied meanwhile to guarantee the correct execution of HPC runs.

There exist only a few efforts investigating this issue in the context of HPC with
well-grounded modeling and experimental validation [Bacha and Teodorescu 2013]
[Tan et al. 2015]. However, the proposed approach in [Bacha and Teodorescu 2013]
worked specifically for a customized pre-production multi-core processor with ECC
(Error-Correcting Code) memory, and thus their solution considered a single type of
potential failures, i.e., ECC errors only. On the other hand, the authors in [Tan et al.
2015] did not theoretically consider the effects of scalability of HPC systems and dis-
cuss the interplay among mutually-constrained HPC parameters at scale, nor empir-
ically evaluated the trade-offs among the HPC parameters towards scalable energy
efficiency and resilience. Therefore, in this work, we propose to quantitatively model
the entangled effects of energy efficiency and resilience in the scalable HPC environ-
ment and investigate the trade-offs among typical HPC parameters for the optimal
energy efficiency with resilience. In summary, the contributions of this work include:

— We quantitatively model the entangled effects of energy efficiency and resilience at
scale, by extending the Amdahl’s Law and the Karp-Flatt Metric;

— We showcase the interplay among typical HPC parameters with internal causal ef-
fects, and demonstrate how the trade-offs impact the energy efficiency at scale;

— We provide experimental results using ten HPC benchmarks on two power-aware
clusters, showing that our models are accurate and effective to find the balanced HPC
configuration for the optimal scalable energy efficiency under resilience constraints.

The remainder of this paper is organized as follows. Section 2 discusses related work
and Section 3 introduces background. We present our modeling of scalable energy effi-
ciency with resilience, and trade-offs among HPC parameters in Section 4. Implemen-
tation details and experimental results are provided in Section 5. Section 6 concludes.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.



Scalable Energy Efficiency with Resilience for HPC Systems: A Quantitative Methodology A:3

2. RELATED WORK

There exist few efforts investigating the joint relationship among performance, energy
efficiency, and resilience for HPC systems. Rafiev et al. [Rafiev et al. 2014] studied
the interplay among time, energy costs, and reliability for a single-core and a multi-
core system respectively, while they focused on concurrency and did not quantitatively
elaborate the impacts of frequency/voltage on performance and reliability. Yetim et al.
[Yetim et al. 2012] presented an energy optimization framework using mixed-integer
linear programming while meeting performance and reliability constraints. Targeting
the application domain of multimedia, this work exploited the workload characteris-
tics that limited error tolerance can be traded off for energy reduction. Nevertheless,
there exist a large body of studies that quantify only energy costs and performance, or
resilience and performance, at single-node level, at scale, or based on simulation.

ENERGY EFFICIENCY QUANTIFICATION. Woo and Lee [Woo and Lee 2008] built
an analytical model that extends the Amdahl’s Law for energy efficiency in scalable
many-core processor design. They considered three many-core design styles of proces-
sors only without communication, while we focus on networked symmetric multicore
processors, and communication time and power costs for processors across nodes are
involved in our models. By augmenting the Amdahl’s Law, Cassidy and Andreou [Cas-
sidy and Andreou 2012] derived a general objective function linking performance gain
with energy-delay costs in microarchitecture and applied it to design the optimal chip
multiprocessor (CMP) architecture, while our work aims to achieve the optimal per-
formance/energy efficiency in terms of FLOPS per watt. Song et al. [Song et al. 2011]
developed an energy model to evaluate and predict energy-performance trade-offs for
various HPC applications at large scale. Ge and Cameron [Ge and Cameron 2007] de-
vised a power-aware speedup metric that quantify the interacting effects between par-
allelism and frequency, and used it to predict performance and power-aware speedup
for scientific applications. Their models were accurate and scalable, but did not incor-
porate the effects of energy saving DVFS and undervolting techniques as in our work.
Moreover, they did not evaluate the interplay among typical HPC parameters, where
we conduct an extensive theoretical and empirical study in this work.

RESILIENCE QUANTIFICATION. Zheng and Lan [Zheng and Lan 2009] modeled the
impacts of failures and the effects of resilience techniques in HPC, and used their mod-
els to predict scalability for HPC runs with possibility of failures. Wang et al. [Wang
2009] proposed a unified speedup metric that incorporates checkpointing overhead into
classic speedup metrics in the presence of failures. Yu et al. [Yu et al. 2014] created a
novel resilience metric named data vulnerability factor to holistically integrate appli-
cation and hardware knowledge into resilience analysis. Again, all of these approaches
however did not consider energy saving DVFS and undervolting techniques, both of
which can significantly affect energy efficiency and resilience, with negligible perfor-
mance loss. Moreover, analytical models in [Wang 2009] are not as fine-grained as ours,
since relationship among important HPC parameters was simplified such that it is not
clear how they interact and by what extent they affect speedup (and energy efficiency).

SIMULATION-BASED QUANTIFICATION. Li and Martı́nez [Li and Martı́nez 2005] in-
vestigated power-performance correlation of parallel applications running on a CMP,
aiming to optimize power costs under a performance budget and vice versa. They con-
ducted simulation-based experiments to evaluate the proposed power-performance op-
timization for one single parallel application. Suleman et al. [Suleman et al. 2009] pro-
posed a technique that accelerates the execution of critical sections, a code fragment of
shared data accessed by only one thread at a given time, which differs from the sequen-
tial code in the Amdahl’s Law. Experimental results using lock-based multithreaded
workloads on three different CMP architectures indicated significant performance and

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.



A:4 L. Tan et al.

scalability improvement. Bois et al. [Bois et al. 2011] developed a framework of gener-
ating synthetic workloads to evaluate energy efficiency for multicore power-aware sys-
tems. The proposed framework effectively showed the energy and performance trade-
off for generated workloads. All these simulation approaches are at single-node level,
which may need considerate adaptation to work for large-scale HPC systems.

3. BACKGROUND: ENERGY SAVINGS, UNDERVOLTING, AND FAILURES

Numerous efforts have been made to address the demanding requirements of energy
efficiency in HPC nowadays. In general, processor-based energy saving techniques can
be categorized into two types: frequency-directed and voltage-directed. Next we present
the details of each as the background knowledge for later modeling and discussion.

Fig. 1. DAG Notation of Two DVFS Solutions for a 3-Process HPC Run.

3.1. Frequency-Directed DVFS Techniques

Generally for an HPC run, slack refers to a time period when one hardware component
waits for another due to imbalanced throughput and utilization [Tan and Chen 2015].
There exist many slack opportunities during an HPC run. For instance, if network
components are busy, other components (e.g., CPU, GPU, memory, and disk) are often
alternatingly idle when message-passing communication (specifically, message copy
among buffers of different compute nodes) is performed. Moreover, if the application is
memory and disk intensive, CPU usually waits for the data from memory and disk, due
to the performance bottleneck at memory and disk accesses. An ideal method to save
energy is to reduce the power of non-busy components when such slack occurs, while
keep the peak performance of busy components when otherwise. By exploiting DVFS,
existing solutions decrease processor power during communication [Rountree et al.
2007] [Tan et al. 2014], halt/idle processors when no workloads are available [Alonso
et al. 2012] [Tan and Chen 2015], or work based on Critical Path (CP) analysis to
reclaim slack arising among computation [Rountree et al. 2009] [Tan and Chen 2015].
Energy can be saved with negligible performance loss using the above solutions.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.



Scalable Energy Efficiency with Resilience for HPC Systems: A Quantitative Methodology A:5

For energy saving purposes, without degrading performance, slack arising in HPC
runs can either be eliminated by decreasing processor frequency to extend computation
time of program execution fragments (e.g., tasks) with slack appropriately, or be uti-
lized to make non-working hardware components stay in the halt/idle state, as shown
in Figure 1 [Tan and Chen 2015], which depicts the Directed Acyclic Graph (DAG)
representation of applying two classic DVFS approaches on a task-parallel HPC run.
By respecting the CP, slack is not over-reclaimed or over-utilized for halting, and thus
the DVFS solutions incur negligible performance loss from DVFS itself in practice. In
this work, we adopt state-of-the-art DVFS approaches that outperform other DVFS
solutions in different scenarios by completely eliminating potential slack. Similarity
among these DVFS solutions is that they are all frequency-directed: Processor voltage
is only lowered together with processor frequency reduction, in the presence of slack,
and is fixed otherwise. In other words, a voltage is always paired with a chosen fre-
quency, and no further voltage reduction is conducted for the given frequency.

3.2. Fixed-Frequency Undervolting Technique

Although effective, frequency-directed DVFS approaches may fail to fully exploit en-
ergy saving opportunities. Hardware components such as processors nowadays are al-
lowed to be supplied with a voltage that is lower than the one paired with a given
frequency, which is referred to as undervolting for more power savings beyond DVFS.
This voltage-directed technique is independent of frequency scaling (i.e., during under-
volting, the frequency is fixed after it is chosen), but requires hardware support for
empirical deployment. Unlike traditional simulation-based undervolting approaches
[Wilkerson et al. 2008] [Alameldeen et al. 2011], Bacha et al. [Bacha and Teodorescu
2013] first implemented an empirical undervolting system on Intel Itanium II proces-
sors via software/firmware control, which was intended to reduce voltage margins and
thus save power, with ECC memory correcting arising ECC errors. This work maxi-
mized potential power savings since it used pre-production processors that allows the
maximum extent of undervolting: They were able to reduce voltage until the levels
lower than the lowest voltage corresponding to the lowest frequency supported. In
general, production processors are locked for reliability purposes by the OS, and will
typically shut down when voltage is lowered below the one paired with the lowest
frequency. For generality purposes, Tan et al. [Tan et al. 2015] proposed an emulated
scaling undervolting scheme that works for general production processors, which was
deployed on a power-aware HPC cluster as the first attempt of its kind to demonstrate
more energy savings compared to state-of-the-art DVFS solutions. They implemented
undervolting using the Model Specific Register interface, which does not require the
support of pre-production machines and makes no modification to the hardware.

The further power savings from undervolting are however achieved at the cost of
higher failure rates λ [Zhu et al. 2004] [Bacha and Teodorescu 2013]. As shown in
Equation (1) below, the average failure rates are quantified in terms of supply volt-
age only with other parameters known [Tan et al. 2015] (λ0: the average failure rate at
fmax (and Vmax), d and β: hardware-dependent constants, fmax/fmin: the highest/lowest
operating frequency, Vth: threshold voltage). Therefore while undervolting is beneficial
to saving power, hardware/software-based fault tolerant techniques are also required
to guarantee correct program execution. Bacha et al. [Bacha and Teodorescu 2013] em-
ployed ECC memory to correct memory bit failures (single-bit flips). Tan et al. [Tan
et al. 2015] adopted lightweight resilience techniques such as diskless checkpointing
and algorithm-based fault tolerance to correct both hard and soft errors. The difference
lies in: Pre-production machines are required in the work of Bacha et al., where real
errors can be observed at the lowest safe voltage Vsafe min, Vth < Vsafe min < Vl, while
the solution proposed by Tan et al. needs production machines only, and thus errors

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.



A:6 L. Tan et al.

from undervolting cannot be empirically observed, due to close-to-zero failure rates at
Vl per Equation (1), i.e., the lowest voltage can be scaled to by undervolting for produc-
tion machines without crashing. The emulated scaling scheme [Tan et al. 2015] was
able to estimate the energy costs at Vsafe min, based on real measured power/energy
data at Vl and power/energy models under resilience techniques and undervolting.

λ(f, Vdd) = λ(Vdd) = λ0 e
d(fmax−β(Vdd−2Vth+

V 2
th

Vdd
))

fmax−fmin (1)

Since this work is intended for general production HPC systems, we leverage the
software-based undervolting approach [Tan et al. 2015] to save more energy beyond
DVFS solutions at the cost of raised failure rates. Thus as in [Tan et al. 2015], no errors
were experimentally observed, but were likewise successfully emulated (see section
5.2). In this work, the Checkpoint/Restart technique is employed to recover from errors.

3.3. Checkpoint/Restart Failure Model

Computing systems in general suffer from various sources of failures, ranging from
computation errors on logic circuits, to memory bit-flips due to frequency and volt-
age fluctuation [Bacha and Teodorescu 2013] [Wu and Chen 2014] [Tan et al. 2015].
Without loss of generality, in this work we discuss how to detect and recover from a
failure in an HPC run using a general-purpose widely used resilience technique Check-
point/Restart (C/R) [Daly 2006], and build and evaluate our performance and power
models based on C/R. Our methodology of theoretical modeling and experimental eval-
uation also applies to other resilience techniques such as Algorithm-Based Fault Tol-
erance (ABFT), with minor changes in the proposed models accordingly. Note that we
use the terms errors, faults, and failures interchangeably henceforth in the later text.

Fig. 2. Fault Tolerance using the Checkpoint/Restart Technique.

Figure 2 demonstrates the scenario of fault tolerance using C/R. A program with the
execution time T can be checkpointed by making a snapshot of a system state at the end
of fragments of an evenly divided program run so that T = Nτ , where τ is the length of
fragments of the divided program run, and N − 1 is the number of checkpoints added
into the run. Specifically, a system state is a copy of current application process address
space, including the contents of values of heap, stack, global variables, program text
and data, and registers. The total checkpoint overhead is thus modeled as TC = (N −

1)C, where C is the time required for making one checkpoint. At any points of time
within a program run fragment, a failure can arise and interrupt the program run. We
denote the time that a failure occurs as τ ′. For continuing the run without re-executing
the whole program, we reinstate the last saved checkpoint and restart from the saved
information in the checkpoint. The time overhead on restarting the run is denoted as
R. The total restart overhead depends on the number of failures during the run.

4. MODELING SCALABLE ENERGY EFFICIENCY WITH RESILIENCE

4.1. Problem Description

We aim to achieve the optimal energy efficiency with resilience in a scalable HPC en-
vironment as in Figure 3: an HPC system with a number of compute nodes, each of
which consists of multiple symmetric cores, interconnected by networks. Note that we

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.



Scalable Energy Efficiency with Resilience for HPC Systems: A Quantitative Methodology A:7

Fig. 3. Investigated Architecture – Symmetric Multicore Processors Interconnected by Networks.

assume if there exist multiple multicore processors in a node, the cores across proces-
sors are also symmetric. Although at the initial stage, applicable architectures are ho-
mogeneous HPC systems without accelerators, with minor changes, the methodology
proposed and the empirical studies conducted in this work also apply to other archi-
tectures, such as emerging heterogeneous GPU/coprocessor-accelerated HPC systems.

4.2. Amdahl’s Law and Karp-Flatt Metric

Amdahl’s Law [Amdahl 1967] and Karp-Flatt Metric [Karp and Flatt 1990] are two
classic metrics that quantify the performance of parallel programs. Amdahl’s Law
stresses performance impacts from the parallelized code within a parallel program,
without considering communication. Karp-Flatt speedup formula takes communica-
tion (including data transmission and synchronization in HPC runs) into account, like-
wise as the consideration of this work. Specifically, Amdahl’s Law is written as:

Speedupa =
Ts + Tp

Ts +
Tp

P

=
(1− α)T + αT

(1− α)T +
αT

P

=
1

1− α+
α

P

(2)

where T = Ts+Tp is the total execution time of the program, consisting of the runtime
of the sequential code Ts and the runtime of the parallelized code Tp individually, α is
the percentage of code that can be parallelized within the program (0 ≤ α ≤ 1), P is
the total number of cores used in the HPC system where the program runs, and N is
the problem size. Considering κ(N,P ) as the communication time, determined by N
and P jointly, Karp-Flatt speedup formula can be written in the following form:

Speedupkf =
Ts + Tp

Ts +
Tp

P
+ Tcomm

=
(1− α)T + αT

(1− α)T +
αT

P
+ κ(N,P )

=
1

1− α+
α

P
+

κ(N,P )

T

(3)

4.3. Extended Amdahl’s Law for Power Efficiency

The original Amdahl’s Law considers performance of HPC systems only. Woo et al. [Woo
and Lee 2008] incorporated power and energy efficiency into the Amdahl’s Law, with-
out considering communication as in the Karp-Flatt speedup formula. In this work,
we take into account both the power/energy efficiency and the communication during
HPC runs by extending the classic Amdahl’s Law for scalable HPC systems.

4.3.1. A General Extension. We first formulate the total power consumption of all hard-
ware components in an HPC system (specifically, including multicore processors across
nodes with P cores in total and other components) during an original error-free run,
without considering energy saving DVFS and undervolting solutions applied:

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.



A:8 L. Tan et al.

Power =
Energy

T ime

=
(Q+ (P − 1)µQ)(1− α)T + PQαT

P
+ PµQκ(N,P ) + C((1− α)T + αT

P
+ κ(N,P ))

(1− α)T + αT
P

+ κ(N,P )

= Q×
(1 + µ(P − 1))(1− α) + α+ µP κ(N,P )

T
+

C((1−α)+ α
P
+

κ(N,P )
T

)

Q

(1− α) + α
P
+ κ(N,P )

T

(4)

where Q is the power consumption of a single core at the peak performance, and µ
is the fraction of the power the core consumes in the idle state with regard to that
at the peak performance (0 < µ < 1). We assume that the core power consumption
during communication is roughly the same as that in its idle state [Ge et al. 2010].
We calculate the total energy consumption by accumulating energy costs at different
phases of an HPC run: (Q + (P − 1)µQ)(1 − α)T is the energy costs of all P cores
when the sequential code is executed (one core runs at full speed while the others are
idle). PQαT

P
is the P -core energy costs when the program runs in parallel. PµQκ(N,P )

refers to the energy costs the P cores produce during communication. C is the power
costs of non-CPU components in the HPC system (we assume non-CPU components
consume constant power during HPC runs, regardless of DVFS and undervolting for
CPU only). As an extension to the Amdahl’s Law that quantified speedup only of HPC
runs, Equation (4) gives the total system power costs of HPC runs in general cases.

Without loss of generality, in Equation (4), we normalize Q = 1 to simplify the
later discussion. Moreover, we set C = 0 in the following modeling to focus on CPU
power/energy efficiency due to two primary reasons: (a) CPU is the most power/energy
consumer in a homogeneous HPC system [Ge et al. 2010] [Tan et al. 2014], i.e., saving
energy for CPU has the most significant impacts on improving the system energy effi-
ciency, and (b) we investigate the DVFS and undervolting solutions that directly affect
CPU power/energy costs but not impact other non-CPU components. More hardware
components such as GPU/memory/networks can also be incorporated if power/energy
efficient techniques on GPU/memory/networks are considered. Due to space limita-
tion, we elaborate our idea in this work taking CPU for example, and leave studying
power/energy efficiency of other components in the HPC system as future work.

4.3.2. Communication of HPC Runs. As stated, we denote the communication time in an
HPC run as κ(N,P ). Empirically, κ(N,P ) highly depends on the communication algo-
rithm employed. Regardless of the basic point-to-point communication scheme, there
exist a large body of studies on highly-tuned communication algorithms [Chan et al.
2006] [Solomonik et al. 2011] [Ballard et al. 2012] [Lee et al. 2013]. Here we briefly dis-
cuss two classic broadcast algorithms: binomial tree and pipeline broadcast. Their per-
formance comparison was summarized in [Culler et al. 1993] [Tan et al. 2013], where

the time complexity of binomial tree broadcast was modeled as TB =
Smsg

BD
× logP , and

the pipeline broadcast time complexity was modeled as TP =
Smsg

BD
× (1+ P−1

η(N) ) (Smsg is

the message size in one broadcast, BD refers to network bandwidth in the communica-
tion, and η(N) is the number of message chucks in the message transmission). We can
see that performance of binomial tree broadcast depends on P only while performance
of pipeline broadcast is determined by both P and N . In practice, the communication
scheme and algorithm vary from different HPC applications, which determine what
time complexity of κ(N,P ) is and ultimately affect the power/energy costs of HPC runs.

4.3.3. Power Efficiency with DVFS and Undervolting. Given the fact that the total power
consumption of a core is composed of leakage/static power costs and dynamic power

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.



Scalable Energy Efficiency with Resilience for HPC Systems: A Quantitative Methodology A:9

costs, the Amdahl’s Law can be intuitively rewritten to model the potential core power
savings for HPC runs, under the circumstances of DVFS and undervolting respectively:

PEdvfs =
Ps + Pd

(1−β)(Ps+Pd)
n1

+ β(Ps+Pd)
n2

=
1

1−β
n1

+ β
n2

(5)

PEuv =
Ps + Pd

(1−β)(Ps+Pd)
n1

+ β(Ps+Pd)
n3

=
1

1−β
n1

+ β
n3

(6)

where Ps and Pd refer to the leakage and dynamic power costs of all used cores individ-
ually, and β is the percentage of dynamic power costs within the total power costs. n1,
n2, and n3 are the leakage power reduction factor of DVFS/undervolting, the dynamic
power reduction factor of DVFS, and the dynamic power reduction factor of undervolt-
ing, individually, denoting the ratios of leakage/dynamic power reduction respectively.
Equation (5) and Equation (6) model the power efficiency when DVFS and undervolt-
ing are applied separately. For simplicity of the discussion, we assume that the DVFS
technique used is able to eliminate all slack in the HPC run, and the undervolting
technique adopted is able to scale to the voltage paired with the lowest frequency.

EXAMPLE. We can use the above two formulae to calculate the theoretical upper bound
of power savings using DVFS and undervolting respectively. Assume we have the fol-
lowing parameters already known: β = 0.6 (dynamic power amounts to 60% of the
total core power, which is empirically reasonable). For the processors used, we as-
sume the maximum frequency fh = 2.4 GHz and the minimum frequency fl = 0.8
GHz. Consider the extreme case that reducing frequency from 2.4 GHz to 0.8 GHz
can eliminate all possible slack for all tasks. Since Ps = IsubV [Taur et al. 2004] (i.e.,
∆Ps ∝ ∆V ), Pd = AC ′fV 2 [Miyoshi et al. 2002], and empirically ∆Pd ∝ ∆f2.5 [Rotem
et al. 2014], where A and C’ are the percentage of active gates and the total capacitive
load in a CMOS-based processor respectively, and Isub refers to subthreshold leakage
current, we can derive that ∆V ∝ ∆f0.75, and thus n1 = ( fh

fl
)0.75dvfs = ( 2.40.8 )

0.75 ≈ 2.28 and

n2 = ( fh
fl
)2.5dvfs = ( 2.40.8 )

2.5 ≈ 15.59 in the assumed case. By substituting n1 and n2 into

Equation (5), we have the range of power savings from DVFS: PEdvfs ≤
1

0.4
2.28+

0.6
15.59

≈ 4.67.

Moreover, consider in the case of undervolting, we have the same n1 = ( fh
fl
)0.75uv =

( 2.40.8 )
0.75 ≈ 2.28 and n3 = ( fh

fl
)1.5uv = ( 2.40.8 )

1.5 ≈ 5.26. Substituting all known parameters

we have the range of power savings from undervolting: PEuv ≤
1

0.4
2.28+

0.6
5.26

≈ 3.45.

4.4. Extended Karp-Flatt Metric for Speedup with Resilience

From the Karp-Flatt speedup formula, i.e., Equation (3), we can further derive the
extended Karp-Flatt speedup formula when failures occur and resilience techniques
are employed in HPC runs. Although we take the C/R technique for example in the
later discussion, our modeling also applies to other resilience techniques by making
changes on the modeling of error detection and recovery. Next we formulate the Karp-
Flatt Metric for the scenario with failures and C/R, by adopting Daly’s simplified C/R
performance model Tcr = 1

λ
eRλ(eλ(τ+C) − 1)T

τ
[Daly 2006]. We substitute the original

solve time of the parallelized code with the solve time with failures and C/R Tcr:

Speedupcr
kf

=
Torig

Tcr

=
(1− α)T + αT

1
λ
eRλ(eλ(τ+C) − 1)

(1−α)T+αT
P

+κ(N,P )

τ

=
1

1
λ
eRλ(eλ(τ+C) − 1)

1−α+ α
P
+

κ(N,P )
T

τ

(7)

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.



A:10 L. Tan et al.

4.5. Quantifying Integrated Energy Efficiency

Based on the two extended models, further taking HPC communication, energy saving
DVFS and undervolting solutions, and failures and resilience techniques into consider-
ation, we define the integrated energy efficiency of an HPC system as follows, in terms
of the speedup in different HPC scenarios achieved per unit energy per unit time:

Perf

Watt
=

Speedup

Power
(8)

We next consider the following four typical HPC scenarios individually, where dif-
ferent integrated energy efficiency metrics can be produced according to Equation (8).

COMMUNICATION-TIME-TO-TOTAL-TIME-RATIO. The later discussion depends on a
practical assumption that our models work well for HPC applications with the follow-

ing characteristics: The ratio of communication time to the total execution time κ(N,P )
T

(this term appears in Equations (9-15)) does not vary much as problem size N and
number of cores P change. There exist a large body of such applications [Jin and der
Wijngaart 2004] [Wu et al. 2012], including a majority of benchmarks evaluated in

Section 5. Nevertheless, for applications with a great variation of κ(N,P )
T

(e.g., the IS
benchmark from NPB [npb ]), the accuracy of our proposed models may be affected but
the trend of energy efficiency manifested by our models may still retain.

We first consider the baseline case that there are no failures during an HPC run,
without DVFS and undervolting techniques. Based on the definition, we calculate the
energy efficiency in this case, as shown in Equation (9), where we assume that the
HPC run uses P cores in total that solves a size-N problem. A number of parameters
are influential to the energy efficiency, including several fixed application-specific and
architecture-specific invariants: the percentage of parallelized code α, and the ratio µ,
power consumed by one idle core normalized to that by one fully-loaded running core.
Equation (9) models the baseline for building energy efficiency models of the following
HPC scenarios, with energy saving solutions, failures, and resilience techniques.

Perf

Watt
=

1

1−α+ α
P
+

κ(N,P )
T

×
1−α+ α

P
+

κ(N,P )
T

(1+µ(P−1))(1−α)+α+µP
κ(N,P )

T

=
1

(1 + µ(P − 1))(1− α) + α+ µP κ(N,P )
T

(9)

Scenario 1: HPC Runs with Faults and C/R (No DVFS + No Undervolting)

If faults occur at a rate of λ and the C/R technique is employed in the HPC run,
resilience-related factors including failure rates λ, checkpoint intervals τ , checkpoint
overhead C, and restart overhead R are involved in the speedup formula, which affect
the overall energy efficiency as well. Using the performance model Tcr for the scenario
with failures given in Equation (7), we first model the power costs Pcr in this scenario
as Equation (10), based on the assumption that the power draw of a node during check-
pointing and restarting is very close to that during its idle state [Meneses et al. 2012].
In Equation (10), N is the expected number of failures, approximated in [Daly 2006]
as N = λT (1 + C

τ
). If the solve time T is comparatively long, we can assume N ≫ 1,

and thus further simplify the power formula. The ultimate energy efficiency is given in
Equation (11). In contrast to the energy efficiency in the baseline case, there appears a
new term µPλ(1+ C

τ
)(C+R) in the new energy model. Intuitively, since the speedup is

degraded due to the checkpoint and restart overhead, and the overall energy costs are
raised due to the extra energy costs during checkpointing and restarting, the energy
efficiency in this scenario is expected to go down, compared to the baseline case.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.



Scalable Energy Efficiency with Resilience for HPC Systems: A Quantitative Methodology A:11

Pcr =
Ecr

Tcr

=
(1 + µ(P − 1))(1− α) + α+ µP κ(N,P )

T
+ µP (N−1)C+NR

T

1
λ
eRλ(eλ(τ+C) − 1)

1−α+ α
P
+

κ(N,P )
T

τ

(10)

Perf

Watt
=

1

1
λ
eRλ(eλ(τ+C) − 1)

1−α+ α
P
+

κ(N,P )
T

τ

×

1
λ
eRλ(eλ(τ+C) − 1)

1−α+ α
P
+

κ(N,P )
T

τ

(1 + µ(P − 1))(1− α) + α+ µP κ(N,P )
T

+ µPλ(1 + C
τ
)(C +R)

=
1

(1 + µ(P − 1))(1− α) + α+ µP κ(N,P )
T

+ µPλ(1 + C
τ
)(C +R)

(11)

Fig. 4. Energy Efficiency of HPC Runs with Faults and Resilience Techniques (Checkpoint/Restart).

Figure 4 depicts the energy efficiency curve when the C/R technique is used in the
presence of failures. Here we adopt some premise to facilitate the analysis: Per empir-
ical measurement (see Section 5.2.5), we let µ = 0.6, and without loss of generality, we
assume the communication in the HPC run takes 50% of the total execution time, i.e.,
κ(N,P )

T
= 0.5 (from the evaluation in Section 5, we found that values of κ(N,P )

T
did not

alter the trend of energy efficiency). Moreover, we set P = 50 and α = 0.9 to showcase
an HPC environment. Regarding the C/R technique used, we assume checkpoint over-
head C = 10 and restart overhead R = 20 in seconds. From Figure 4, we can see that
when failure rates λ are comparatively small, i.e., in the range of [10−6, 10−4], the en-
ergy efficiency is dominated by the impacts from the sequential and parallelized code
and the communication per Equation (11). Variation of checkpoint intervals τ barely
affects the energy efficiency in this case. However, the energy efficiency experiences a
dramatic drop when the failure rates λ lie in around [10−4, 10−2], and the drop becomes
flattened when λ is further increased to a value close to 1. The impacts of τ are mani-
fested when τ is small enough so that C

τ
is larger than 1. We next discuss the scenario

where energy saving techniques are used to improve the energy efficiency.

Scenario 2: HPC Runs with Faults and C/R, using DVFS to Save Energy

Likewise, we model the energy efficiency in the scenario with failures and C/R, and
energy saving DVFS solutions in the presence of slack. From Equation (12), we can see
that during the slack, using DVFS can indeed improve the energy efficiency due to the

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.



A:12 L. Tan et al.

Perf

Watt
=

1

1
λ
eRλ(eλ(τ+C) − 1)

1−α+ α
P
+

κ(N,P )
T

τ

×

1
1−β
n1

+ β
n2

×

(

1
λ
eRλ(eλ(τ+C) − 1)

1−α+ α
P
+

κ(N,P )
T

τ

)

(1 + µ(P − 1))(1− α) + α+ µP κ(N,P )
T

+ µPλ(1 + C
τ
)(C +R)

=

1
1−β
n1

+ β
n2

(1 + µ(P − 1))(1− α) + α+ µP κ(N,P )
T

+ µPλ(1 + C
τ
)(C +R)

(12)

reduced power costs by a factor of 1
1−β
n1

+ β
n2

(the only difference between Equation (11)),

if the DVFS techniques incur negligible performance loss as described in Figure 1. n1

and n2 are determined by capability of the DVFS techniques and the amount of slack
in the HPC run, and β depends on specific processor architectures. Note that during
the non-slack time, power consumption with DVFS is the same as the original run.

1
0.8

Percentage of Dynamic Power
0.6

0.4
0.2

00

Power Reduction Factor from DVFS

10

20

30

40

10

9

8

7

6

5

4

3

2

1

0
50

N
or

m
al

iz
ed

 E
ne

rg
y 

E
ffi

ci
en

cy
 (

P
er

f/W
at

t)

Fig. 5. Energy Efficiency of HPC Runs with Faults, Checkpoint/Restart, and DVFS Techniques.

As Equation (12) is derived based on Equation (11), we fix λ = 10−5 and τ = 150
to discuss the impacts from β and n1/n2 on the energy efficiency in the scenario with
faults and DVFS. Given the known relationship that n1 = ∆f0.75 and n2 = ∆f2.5 (i.e.,
n2 = ∆f1.75n1), we rewrite the term using a joint parameter n as 1

1−β
n

+ β

∆f1.75n

. As shown

in Figure 5, we can see that a larger β or n value results in higher energy efficiency in
general, which is consistent with Equation (12). We can also observe that for β values
close to 1, the variation of energy efficiency is more manifested, since in which case the
energy efficiency is dominated by the larger n2 (∆f1.75 > 1), according to 1

1−β
n

+ β

∆f1.75n

.

Empirically, typical β values range from 0.65 to 0.8 for different processor technologies
nowadays [Esmaeilzadeh et al. 2011] [Mair et al. 2007] [Rusu et al. 2010].

Scenario 3: HPC Runs with Faults and C/R, using Undervolting (Increased Failure Rates)

If the undervolting technique is leveraged to further save energy during non-slack
time, compared to Scenario 2 where DVFS solutions apply to slack only, power can be
saved by a factor of 1

1−β
n1

+ β
n3

by undervolting, as modeled in Equation (13). However,

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.



Scalable Energy Efficiency with Resilience for HPC Systems: A Quantitative Methodology A:13

Perf

Watt
=

1

1
λ′
eRλ′(eλ′(τ ′+C) − 1)

1−α+ α
P
+

κ(N,P )
T

τ ′

×

1
1−β
n1

+ β
n3

×

(

1
λ′
eRλ′

(eλ
′(τ ′+C) − 1)

1−α+ α
P
+

κ(N,P )
T

τ ′

)

(1 + µ(P − 1))(1− α) + α+ µP κ(N,P )
T

+ µPλ′(1 + C
τ ′
)(C +R)

=

1
1−β
n1

+ β
n3

(1 + µ(P − 1))(1− α) + α+ µP κ(N,P )
T

+ µPλ′(1 + C
τ ′
)(C +R)

(13)

lower supply voltage by undervolting given a chosen operating frequency by DVFS
causes higher failure rates (λ′ > λ) and shorter checkpoint intervals (τ ′ < τ ) for tolerat-
ing raised failures, and thus inevitably results in longer execution time. Consequently,
energy efficiency in this scenario can be either improved or degraded compared to Sce-
nario 2, due to the coexisting power savings and performance loss. Generally, there
exists a balanced undervolting scale that maximizes the energy efficiency in this sce-
nario. We present details of this discussion in Section 4.6. Next we look into energy
saving effects from leakage and dynamic power reduction factors n1 and n3.

Leakage Power Reduction Factor fro
m Undervolting

10
8

6
4

2
00

Dynamic Power Reduction Factor from Undervolting

2

4

6

8

0

5

10

15

20

25

30

10

N
or

m
al

iz
ed

 E
ne

rg
y 

E
ffi

ci
en

cy
 (

P
er

f/W
at

t)

Fig. 6. Energy Efficiency of HPC Runs with Faults, Checkpoint/Restart, and Undervolting (Setup I).

Figure 6 shows the energy efficiency trend as n1 and n3 change, in the scenario with
failures, C/R and undervolting techniques, with given values β = 0.7, λ′ = 10−1, and
τ ′ = 15 (both of failure rates and the optimal checkpoint interval are increased due to
undervolting). Due to the fact that undervolting increases both n1 and n3 but n3 > n1,
compared to the leakage power reduction factor n1, the dynamic power reduction factor
n3 has greater impacts on the variation of energy efficiency – for a given n1, larger n3

values increase the energy efficiency more than larger n1 values given a fixed n3. From
Figure 6, we can see that the energy saving effects from n3 is almost linear for a given
n1, while for a fixed n3 value, the impacts from n1 are smaller: The energy efficiency
curves of n1 become flattened as n1 increases, especially for small n3 values. Regarding
energy saving techniques, the energy efficiency trend is similar as in Scenario 2: Larger
power reduction values n1, n2, and n3 always improve energy efficiency monotonically.
These observations can also be drawn from the causal term 1

1−β
n1

+ β
n3

in Equation (13).

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.



A:14 L. Tan et al.

4.6. Energy Saving Effects of Typical HPC Parameters

With the energy efficiency models under different circumstances, we can further in-
vestigate the impacts of typical HPC parameters on the optimal energy efficiency indi-
vidually. Since the parameters inherently affect each other, for highlighting the effects
of individual factors, we fix other parameters likewise as the previous discussion.

4.6.1. Optimal Checkpoint Interval. Given a failure rate λ, for a certain C/R technique
with the checkpoint and restart overhead C and R respectively, there exists an optimal
checkpoint interval τopt that minimizes the total checkpoint and restart overhead. τopt
is beneficial to improving performance, and thus also contributes to energy efficiency.

Daly proposed a refined optimal value τopt =
√

2C( 1
λ
+R) for the condition τ + C ≪

1
λ

[Daly 2006]. Under the circumstance of undervolting, failure rates vary exponentially
according to Equation (1). The previously proposed τopt does not apply to the case that
Mean Time To Failure (MTTF, the reciprocal of failure rates) becomes comparable to
the checkpoint overhead C. Daly also discussed a perturbation solution in [Daly 2006]
that can be employed to handle this case of large MTTF due to undervolting:

τopt =

{
√

2C
λ

− C for C < 1
2λ

1
λ

for C ≥
1
2λ

(14)

Depending on the relationship between C and 1
2λ , we use Equation (14) to calculate

the most cost-efficient checkpoint interval in the scenario of undervolting. As already
shown in Figure 4, larger checkpoint intervals τ barely enhance the energy efficiency
while smaller ones do. Specifically, the difference between energy saving effects at
nominal voltage and those at reduced voltage by undervolting is as follows: For nomi-
nal voltage with close-to-zero failure rates, e.g., at failure rate range [10−6, 10−4], the
variation of τ barely affects the energy efficiency. For failure rates larger than 10−4, the
variation around small τ (compared to C) does affect the energy efficiency. The smaller
τ incurs lower energy efficiency overall, since the resulting larger C

τ
in Equation (11)

makes the negative energy saving effects from C/R more manifested. For failure rates
close to 1, the energy efficiency becomes insensitive to the variation of τ again, since in
this case, within the C/R term µPλ(1 + C

τ
)(C +R) in Equation (11), λ is the dominant

factor instead of τ . Generally for large values of λ, there exists an optimal value of τ
for energy efficiency – any values greater than it barely affect the energy efficiency.

4.6.2. Optimal Supply Voltage. As stated earlier, values of supply voltage Vdd affect the
performance and energy efficiency of HPC runs in two aspects: (a) Vdd values determine
failure rates λ per Equation (1) and thus the optimal checkpoint interval τopt per Equa-
tion (14), and (b) Vdd values determine the leakage and dynamic power costs according
to the relationship Ps ∝ V and Pd ∝ fV 2. Nevertheless, the two aspects by nature
conflict with each other in achieving high energy efficiency: Decreasing Vdd causes an
exponential increase of λ, and thus a decrease of τopt, which results in higher over-
head on error detection and recovery using C/R. Therefore, for energy saving purposes,
larger values of Vdd should be adopted to minimize C/R overhead. On the other hand,
larger Vdd brings higher leakage and dynamic power costs that degrade the energy
efficiency overall, without affecting the solve time (operating frequency f is already
selected per DVFS techniques and not modified by undervolting). Targeting the opti-
mal energy efficiency for different HPC scenarios illustrated in Section 4.5, we tend to
choose an optimal Vdd value that balances the two conflicting aspects above.

Perf

Watt
=

n′

(1 + µ(P − 1))(1− α) + α+ µP κ(N,P )
T

+ µPλ′(1 + λ′C)(C +R)
(15)

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.



Scalable Energy Efficiency with Resilience for HPC Systems: A Quantitative Methodology A:15

Fig. 7. Energy Efficiency of HPC Runs with Faults, Checkpoint/Restart, and Undervolting (Setup II).

Recall that Figure 4 clearly shows that the variation of λ greatly impacts the energy
efficiency, as a result of undervolting. However, it does not reflect the interplay between
the two conflicting factors (a) and (b). We thus theoretically quantify this interplay to
see if there exists an optimal supply voltage for the given HPC configuration. Since
undervolting reduces both n1 and n3, for simplicity of the discussion of the optimal
Vdd, we relax the energy efficiency formula in Scenario 4 by letting n1 = n3 = n′, where
n′ is the unified power reduction factor from undervolting. In addition, we assume the
optimal checkpoint interval τopt is always adopted (due to greatly raised λ by under-
volting, we adopt the branch τopt = 1

λ
for C ≥

1
2λ in Equation (14)). The simplified

energy efficiency is modeled in Equation (15), which stresses the interplay between
the conflicting power savings and raised failure rates from undervolting.

We thus plot the curve of the simplified formula using the same assumption that
fixes parameters other than n′ and λ′, as shown in Figure 7. It is clear to see that the
larger n′ is and the smaller λ′ is, the higher the energy efficiency reaches. From the
previous discussion, we know that achieving higher power savings from undervolting
incurs higher failure rates, and vice versa. Therefore, selecting a voltage value for
undervolting that balances the two factors will fulfill the optimal energy efficiency. We
next empirically explore the optimal voltage for the highest energy efficiency.

5. EVALUATION

In this section, we present details of empirical evaluation for our speedup and energy
efficiency models in the above different HPC scenarios on two HPC clusters. The goals
of the evaluation are to experimentally demonstrate that: (a) The proposed models
are well-grounded and accurate to predict the speedup, power and energy efficiency
for scalable HPC runs, with prior knowledge on several HPC parameters, and (b) the
proposed models are able to capture the interplay among typical HPC parameters in
discussed HPC scenarios that ultimately affects the overall energy efficiency.

5.1. Experimental Setup

We conducted all the measurement-based experiments on a wide spectrum of HPC ap-
plications as our benchmarks, summarized in Table I. The benchmarks were selected

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.



A:16 L. Tan et al.

Table I. Benchmark details. From left to right: benchmark name, benchmark suite, benchmark description and test case used, problem domain, lines of code
in the benchmark, parallelization system employed, and parallelized code percentage relative to the total.

Benchmark Suite Description and Test Case Domain LOC Parallelized in
Percentage of

Parallelized Code

MG NPB
Solve a discrete Poisson equation discrete

2568 OpenMP/MPI 73.0%
using multigrid method (Class B). mathematics

CG NPB
Estimate eigenvalue of a sparse matrix numerical linear

1864 OpenMP/MPI 93.3%
with conjugate gradient method (Class B). algebra

FT NPB
Solve a partial differential equation numerical linear

2034 OpenMP/MPI 58.7%
using fast Fourier transform (Class B). algebra

EP NPB
Generate Gaussian random variates probability theory

359 OpenMP/MPI 94.7%
using Marsaglia polar method (Class B). and statistics

MatMul Self-coded
Matrix multiplication on two 10k×10k numerical linear

1532
OpenMP/MPI

99.2%
global matrices, saving into a third one. algebra /Pthreads

Chol FT-ScaLAPACK
Cholesky factorization on a 10k×10k numerical linear

2182 MPI 92.7%
global matrix to solve a linear system. algebra

LU FT-ScaLAPACK
LU factorization on a 10k×10k numerical linear

2892 MPI 61.6%
global matrix to solve a linear system. algebra

QR FT-ScaLAPACK
QR factorization on a 10k×10k numerical linear

3371 MPI 76.5%
global matrix to solve a linear system. algebra

LULESH DARPA UHPC
Approximate hydrodynamics equations

hydrodynamics 6014 OpenMP/MPI 14.6%
using 512 volumetric elements on a mesh.

AMG CORAL
An algebraic multigrid solver for linear numerical linear

3098 OpenMP/MPI 65.1%
systems on a 4×4×6 unstructured grid. algebra

from NPB benchmark suite [npb ], LULESH [lul ], AMG [amg ] and our fault tolerant
ScaLAPACK [Wu and Chen 2014], including a self-implemented matrix multiplica-
tion program [Tan et al. 2014], For assessing our goals, experiments were performed
on two different-scale power-aware clusters: HPCL and ARC. Table II lists the hard-
ware configuration of the two clusters. Since undervolting requires the permission of
root users, we managed to perform undervolting-related experiments on HPCL only
while all other experiments were conducted on both clusters. We measured the to-
tal power consumption for all compute nodes involved in the experiments, including
both dynamic and leakage power costs, collected by Watts up? PRO [wat ]. Energy
consumption of HPC runs was measured using PowerPack [Ge et al. 2010], a compre-
hensive software and hardware framework for energy profiling and analysis of HPC
systems and applications, which enables individual power and energy measurement
on all hardware components such as CPU, memory, disk, motherboard, etc. of an HPC
system. Before presenting experimental results of running the benchmarks for evalu-
ating each proposed goal individually, we detail the implementation of our approach.

5.2. Implementation Details

5.2.1. Frequency-Directed DVFS. For demonstrating the effectiveness of our approach,
we need to employ start-of-the-art energy efficient DVFS and undervolting techniques
to evaluate the impacts from energy savings on the integrated energy efficiency of HPC
systems (due to the similarity of energy saving trend between DVFS and undervolt-
ing, as shown in Equations (12) and (13), we only present results on undervolting).
For different benchmarks, we used the most efficient DVFS approaches we developed
in previous work: an adaptively aggressive energy efficient DVFS technique for NPB
benchmarks [Tan et al. 2013], an energy efficient high performance matrix multiplica-
tion [Tan et al. 2014], and energy efficient distributed dense matrix factorizations [Tan
and Chen 2015]. CPU DVFS was implemented via the CPUFreq infrastructure [cpu ]
that directly reads and writes CPU operating frequency system configuration files.

5.2.2. Fixed-Frequency Undervolting. For saving energy beyond the DVFS solutions, we
leveraged an energy saving undervolting approach for HPC systems [Tan et al. 2015],

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.



Scalable Energy Efficiency with Resilience for HPC Systems: A Quantitative Methodology A:17

Table II. Hardware Configuration for All Experiments.

Cluster HPCL ARC
System Size

8 108
(# of Nodes)

Processor
2×Quad-core 2×8-core

AMD Opteron 2380 AMD Opteron 6128
CPU Freq. 0.8, 1.3, 1.8, 2.5 GHz 0.8, 1.0, 1.2, 1.5, 2.0 GHz

CPU Voltage 1.300, 1.100, 1.025, 0.850 V
N/A

(Undervolting) (Vh/Vl/Vsafe min/Vth)
Memory 8 GB RAM 32 GB RAM

Cache
128 KB L1, 512 KB L2, 128 KB L1, 512 KB L2,

6 MB L3 12 MB L3
Network 1 GB/s Ethernet 40 GB/s InfiniBand

OS
CentOS 6.2, 64-bit CentOS 5.7, 64-bit
Linux kernel 2.6.32 Linux kernel 2.6.32

Power Meter PowerPack Watts up? PRO

Table III. Northbridge/CPU FID/VID Control Register Bit Format.

Bits Description
63:32, 24:23, 21:19 Reserved

32:25 Northbridge Voltage ID, Read-Write
22 Northbridge Divisor ID, Read-Write

18:16 P-state ID, Read-Write
15:9 Core Voltage ID, Read-Write
8:6 Core Divisor ID, Read-Write
5:0 Core Frequency ID, Read-Write

where undervolting is conducted for a production cluster by modifying corresponding
bits of the northbridge/CPU frequency and voltage ID control register. The register
values consist of 64 bits in total, where different bit fragments manage various system
power state variables individually. Table III summarizes the register bit format [AMD
2012] for processors on the HPCL cluster: The Core Voltage/Frequency/Divisor ID
fragments (CoreVid/CoreFid/CoreDid) are used for undervolting. As a general-purpose
software level undervolting approach, the interested bits of register values are altered
using the Model Specific Register (MSR) interface [msr ]. Next we illustrate how to ex-
tract various ID fragments from specific register values and modify voltage/frequency
of cores using corresponding formula. For instance, we input the register with a hex-
adecimal value 0x30002809 via MSR. From the bit format, we can extract the Core
Voltage/Frequency/Divisor ID as 20, 9, and 0 respectively. Moreover, from [AMD 2012],
we have the following architecture-dependent formulae to calculate voltage/frequency:

frequency = 100MHz× (CoreFid + 16)/2CoreDid (16)

voltage = 1.550V − 0.0125V × CoreVid (17)

Given the register value 0x30002809, it is easy to calculate voltage/frequency to be
1.300 V and 2.5 GHz individually using the above equations. Using MSR, undervolting
is implemented by assigning the register with desirable voltage values at the voltage
bits. The frequency bits are unchanged to ensure fixed frequency during undervolting.

5.2.3. Failure Emulation by Injecting Hard and Soft Errors. As stated, due to hardware con-
straints of production processors, voltage cannot be scaled to the levels where ob-
servable errors occur. Alternatively, we emulate the real error cases as follows: Using
the failure rates at error-triggering voltage levels calculated by Equation (1) (demon-
strated [Tan et al. 2015] to be highly accurate compared to real failure rates [Bacha
and Teodorescu 2013]), we inject hard and soft errors respectively at the calculated
failure rates to emulate the incurred failures in HPC runs due to undervolting to such
voltage levels. Specifically, hard error injection is performed by manually killing an

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.



A:18 L. Tan et al.

arbitrary MPI processes during program execution at OS level (for general HPC ap-
plications). Soft error injection is however conducted at library level (for matrix-based
HPC applications): We randomly select some matrix elements using a random number
generator and modify values of the matrix elements to erroneous ones (soft error de-
tection is done within the error checking module of matrix benchmarks). Without loss
of generality, we adopt the general-purpose widely used resilience technique Check-
point/Restart (C/R) [Duell 2003] to detect (hard errors only) and recover from the in-
troduced failures (note that C/R is not the optimal resilience technique to protect from
soft errors, and here we employ C/R to simplify the evaluation of the proposed models).

5.2.4. Power/Energy Measurement and Estimation. Limited extent of undervolting for pro-
duction machines also prevents us from measuring power/energy directly for the case
that real errors are observed from undervolting. Nevertheless, the emulated scaling
undervolting scheme adopted from [Tan et al. 2015] allows us to utilize measured
power costs at Vl (the lowest undervolted voltage for production machines) to esti-
mate the power costs at Vsafe min (the lowest undervolted voltage for pre-production
machines) based on the following power models, which enables our approach to work
for general production machines. The three power models represent the baseline power
costs at the highest frequency and voltage, the power costs at the highest frequency
and the lowest voltage, and the power costs at the lowest frequency and voltage indi-
vidually. Since our approach cannot undervolt to Vsafe min, Pm and Pl are empirically
not measurable. We manage to obtain Pm and Pl as follows: Substituting Vsafe min in
Pm and Pl with Vl, we measure the power costs P ′

m and P ′

l at Vl and Ph to solve con-
stants AC ′, Isub, and Pc using the three formula. With AC ′, Isub, and Pc known, we can
calculate Pm and Pl using Vsafe min in the formula of Pm and Pl. Given the power costs
at Vsafe min, we can further calculate the energy costs when undervolting to Vsafe min.











Ph = AC ′fhV
2
h + IsubVh + Pc

Pm = AC ′fhV
2
safe min + IsubVsafe min + Pc

Pl = AC ′flV
2
safe min + IsubVsafe min + Pc

(18)

5.2.5. Input Selection and Model Parameter Derivation. For extrapolating the power costs
and resilience-aware speedup of HPC runs using the proposed power/speedup models,
we need to derive the values of parameters in Equations (4) and (7). We also need to
find out if the model parameters vary across different tests (i.e., with different problem
sizes), since the parameter variation can greatly impact the accuracy of our models.

Table IV. Architecture-Dependent Power Constants in Our Models on HPCL/ARC Clusters.

Cluster Single Core Peak Power Q Non-CPU Power C CPU Idle Power Fraction µ
HPCL 11.49 Watts 107.02 Watts 0.63
ARC N/A N/A 0.75*

We first determine some application/architecture-dependent constants in our mod-
els. Power constants Q, C, and µ were straightforward to obtain from empirical power
measurement. Table IV lists measured values of the constants for the two clusters,
where only HPCL was equipped with PowerPack that is able to isolate CPU power
consumption from other components. We obtain the power costs of a single core at its
peak performance Q by dividing the total CPU power costs with the CPU counts in a
node. Note that for ARC we report the system idle power fraction instead of CPU. This
number is slightly larger than the CPU idle power fraction for HPCL, which is rea-
sonable since the power costs of other components barely vary between busy and idle
modes [Ge et al. 2010]. Similarly, for a given C/R technique and an HPC application,
we can empirically profile the checkpoint overhead C and the restart overhead R.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.



Scalable Energy Efficiency with Resilience for HPC Systems: A Quantitative Methodology A:19

Table V. Calculated Failure Rates at Different Supply Voltage on the HPCL
Cluster (Unit: Voltage (V) and Failure Rate (errors/minute)).

Supply Voltage Calculated Failure Rate Error Injection Needed?
1.300 3.649× 10−6 No
1.250 4.713× 10−5 No
1.200 5.437× 10−4 No
1.150 1.700× 10−2 No
1.100 0.397 Yes
1.050 2.717 Yes

For each supply voltage Vdd level, we can easily solve the failure rate λ under the
given voltage using Equation (1). Table V shows the calculated failure rates at different
voltage levels. Note that we refer to failure rates reported in [Bacha and Teodorescu
2013] when estimating the failure rates in our experiments, as their work was able
to undervolt to the error-triggering voltage levels. Since the non-test HPC runs in our
experiments finish in 71 - 266 seconds, at all voltage levels except for 1.100 V and 1.050
V, error injection is not needed according to the calculated failure rates.

Table VI. Communication Time to Total Time Ratio for All Benchmarks with Different Number of Cores and Problem
Sizes on the ARC Cluster (Unit: κ(N,P ) (second) and T (second)).

κ(N,P ), T,
κ(N,P )

T
Run 1 Run 2 Run 3

MG
P=256, N=Class A P=256, N=Class B P=256, N=Class C
0.03, 0.05, 55.6% 0.12, 0.22, 52.7% 1.36, 2.32, 58.6%

CG
P=64, N=Class A P=64, N=Class B P=64, N=Class C
0.06, 0.12, 52.2% 2.33, 5.69, 41.0% 5.64, 14.78, 38.2%

FT
P=64, N=Class A P=64, N=Class B P=64, N=Class C
0.11, 0.33, 32.8% 1.47, 4.20, 35.1% 4.60, 16.57, 27.8%

EP
P=16, N=Class A P=64, N=Class B P=256, N=Class C
0.30, 2.33, 13.0% 0.36, 2.70, 13.4% 0.37, 2.70, 13.5%

MatMul
P=64, N=10k×10k P=16, N=20k×20k P=256, N=30k×30k
1.34, 6.12, 22.0% 33.87, 160.37, 21.1% 11.35, 41.44, 27.4%

Chol
P=64, N=5k×5k P=64, N=15k×15k P=64, N=25k×25k

0.16, 0.983, 16.3% 1.18, 5.79, 20.4% 4.39, 23.25, 18.9%

LU
P=64, N=10k×10k P=64, N=20k×20k P=64, N=30k×30k
0.77, 5.68, 13.5% 7.40, 45.94, 16.1% 21.33, 182.34, 11.7%

QR
P=64, N=10k×10k P=64, N=20k×20k P=64, N=30k×30k
0.85, 7.59, 11.2% 8.77, 60.90, 14.4% 40.25, 236.76, 17.0%

LULESH
P=8, N=64 P=64, N=512 P=216, N=1728

1.66, 320.09, 0.52% 4.12, 328.96, 1.25% 12.39, 336.90, 3.68%

AMG
P=96, N=90×90×90 P=49152, N=150×150×150 P=960k, N=360×360×1080
5.14, 107.33, 4.79% N/A N/A

Recall that when developing power and performance models with the consideration
of communication, we rely on an assumption that the ratio between communication
time κ(N,P ) and the total execution time T barely varies with the variation of prob-

lem size N and number of cores P . For each benchmark, κ(N,P )
T

was collected from
multiple test runs (we assume that for each test run and experimental run, N and P
are fixed during the execution). We selected different test runs by altering both N and
P to ensure cross input validation. For NPB benchmarks, we used input size Class
A, B, and C and changed number of cores used from 16, 64, to 256 (for LULESH,
due to the application characteristics that P must be a cube of an integer, P ranges
from 8, 64, 216). For matrix benchmarks, we chose global matrix sizes 10000×10000,
20000×20000, and 30000×30000. Table VI presents the values of the communication
time versus the total execution time for all benchmarks with different N and P , except
for AMG where increasing N and P exceeds available resources on our experimental

platform. We can observe that for matrix benchmarks, κ(N,P )
T

has minor variation as

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.



A:20 L. Tan et al.

the global matrix size N increases; for NPB benchmarks MG, CG, FT, and EP, there

also exists such variability on κ(N,P )
T

for CG and FT, although it is stable for MG and
EP. We calculate the percentage of parallelized code α (see the last column in Table I)
in accordance with Equations (2) and (3), where the empirical speedup, P , κ(N,P ), and
T values were obtained in advance from dynamic profiling of such test runs as well.

5.3. Validation of Modeling Accuracy

Using the above fine-grained tuned inputs and parameters, we can thus predict power
costs and performance of HPC runs with our extended Amdahl’s Law and Karp-Flatt
Metric built in Section 4. Moreover, for validating the accuracy of our models, we next
make head-to-head comparison between the real measured data on our experimental
platform and the predicted data from the theoretical modeling, and calculate the mod-
eling accuracy in terms of average error rate. Note that the following presented power
and energy data are the total values for the whole HPC system evaluated.

  0

  0.2

  0.4

  0.6

  0.8

  1

  1.2

MG CG FT EP MatMul Chol LU QR LULESH AMG

N
or

m
al

iz
ed

 V
al

ue
s

Extended Amdahl’s Law for Power Efficiency for Different Benchmarks

Measured
Predicted

Fig. 8. Measured and Predicted System Power Consumption for HPC Runs on the HPCL Cluster.

5.3.1. Extended Amdahl’s Law for Power Efficiency. Figure 8 shows the measured and pre-
dicted system power costs on HPCL for the ten benchmarks to evaluate the accuracy
of our extended Amdahl’s Law for power efficiency, i.e., Equation (4). Given all param-
eters in Equation (4) using the above measurement and derivation methods, we can
easily extrapolate power costs for various HPC runs. As shown in Figure 8, the pre-
dicted data matches well with the measured data with an average error rate of 7.7% for
three runs of each benchmark with different N and P . Generally, the errors from the

power extrapolation for all benchmarks result from the variability of the term κ(N,P )
T

(see Table VI): For applications with stable κ(N,P )
T

, the average error rate of the ex-

trapolation is small (e.g., EP and LULESH), while for application having κ(N,P )
T

with
minor variation, the extrapolation errors are more manifested (e.g., CG and QR).

5.3.2. Extended Karp-Flatt Metric for Speedup with Resilience. We also evaluated the ac-
curacy of our extended Karp-Flatt speedup formula for the HPC runs with failures,
equipped with the C/R technique. Figure 9 (we averaged the results from the two clus-
ters) compares the measured and predicted speedup for the benchmarks running in
such a scenario, based on Equation (7). From Figure 9, we can see that compared to
our extended power model, our extended speedup model for HPC runs with failures
and resilience techniques undergoes a higher average error rate (9.4%) against the

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.



Scalable Energy Efficiency with Resilience for HPC Systems: A Quantitative Methodology A:21

  0

  0.2

  0.4

  0.6

  0.8

  1

  1.2

MG CG FT EP MatMul Chol LU QR LULESH AMG

N
or

m
al

iz
ed

 V
al

ue
s

Extended Karp−Flatt Metric for Speedup with Resilience for Different Benchmarks

Measured
Predicted

Fig. 9. Measured and Predicted System Speedup with Resilience for HPC Runs on the HPCL/ARC Clusters.

measurement. In addition to the empirical minor variation of assumed fixed κ(N,P )
T

,
another reason for the errors between the measured and predicted speedup comes from
the failure distribution formula we adopt. As mentioned in [Daly 2006], the simplified
solve time of applications with C/R in the presence of failures is an approximation
to the solution, which may incur errors in the extrapolation. We notice that for ma-
trix benchmarks (MatMul/Chol/LU/QR) and AMG, the predicted results have the most
margins with the measured data, which indicates that our speedup model may be less
accurate for applications with comparatively large-size checkpoints (i.e., C is large).
Refining our model for this type of HPC applications may achieve higher accuracy.

5.4. Effects on Energy Efficiency from Typical HPC Parameters

Next we evaluate several critical HPC parameters discussed in Section 4.6 that have
potentially significant impacts on the integrated energy efficiency in various HPC sce-
narios. We aim to empirically determine if there exist the optimal values of these pa-
rameters for the highest energy efficiency with resilience to validate our models.

5.4.1. Impacts from Checkpoint Intervals. According to the discussion in Section 4.6.1, we
know that there exists an optimal checkpoint interval τopt for achieving the highest
performance, defined by Daly’s two sets of equations individually. One applies for the
nominal voltage case and the other works for the undervolting case. For a given failure
rate λ and a certain C/R technique (checkpoint overhead C and restart overhead R

are known), τopt is calculated via τopt =
√

2C( 1
λ
+R) for the nominal voltage, and is

calculated via Equation (14) for the reduced voltage by undervolting. Figure 10 shows
the normalized system energy efficiency for a given λ (voltage is fixed) and different
τ for MG and LULESH. We select to present the data of the two benchmarks because
they have similar solve time according to our tests. All other benchmarks follow a
similar pattern as the two. We injected errors in the failure rate at V ′, Vsafe min < V ′ <
Vl (see Table II for core voltage specification), calculated to be 1.057 errors/minute per
Equation (1). We also highlight in the figure the calculated optimal checkpoint interval
τopt. From this figure, we can see that the optimal energy efficient τ slightly differs
from the theoretical τopt. Note that in this case the optimal energy efficient τ is also
the optimal τ for the highest performance, since the power savings do not change by
using a fixed voltage for the same λ and thus only performance affects energy efficiency.

Moreover, we can see from Figure 10 that there exists the following fluctuation pat-
tern: The energy efficiency drops greatly if checkpointing and restarting was applied

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.



A:22 L. Tan et al.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 10 20 30 40 50 60 70 80 90 100

N
or

m
al

iz
ed

 E
ne

rg
y 

E
ffi

ci
en

cy
 (

P
er

f/W
at

t)

Checkpoint Interval (second)

MG
LULESH

MGopt
LULESHopt

Fig. 10. Energy Efficiency (MG and LULESH) for Different Checkpoint Intervals on the HPCL Cluster.

(37.4% and 30.9% degradation for MG and LULESH respectively). Note that Figure 4
does not show a reference point where the normalized energy efficiency is 1 as in Fig-
ure 10. Since we injected a fixed number of errors, the restart overhead was also fixed.
The energy efficiency increases if less checkpoints were used (i.e., longer checkpoint
intervals), which matches well with Figure 4. We injected an error at the time around
the 55th second (the execution time of MG and LULESH runs is around 100 seconds),
the energy efficiency quickly decreases for checkpoint intervals larger than this time
period (not shown in Figure 4), since the re-execution of the program is necessary due
to no checkpoints available (the first checkpoint has not made yet), which greatly in-
creases the total execution time. Lastly, the energy efficiency barely changes for larger
checkpoint intervals due to the same amount of checkpoints (1 in this case).

  0

  0.2

  0.4

  0.6

  0.8

  1

  1.2

  1.4

  1.6

  1.8

MG CG FT EP MatMul Chol LU QR LULESH AMG

N
or

m
al

iz
ed

 E
ne

rg
y 

E
ffi

ci
en

cy
 (

P
er

f/W
at

t)

Benchmarks with Different Supply Voltage

1.300 V
1.250 V
1.200 V
1.150 V
1.100 V
1.050 V

Fig. 11. Energy Efficiency for HPC Runs with Different Supply Voltage on the HPCL Cluster.

5.4.2. Impacts from Supply Voltage. As previously discussed in Section 4.6.2, for the sce-
nario of undervolting in the presence of failures, theoretically there exists an optimal
supply voltage value that balances the positive energy saving effects from the power

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.



Scalable Energy Efficiency with Resilience for HPC Systems: A Quantitative Methodology A:23

savings and the negative energy saving effects from the C/R overhead. The highest
energy efficiency is fulfilled at the optimal voltage. Figure 11 shows the experimen-
tal results on the normalized system energy efficiency under different supply voltage
values for all benchmarks. The baseline case is the energy efficiency at the nominal
voltage, 1.300 V in our experiments. We observe several findings from the figure: (a)
For all benchmarks, the energy efficiency is improved by 1% - 9% when no errors were
injected and dramatically degrades at the lowest voltage, i.e., 1.050 V. This is because
the failure rates are exponentially raised as the voltage decreases per Equation (1),
and at the lowest voltage failure rates are increased to values much larger than 1
error/minute (Table V lists all used failure rates at different voltage), (b) the optimal
voltage for all benchmarks to achieve the highest energy efficiency is 1.150 V, although
for some benchmarks (MG, CG, and LULESH), energy can be saved at 1.100 V as well.
This is because 1.150 V is in our experiments the lowest voltage that incurs negligible
increase in the number of failures during the HPC runs (no error injection is needed
per the calculated failure rates and length of runs), and (c) for benchmarks with higher
checkpoint and restart overhead C and R, such as MatMul, Chol, LU, QR, and AMG,
no energy savings can be achieved from undervolting to Vl or lower compared to the
baseline; for benchmarks with lightweight C and R, the energy efficiency at different
voltage does not vary much (the highest improvement overall from undervolting is
9%), except for the lowest voltage 1.050 V that incurs significantly more failures. This
indicates there exists comparable competition between the positive effects from power
savings via voltage reduction, and the negative effects from the extra time costs on de-
tecting and recovering from failures. The experimental results are very constructive to
find the optimal voltage for the highest energy efficiency in the HPC environment. In
general, selecting the smallest voltage that does not incur significantly more observ-
able failures during an HPC run should fulfill the optimal energy efficiency.

6. CONCLUSIONS

Future HPC systems are required to be encompassing over performance, energy effi-
ciency, and resilience, three crucial dimensions of great concerns by the HPC commu-
nity nowadays. Enhancing one dimension of the three concerns does not necessarily
improve the others, since the variation of some joint HPC parameters can be beneficial
to one dimension, while be harmful to the others. There exists a lack of efforts that
investigate the entangled effects among the three concerns, between energy efficiency
and resilience in particular. In this paper, we quantify the interplay between energy
efficiency and resilience for scalable HPC systems both theoretically and empirically.
We propose comprehensive analytical models of the integrated energy efficiency with
resilience, by incorporating power and resilience into Amdahl’s Law and Karp-Flatt
Metric, two classic HPC performance metrics. We also discuss the energy saving effects
from typical HPC parameters that have inherent causal relationship with each other.
Experimental results on two power-aware HPC clusters indicate that our models for
scalable energy efficiency with resilience are accurate to capture the conflicting effects
from typical HPC parameters. Our showcases on a wide spectrum of HPC benchmarks
also demonstrate that it is feasible using our models to find the balanced HPC config-
uration for the highest integrated energy efficiency with resilience. We plan to discuss
more types of hardware components and resilience techniques, and evaluate on larger
scale HPC systems to further validate the capability of our models in the future.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for their insightful comments and valuable sug-
gestions, Prof. Rong Ge from Clemson University and Prof. Frank Mueller from North Carolina State Univer-
sity for providing the clusters, and in particular Prof. Rong Ge for granting the permission to undervolting.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.



A:24 L. Tan et al.

REFERENCES

CPUFreq - CPU Frequency Scaling. https://wiki.archlinux.org/index.php/CPU frequency scaling.

Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics (LULESH).
https://codesign.llnl.gov/lulesh.php.

Model-Specific Register (MSR) Tools Project. https://01.org/msr-tools.

NAS Parallel Benchmarks (NPB). http://www.nas.nasa.gov/publications/npb.html.

A Parallel Algebraic Multigrid (AMG) Solver for Linear Systems. https://www.nersc.gov/users/computational-
systems/cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/amg/.

Watts up? Meters. https://www.wattsupmeters.com/.

A. R. Alameldeen, I. Wagner, Z. Chishti, W. Wu, C. Wilkerson, and S.-L. Lu. 2011. Energy-efficient cache
design using variable-strength error-correcting codes. In Proc. ISCA. 461–472.

P. Alonso, M. F. Dolz, F. D. Igual, R. Mayo, and E. S. Quintana-Ortı́. 2012. Reducing energy consumption of
dense linear algebra operations on hybrid CPU-GPU platforms. In Proc. ISPA. 56–62.

AMD. 2012. BIOS and Kernel Developers Guide (BKDG) For AMD Family 10h Processors.
http://developer.amd.com/wordpress/media/2012/10/31116.pdf.

G. M Amdahl. 1967. Validity of the single-processor approach to achieving large-scale computing capabilities.
In Proc. AFIPS Spring Joint Computer Conference. 483–485.

A. Bacha and R. Teodorescu. 2013. Dynamic reduction of voltage margins by leveraging on-chip ECC in
Itanium II processors. In Proc. ISCA. 297–307.

G. Ballard, J. Demmel, Olga Holtz, Benjamin Lipshitz, and Oded Schwartz. 2012. Communication-optimal
parallel algorithm for strassen’s matrix multiplication. In Proc. SPAA. 193–204.

K. D. Bois, T. Schaeps, S. Polfliet, F. Ryckbosch, and L. Eeckhout. 2011. SWEEP: Evaluating computer
system energy efficiency using synthetic workloads. In Proc. HiPEAC. 159–166.

A. S. Cassidy and A. G. Andreou. 2012. Beyond Amdahl’s Law: An objective function that links multiproces-
sor performance gains to delay and energy. IEEE Trans. Computers 61, 8 (Aug. 2012), 1110–1126.

E. Chan, R. van de Geijn, W. Gropp, and R. Thakur. 2006. Collective communication on architectures that
support simultaneous communication over multiple links. In Proc. PPoPP. 2–11.

D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subramonian, and T. von Eicken.
1993. LogP: Towards a realistic model of parallel computation. In Proc. PPoPP. 1–12.

J. T. Daly. 2006. A higher order estimate of the optimum checkpoint interval for restart dumps. Future
Generation Computer Systems 22, 3 (Feb. 2006), 303–312.

J. Duell. 2003. The design and implementation of Berkeley lab’s Linux Checkpoint/Restart. Technical Report.
Lawrence Berkeley National Laboratory.

H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger. 2011. Dark silicon and the end
of multicore scaling. In Proc. ISCA. 365–376.

R. Ge and K. W. Cameron. 2007. Power-aware speedup. In Proc. IPDPS. 1–10.

R. Ge, X. Feng, S. Song, H.-C. Chang, D. Li, and K. W. Cameron. 2010. PowerPack: Energy profiling and
analysis of high-performance systems and applications. IEEE Trans. Parallel Distrib. Syst. 21, 5 (May
2010), 658–671.

H. Jin and R. F. Van der Wijngaart. 2004. Performance characteristics of the multi-zone NAS parallel bench-
marks. In Proc. IPDPS.

A. H. Karp and H. P. Flatt. 1990. Measuring parallel processor performance. Commun. ACM 33, 5 (May
1990), 539–543.

H. Kaul, M. Anders, S. Hsu, A. Agarwal, R. Krishnamurthy, and S. Borkar. 2012. Near-Threshold Voltage
(NTV) Design – Opportunities and Challenges. In Proc. DAC. 1153–1158.

I. A. Lee, C. E. Leiserson, T. B. Schardl, J. Sukha, and Z. Zhang. 2013. On-the-fly pipeline parallelism. In
Proc. SPAA. 140–151.

J. Li and J. F. Martı́nez. 2005. Power-performance considerations of parallel computing on chip multiproces-
sors. ACM Transactions on Architecture and Code Optimization 2, 4 (Dec. 2005), 397–422.

H. Mair, A. Wang, G. Gammie, D. Scott, P. Royannez, S. Gururajarao, M. Chau, R. Lagerquist, L. Ho, M.
Basude, N. Culp, A. Sadate, D. Wilson, F. Dahan, J. Song, B. Carlson, and U. Ko. 2007. A 65-nm mo-
bile multimedia applications processor with an adaptive power management scheme to compensate for
variations. In Proc. VLSI Symposium. 224–225.

E. Meneses, O. Sarood, and L. V. Kalé. 2012. Assessing energy efficiency of fault eolerance protocols for HPC
systems. In Proc. SBACPAD. 35–42.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.



Scalable Energy Efficiency with Resilience for HPC Systems: A Quantitative Methodology A:25

A. Miyoshi, C. Lefurgy, E. V. Hensbergen, R. Rajamony, and R. Rajkumar. 2002. Critical power slope: Un-
derstanding the runtime effects of frequency scaling. In Proc. ICS. 35–44.

A. Rafiev, A. Iliasov, A. Romanovsky, A. Mokhov, F. Xia, and A. Yakovlev. 2014. Studying the interplay of
concurrency, performance, energy and reliability with ArchOn – an architecture-open resource-driven
cross-layer modelling framework. In Proc. ACSD. 122–131.

E. Rotem, R. Ginosar, U. C. Weiser, and A. Mendelson. 2014. Energy aware race to halt: A down to EARtH
approach for platform energy management. IEEE Computer Architecture Letters 13, 1 (Jan. 2014), 25–
28.

B. Rountree, D. K. Lowenthal, B. R. de Supinski, M. Schulz, V. W. Freeh, and T. Bletsch. 2009. Adagio:
Making DVS practical for complex HPC applications. In Proc. ICS. 460–469.

B. Rountree, D. K. Lowenthal, S. Funk, V. W. Freeh, B. R. de Supinski, and M. Schulz. 2007. Bounding
energy consumption in large-scale MPI programs. In Proc. SC. 1–9.

S. Rusu, S. Tam, H. Muljono, J. Stinson, D. Ayers, J. Chang, R. Varada, M. Ratta, S. Kottapalli, and S. Vora.
2010. A 45 nm 8-Core Enterprise Xeon R© Processor. IEEE Journal of Solid-State Circuits 45, 1 (Jan.
2010), 7–14.

E. Solomonik, A. Bhatele, and J. Demmel. 2011. Improving communication performance in dense linear
algebra via topology aware collectives. In Proc. SC. 77.

S. Song, C.-Y. Su, R. Ge, A. Vishnu, and K. W. Cameron. 2011. Iso-Energy-Efficiency: An approach to power-
constrained parallel computation. In Proc. IPDPS. 128–139.

M. A. Suleman, O. Mutlu, M. K. Qureshi, and Y. N. Patt. 2009. Accelerating critical section execution with
asymmetric multi-core architectures. In Proc. ASPLOS. 253–264.

L. Tan, L. Chen, Z. Chen, Z. Zong, R. Ge, and D. Li. 2013. Improving performance and energy efficiency of
matrix multiplication via pipeline broadcast. In Proc. CLUSTER. 1–5.

L. Tan, L. Chen, Z. Chen, Z. Zong, R. Ge, and D. Li. 2014. HP-DAEMON: High Performance Distributed
adaptive energy-efficient matrix-multiplication. In Proc. ICCS. 599–613.

L. Tan and Z. Chen. 2015. Slow down or halt: Saving the optimal energy for scalable HPC systems. In Proc.
ICPE. 241–244.

L. Tan, Z. Chen, Z. Zong, R. Ge, and D. Li. 2013. A2E: Adaptively aggressive energy efficient DVFS schedul-
ing for data intensive applications. In Proc. IPCCC. 1–10.

L. Tan, S. R. Kothapalli, L. Chen, O. Hussaini, R. Bissiri, and Z. Chen. 2014. A survey of power and energy
efficient techniques for high performance numerical linear algebra operations. Parallel Comput. 40, 10
(Dec. 2014), 559–573.

L. Tan, S. L. Song, P. Wu, Z. Chen, R. Ge, and D. J. Kerbyson. 2015. Investigating the interplay between
energy efficiency and resilience in high performance computing. In Proc. IPDPS. 786–796.

Y. Taur, X. Liang, W. Wang, and H. Lu. 2004. A continuous, analytic drain-current model for DG MOSFETs.
IEEE Electron Device Letters 25, 2 (Feb. 2004), 107–109.

Z. Wang. 2009. Reliability speedup: An effective metric for parallel application with checkpointing. In Proc.
PDCAT. 247–254.

M. Weiser, B. Welch, A. Demers, and S. Shenker. 1994. Scheduling for reduced CPU energy. In Proc. OSDI.
2.

C. Wilkerson, H. Gao, A. R. Alameldeen, Z. Chishti, M. Khellah, and S.-L. Lu. 2008. Trading off cache
capacity for reliability to enable low voltage operation. In Proc. ISCA. 203–214.

D. H. Woo and H.-H. S. Lee. 2008. Extending Amdahl’s Law for energy-efficient computing in the many-core
era. Computer 41, 12 (Dec. 2008), 24–31.

P. Wu and Z. Chen. 2014. FT-ScaLAPACK: Correcting soft errors on-line for ScaLAPACK Cholesky, QR, and
LU factorization routines. In Proc. HPDC. 49–60.

X. Wu, V. Deshpande, and F. Mueller. 2012. ScalaBenchGen: Auto-generation of communication benchmarks
traces. In Proc. IPDPS. 1250–1260.

Y. Yetim, S. Malik, and M. Martonosi. 2012. EPROF: An energy/performance/reliability optimization frame-
work for streaming applications. In Proc. ASP-DAC. 769–774.

L. Yu, D. Li, S. Mittal, and J. S. Vetter. 2014. Quantitatively modeling application resilience with the data
vulnerability factor. In Proc. SC. 695–706.

Z. Zheng and Z. Lan. 2009. Reliability-aware scalability models for high performance computing. In Proc.
CLUSTER. 1–9.

D. Zhu, R. Melhem, and D. Mossé. 2004. The effects of energy management on reliability in real-time em-
bedded systems. In Proc. ICCAD. 35–40.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.


