
TX: Algorithmic Energy Saving for 

Distributed Dense Matrix Factorizations

ScalA’14, co-located with SC’14, New Orleans, LA, USA
November 17, 2014

Li Tan and Zizhong Chen

University of California, Riverside



Power and energy consumption of high 
performance computing is a growing severity ��������

operating costs and system reliability.

Power Management inHPC via DVFS

Dynamic Voltage and Frequency Scaling (DVFS)

voltage/frequency ↓ �������� power ↓ �������� energy efficiency

Strategically switch processors to low-power states 
when the peak processor performance is unnecessary

Slack: communication delay, load imbalance, etc.



Basics of DVFS

A runtime technique that is able to switch operating 
frequency and supply voltage of power-scalable
hardware components (CPU, GPU, memory, etc.) to 
different levels per workload characteristics to energy↓

Effectiveness of DVFS Approaches

different levels per workload characteristics to energy↓

In this Work ��������CPU DVFS

Various handy DVFS interfaces: CPUFreq

CPU energy costs dominate the total system energy 
consumption of a HPC system without accelerators



Two Classic Energy Saving Solutions



OS Level Solutions

Working aside running applications and thus requiring 
no application-specific knowledge and no source mod.

High generality but less speciality

Making online energy saving decisions via dynamic 

Limitations of Existing Solutions

Making online energy saving decisions via dynamic 
monitoring and analysis on workload characteristics

Online workload prediction can be inaccurate

Parallel Cholesky, LU, and QR Factorizations

Linear Algebra lib w/ variable execution characteristics

The remaining unfinished global matrix shrinks in runs



OS Level Solutions: Effectiveness

Rely on workload prediction to calculate the slack

A simple assumption that task behavior is identical every 
time a task is executed in an iterative workload

Can be defective for parallel matrix factorizations

Limitations of Existing Solutions (Cont.)

Can be defective for parallel matrix factorizations

Length variation of iterations of the core loop makes the 
prediction inaccurate�������� invalidate potential energy savings

OS Level Solutions: Completeness

Work when tasks are being executed

Untapped energy savings for durations when not all 
tasks are launched and finished due to dependencies



Our Approach

Library Level RaceRace--toto--halthalt DVFS Scheduling

Task Dependency Set (TDS) analysis based on 
algorithmic characteristics�������� trading off partial partial 
generalitygenerality for higher energy efficiencyhigher energy efficiency

Critical Path (CP) detection and CP-aware slack Critical Path (CP) detection and CP-aware slack 
analysis/reclamation are avoided

The idea is intended for any task-parallel models 
where data flow analysis can be applied

The use of TDS analysis as a compiler technique 
allows possible extension to a general compiler-
based approach based on static analysis



Cholesky, LU, and QR Factorizations

Solving Systems of Linear Equations Ax = b

Cholesky: symmetric positive definite matrices

LU/QR: any general M x N matrices

Solve LLTx = b, PLUx = b, QRx = b easilySolve LL x = b, PLUx = b, QRx = b easily

Stepwise LU Factorization without Pivoting



Task Dependency Set and Critical Path

Two TDS for Each Task t: TDSin(t) and TDSout(t)

TDS is statically generated using algorithmic charac-
teristics of parallel Cholesky/LU/QR factorization

TDS is dynamically maintained using data dependency 
information among parallel tasksinformation among parallel tasks

CP: a particular task trace with the total slack of 0

CP pinpoints potential energy savings in terms of slack

CP can be effective to identify computation slack�������� the 
essence of possible extra energy savings

CP can be generated by many means: Here we 
produce CP via static TDS analysis





CP-aware and TX Approaches

Task
CP-aware

(Slack Reclamation)

TX

(Race-to-halt)

Comp. Tasks

on the CP
highest highest

Comp. Tasks

off the CP

reduce frequency to 

dilate task into slack

run-highest

idle-lowest

Comm. Tasks

on/off the CP
lowest lowest

Timing of DVFS Scheduling
CP-aware: respects exec. info. of previous iterations

TX: respects dependency info. of parallel tasks



CP-aware and TX Approaches (Cont.)



State-of-the-art OS Level Solutions and Our TX

FermataFermata : OS level, only handles comm. tasks

AdagioAdagio : OS level, handles comp. tasks based on CP-
aware workload prediction. FermataFermata is incorporated

Implementation

CPUSpeedCPUSpeed : OS level, based on CPU utilization

SC_libSC_lib : Library level, only handles comm. tasks

TXTX : Library level, handle comp. tasks based on race-
to-halt TDS analysis. SC_libSC_lib is incorporated

CP_theoCP_theo (power only): Library level, theoretical CP-
aware slack reclamation of AdagioAdagio



Hardware Configuration

Cluster HPCL (Energy + Perf.) ARC (Power + Perf.)

System Size 8 108

Processor
2 x Quad-core

AMD Opteron 2380

2 x 8-core

AMD Opteron 6128AMD Opteron 2380 AMD Opteron 6128

CPU Frequency 0.8, 1.3, 1.8, 2.5 GHz 0.8, 1.0, 1.2, 1.5, 2.0 GHz

Memory 8 GB RAM 64 GB RAM

Network 1GB/s Ethernet 40GB/s Infiniband

OS
CentOS 6.2, 64-bit

Linux kernel 2.6.32

CentOS 5.7, 64-bit

Linux kernel 2.6.32

Power Meter PowerPack Watts up? PRO



Power Savings



Energy and Performance Efficiency



Library Level Race-to-halt DVFS Scheduling

TDS analysis based on algorithmic characteristics

Parallel Cholesky, LU, and QR factorizations

Compared to Application Level Solutions

Conclusions

Compared to Application Level Solutions

Restrict source modification and recompilation at 
library level, allowing replacement of the energy 
efficient libraries at link time �������� partial loss of generality

Compared to OS Level Solutions

Circumvent the defective workload prediction, and

save extra energy from possible load imbalance

�������� higher energy efficiency


