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Abstract—The pressing demands of improving energy effi-
ciency for high performance scientific computing have motivated
a large body of solutions using Dynamic Voltage and Frequency
Scaling (DVFS) that strategically switch processors to low-power
states, if the peak processor performance is unnecessary. Although
OS level solutions have demonstrated the effectiveness of saving
energy in a black-box fashion, for applications with variable
execution patterns, the optimal energy efficiency can be blundered
away due to defective prediction mechanism and untapped load
imbalance. In this paper, we propose TX, a library level race-to-

halt DVFS scheduling approach that analyzes Task Dependency
Set of each task in distributed Cholesky/LU/QR factorizations
to achieve substantial energy savings OS level solutions cannot
fulfill. Partially giving up the generality of OS level solutions
per requiring library level source modification, TX leverages
algorithmic characteristics of the applications to gain greater
energy savings. Experimental results on two clusters indicate that
TX can save up to 17.8% more energy than state-of-the-art OS
level solutions with negligible 3.5% on average performance loss.

I. INTRODUCTION

A. Motivation

With the growing prevalence of distributed-memory ar-
chitectures, high performance scientific computing has been
widely employed on supercomputers around the world ranked
by the TOP500 list [1]. Considering a crucial fact that the
costs of powering a supercomputer are rapidly increasing
nowadays due to expansion of its size and duration in use,
improving energy efficiency for high performance scientific
applications has been regarded as a pressing issue to solve. The
Green500 list [2], ranks the top 500 supercomputers worldwide
by performance-power ratio in six-month cycles. Root causes
of high energy consumption while achieving performance
efficiency have been widely studied. With different focuses
of studies, holistic hardware and software approaches for re-
ducing energy costs of running high performance scientific ap-
plications have been extensively proposed. Software-controlled
hardware solutions such as DVFS-directed (Dynamic Voltage
and Frequency Scaling) energy efficient scheduling are deemed
to be effective and lightweight [3] [4] [5] [6] [7] [8] [9].
Performance and memory constraints have been considered as
trade-offs for energy savings [10] [11] [12] [13] [14].

DVFS is a runtime technique that is able to switch operat-
ing voltage and working frequency of a hardware component
(CPU, GPU, memory, etc.) to different scales (also known
as gears [4]) per workload characteristics of applications to
gain energy savings dynamically. CPU and GPU are the most
widely applied hardware components for energy efficiency via
DVFS due to two reasons: (a) Compared to other components
such as memory, CPU/GPU DVFS is easier to implement [15],
and various handy DVFS APIs have been industrialized for

CPU/GPU DVFS such as CPUFreq kernel infrastructure [16]
incorporated into the Linux kernel and NVIDIA System Man-
agement Interface (nvidia-smi) [17] for NVIDIA GPUs; (b)
CPU energy costs dominate the total system energy consump-
tion [18] (CPU and GPU energy costs dominate if heteroge-
neous architectures are considered), and thus saving CPU and
GPU energy greatly improves energy efficiency of the whole
system. In this work, we focus on distributed-memory systems
without GPU. Energy saving opportunities can be exploited
by reducing CPU frequency and voltage for non-CPU-bound
operations such as large-message MPI communication, since
generally execution time of such operations barely increases
at a low-power state of CPU. Given the fact that energy
consumption equals product of average power consumption
and execution time, i.e., E = P × T , and the assumption
that dynamic power consumption by a CMOS-based processor
is proportional to product of working frequency and square
of supply voltage, i.e., P ∝ fV 2 [19] [20], energy savings
can be effectively achieved using DVFS-directed strategical
scheduling approaches with little performance loss.

High performance applications can be scheduled in the
unit of task, a set of operations that are functionally executed
as a whole. Different tasks within one process or across
processes may depend on each other due to intra-process and
inter-process data dependencies. Parallelism of task-parallel
applications can be characterized by graph representations
like Directed Acyclic Graph (DAG), where data dependencies
among parallel tasks are appropriately denoted by directed
edges. Effectiveness for analyzing parallelism using DAG is
greatly beneficial to achieving energy efficiency for high per-
formance applications. As typical task-parallel algorithms for
scientific computing, dense matrix factorizations in numerical
linear algebra have been widely adopted to solve systems
of linear equations. Empirically, as standard functionality,
routines of dense matrix factorizations are provided by various
software libraries of numerical linear algebra for distributed-
memory multicore architectures, such as ScaLAPACK [21]
and DPLASMA [22]. Therefore, saving energy for distributed
dense matrix factorizations contributes significantly to the
greenness of high performance scientific computing nowadays.

B. Limitations of Existing Solutions

Most existing energy saving solutions for high performance
applications are (combination of) variants of two classic ap-
proaches: (a) A Scheduled Communication (SC) approach [3]
[23] [8] that keeps low CPU performance during communica-
tion and high CPU performance during computation, as large-
message communication is not CPU-bound while computation
is, and (b) a Critical Path (CP) approach [8] [9] [24] that
guarantees that tasks on the CP run at the highest CPU



frequency while reduces frequency appropriately (i.e., without
further delay to incur performance loss) for tasks off the CP
to minimize slack. Per the operating layer, existing solutions
can be categorized into two types: OS level and application
level. In general, OS level solutions feature two properties:
(a) Working aside running applications and thus requiring no
application-specific knowledge and source modification, and
(b) making online energy efficient scheduling decisions via
dynamic monitoring and analysis. However, application level
solutions statically utilize application-specific knowledge to
perform specialized scheduling for saving energy, generally
with source modification and recompilation (i.e., generality)
trade-offs. Although with high generality, OS level solutions
may suffer from critical disadvantages below, and consequently
are far from a sound and complete solution, for applications
such as distributed dense matrix factorizations in particular:

EFFECTIVENESS. Although intended to be effective for gen-
eral applications, OS level approaches rely greatly on under-
lying workload prediction mechanism, due to lack of knowl-
edge of application characteristics. A prediction algorithm can
work well for a specific type of applications sharing similar
characteristics, but can be error-prone for other applications,
in particular, applications with variable (or even random)
execution patterns where the prediction mechanism performs
poorly. Algorithms presented in [23] [8] [9] predict execution
characteristics of upcoming intervals (i.e., a fixed time slice)
according to recent intervals. This prediction mechanism is
based on a simple assumption that task behavior is identical
every time a task is executed [9]. However, it can be defective
for applications with variable execution patterns, like matrix
factorizations, where the remaining unfinished matrices be-
come smaller as the factorizations proceed. In other words,
length variation of iterations of matrix factorizations can make
the prediction inaccurate, which invalidates potential energy
savings. Further, the OS level prediction can be costly and thus
energy savings are diminished. Given that OS level solutions
must predict execution details in the next interval using prior
execution information, execution history in some cases may
not necessarily be a reliable source for workload prediction,
e.g., for applications with fluctuating runtime patterns at the
beginning of the execution. As such, it can be time-consuming
to obtain an accurate prediction. Since during prediction no
energy savings can be fulfilled, considerable potential energy
savings can be wasted for a qualified but lengthy prediction.

COMPLETENESS. OS level solutions only work when tasks
like computation/communication are running, but energy sav-
ing opportunities are untapped during the time otherwise. Em-
pirically, even though load balancing techniques are leveraged,
due to data dependencies among tasks and load imbalance that
is not completely eliminated, not all tasks in different processes
across nodes can start to work and finish at the same time.
More energy can be saved for tasks waiting at the beginning of
an execution and the last task of one process finishing earlier
than that of other processes across nodes. Restricted by the
daemon-based nature of working aside real running tasks, OS
level solutions cannot attain energy savings for such durations.

C. Our Contributions

In this paper, we propose a library level race-to-halt
DVFS scheduling approach via Task Dependency Set (TDS)
analysis based on algorithmic characteristics, namely TX, to
save energy for task-parallel distributed-memory applications,

taking distributed dense matrix factorizations for example. The
idea of library level race-to-halt scheduling is intended for any
task-parallel programming models where data flow analysis
can be applied. In summary, the contributions are as follows:

• Compared to application level solutions, for widely
used software libraries such as numerical linear al-
gebra libraries, TX restricts source modification and
recompilation at library level, and replacement of the
energy efficient version of the libraries is allowed
at link time (i.e., with partial loss of generality).
No further source modification and recompilation are
needed for applications where the libraries are called;

• Compared to OS level solutions, TX is able to achieve
substantial energy savings for distributed dense ma-
trix factorizations (i.e., with higher energy efficiency),
since via algorithmic TDS analysis, TX circumvents
the defective prediction mechanism at OS level, and
manages to save more energy from the load imbalance;

• With negligible 3.5% on average performance loss, on
two clusters, TX is evaluated to achieve up to 33.8%
energy savings compared to original runs, and up to
17.8% and 15.9% more energy savings than state-of-
the-art OS level SC and CP approaches, respectively.

The rest content is organized below. Section 2 introduces
distributed dense matrix factorizations. We present TDS and
CP in section 3, and our TX approach in section 4. Implemen-
tation details and experimental results are provided in section
5. Section 6 discusses related work and section 7 concludes.

II. RELATED WORK

Numerous other types of energy efficient DVFS scheduling
algorithms exist, but only a few of them were designed for
high performance scientific computing. We detail them in the
categories OS-level, Application-level, Simulation-based.

OS-LEVEL. There exist a large body of OS level energy saving
approaches for high performance scientific applications. Lim et
al. [23] developed a runtime system that transparently reduces
CPU power for communication phases to minimize energy-
delay product. Ge et al. [11] proposed a runtime system and
an integrated performance model for achieving energy effi-
ciency and constraining performance loss through performance
modeling and prediction. Rountree et al. [8] developed a SC
approach that employs a linear programming solver collecting
communication trace and power characteristics for generating
a energy saving scheduling. Subsequent work [9] presented
another runtime system by improving and extending previous
classic scheduling algorithms and achieved significant energy
savings with extremely limited performance loss.

APPLICATION-LEVEL. Kappiah et al. [6] introduced a sched-
uled iteration method that computes the total slack per proces-
sor per timestep, then schedules CPU frequency for upcoming
timesteps. Liu et al. [25] presented a technique that tracks the
idle durations for one processor to wait for others to reach the
same program point, and utilizes this information to reduce
the idle time via DVFS without performance loss. Tan et al.
[13] proposed an adaptively aggressive scheduling strategy
for data intensive applications with moderated performance
trade-off using speculation. Subsequent efforts [14] proposed
an adaptive memory-aware strategy for distributed matrix
multiplication that trades grouped computation/communication
with memory costs for less overhead on employing DVFS.
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Fig. 1. Matrix Representation of a 4 × 4 Blocked Cholesky Factorization (We henceforth take Cholesky factorization for example due to algorithmic similarity).

SIMULATION-BASED. There exist some efforts on improv-
ing energy efficiency for numerical linear algebra algorithms
(Cholesky/LU/QR), but most of them are based on simulation
or only work for single multicore machine. Few studies have
been conducted on energy efficient matrix factorizations run-
ning on distributed-memory architectures. Slack reclamation
methods such as Slack Reduction and Race-to-Idle algorithms
[24] [26] have been proposed to save energy for dense linear
algebra operations on shared-memory multicore processors.
Instead of running benchmarks on real machines, a power-
aware simulator, in charge of runtime scheduling to achieve
task level parallelism, was employed to evaluate the proposed
power-control policies for linear algebra algorithms. DVFS
techniques used in their approaches were also simulated.

III. DISTRIBUTED DENSE MATRIX FACTORIZATIONS

As classic dense numerical linear algebra algorithms for
solving systems of linear equations, such as Ax = b where A
is a given coefficient matrix and b is a given vector, Cholesky
factorization applies to the case that A is a symmetric positive
definite matrix, while LU and QR factorizations apply to any
general M × N matrices. The goal of these algorithms is to
factorize A into the form LLT where L is lower triangular and
LT is the transpose of L, the form LU where L is unit lower
triangular and U is upper triangular, and the form QR where
Q is orthogonal and R is upper triangular, respectively. Thus
from LLTx = b, LUx = b, QRx = b, x can be easily solved
via forward substitution and back substitution. In practice,
distributed matrix factorizations are widely employed in exten-
sive areas of high performance scientific computing. Next we
introduce an effective graph representation for demonstrating
parallelism in runs of distributed dense matrix factorizations.

Fig. 2. Stepwise Illustration of LU Factorization without Pivoting.

For performance efficiency, distributed dense matrix fac-
torizations can be implemented as follows: (a) Partition a
global matrix into a cluster using load balancing techniques
such as 2-D block cyclic data distribution; (b) perform local
diagonal matrix factorizations individually and communicate
factorized matrices among local nodes for panel matrix solving
and trailing matrix updating, as shown in Figure 2, a stepwise
LU factorization. As typical task-parallel algorithms where
data dependencies frequently arise, parallel runs of distributed
Cholesky/LU/QR factorizations can be characterized via Di-
rected Acyclic Graph (DAG), where dependencies among par-

allel tasks are appropriately represented. DAG for distributed
dense matrix factorizations is formally defined below:

DEFINITION 1. Data dependencies among parallel tasks
of distributed Cholesky/LU/QR factorizations running on a
distributed-memory computing system are modeled by a Di-
rected Acyclic Graph (DAG) G = (V,E), where each node
v ∈ V denotes a task of distributed Cholesky/LU/QR factoriza-
tions, and each directed edge e ∈ E represents a dynamic data
dependency from task tj to task ti that both tasks manipulate
on either different intra-process or inter-process local matrices
(i.e., an explicit dependency) or the same intra-process local
matrix (i.e., an implicit dependency), denoted by ti → tj .

EXAMPLE. Due to similarity among the three matrix factor-
izations and space limitation, we henceforth take Cholesky
factorization for example. Consider a 4 × 4 blocked Cholesky
factorization in Figure 1. The outcome of the task factorizing
A11, i.e., L11, is employed in the tasks solving local matrices
L21, L31, and L41 in the same column as L11, i.e., the tasks
calculating the panel matrix. In other words, there exist three
data dependencies from the tasks solving L21, L31, and L41

to the task factorizing A11, denoted by three solid directed
edges from the task Factorize(1,1) to the tasks Solve(2,1),
Solve(3,1), and Solve(4,1) individually as given in Figure 3.

IV. TASK DEPENDENCY SET AND CRITICAL PATH

Next we present Task Dependency Set (TDS) and Critical
Path (CP) of application runs, where TDS contains dependency
information of parallel tasks at runtime and CP pinpoints
potential energy savings in terms of slack among the tasks.

A. Task Dependency Set

For determining the appropriate timing to switch frequency
for energy savings, we leverage TDS in our TX approach. Next
we first formally define TDS, and then show how to generate
two types of TDS for each task in Cholesky factorization using
an example. Producing TDS for LU and QR factorizations is
similar with minor changes per algorithmic characteristics.

DEFINITION 2. Given a task t of a distributed matrix factor-
ization, data dependencies related to a data block manipulated
by the task t are classified as elements of two types of TDS:
TDSin(t) and TDSout(t), where dependencies from the data
block to other tasks ti are categorized into TDSout(t) and
denoted as ti, and dependencies from other tasks tj to the
data block are categorized into TDSin(t) and denoted as tj .

EXAMPLE. Consider the same Cholesky factorization in Fig-
ure 1. Two TDS of each task can be generated statically per
algorithmic characteristics of Cholesky factorization: Since the
resulting local matrices of factorization tasks (e.g., L11) are
employed in column-wise panel matrix solving (e.g., solving
L21, L31, and L41), data dependencies from panel matrices to



Algorithm 1 DVFS Scheduling Algorithm Using CP

DVFS CP(CritPath, task, FreqSet)
1: if (task ∈ CritPath || TDSout(task) != ∅) then
2: SetFreq(fh)
3: else
4: slack ← GetSlack(task)
5: if (slack > 0) then
6: fopt ← GetOptFreq(task, slack)
7: if (fl ≤ fopt ≤ fh) then
8: if (fopt /∈ FreqSet) then
9: SetFreq(⌊fopt⌋, ⌈fopt⌉, ratio)

10: else SetFreq(fopt)
11: else if (fopt < fl) then
12: SetFreq(fl)
13: end if

Algorithm 2 DVFS Scheduling Algorithm Using TX

DVFS TX(task, CurFreq)
1: while (TDSin(task) != ∅) do
2: if (CurFreq != fl) then
3: SetFreq(fl)
4: if (Recv(DoneF lag, t1)) then
5: delete(TDSin(task), t1)
6: end while
7: SetFreq(fh)
8: if (IsFinished(task)) then
9: foreach t2 ∈ TDSout(task) do

10: Send(DoneF lag, t2)
11: SetFreq(fl)
12: end if

factorized diagonal matrices are included in TDSin of tasks
solving panel matrices (e.g., TDSin(S(2,1)), TDSin(S(3,1)),
and TDSin(S(4,1))), and TDSout of tasks factorizing diagonal
matrices (e.g., TDSout(F(1,1))). Likewise TDSin and TDSout

of other tasks holding different dependencies can be produced.

B. Critical Path

Although load balancing techniques are leveraged for dis-
tributing workloads as evenly as possible, assuming that all
nodes have the same hardware configuration, slack can still be
incurred since different processes can be utilized unfairly due
to three reasons: (a) Inbalanced computation delay due to data
dependencies among tasks, (b) imbalanced task partitioning,
and (c) imbalanced communication delay. Difference in CPU
utilization results in different amount of computation slack. For
instance, constrained by data dependencies, the start time of
processes running on different nodes differs from each other,
as shown in Figure 3 where P1 starts earlier than the other
three processes. Moreover, since the location of local matrices
in the global matrix determines what types of computation
are performed locally, load imbalancing from difference in
task types and task amount allocated to different processes
cannot be eliminated completely by the 2-D block cyclic
data distribution, as shown in Figure 3 where P2 has lighter
workloads compared to the other three processes. Imbalanced
communication time due to different task amount among the
processes further extends the difference in slack length.

Critical Path (CP) is one particular task trace from the
beginning task of one execution of a task-parallel application to

TABLE I. NOTATION IN ALGORITHMS 1 AND 2.

task, t1, t2
One task of matrix factorizations, out of
Factorize, Update1, Update2, and Solve

fl The lowest CPU frequency set by DVFS

fh The highest CPU frequency set by DVFS

fopt Optimal ideal freq. to finish a task w/o slack

ratio Ratio between durations of split frequencies

TDSin(task)
Task Dependency Set consisting of tasks that
are depended by task as the input

TDSout(task)
Task Dependency Set consisting of tasks that
depend on task as the input

CritPath
One task trace consisting of tasks to finish
matrix factorizations with zero total slack

slack
Amount of time that a task can be delayed
by without performance loss overall

CurFreq Current CPU frequency in use

DoneF lag Indicator of the finish of a task

Fig. 3. DAG Representation of Task and Slack Scheduling of CP and TX
Approaches for the 4 × 4 Blocked Cholesky Factorization in Figure 1 on a
2 × 2 Process Grid Using 2-D Block Cyclic Data Distribution.

the ending one with the total slack of zero. Any delay on tasks
on the CP increases the total execution time of the application,
while dilating tasks off the CP into their slack individually
without further delay does not cause performance loss as
a whole. Energy savings can be achieved by appropriately
reducing frequency to dilate tasks off the CP into their slack
as much as possible, which is referred to as the CP approach.
Numerous existing OS level solutions effectively save energy
via CP-aware analysis [3] [23] [8] [9] [24]. Figure 3 highlights
one CP for Cholesky factorization with bold edges. We next
present a feasible algorithm to generate a CP via TDS analysis.

V. TX: ENERGY EFFICIENT RACE-TO-HALT DVFS
SCHEDULING VIA ALGORITHMIC TDS ANALYSIS

Next we present in detail the three energy efficient DVFS
scheduling approaches for distributed dense matrix factoriza-
tions individually: The SC approach, the CP approach, and our
TX approach. We further demonstrate that TX manages to save
substantial energy for distributed dense matrix factorizations,
since via TDS-based race-to-halt, it circumvents the defective
prediction mechanism employed by the CP approach at OS
level, and further saves energy from potential load imbalance.
Table I lists the notation used henceforth in this section.



A. Custom Functions

In Algorithms 1 and 2, six custom functions are intro-
duced for readability: delete(TDS(t1), t2), SetFreq(), Is-
LastInstance(), Send(), Recv(), and IsFinished(). The im-
plementation of delete() is straightforward: Remove t2 from
the TDS of t1 (its counterpart insert(TDS(t1), t2) is also
implemented to add task t2 into the TDS of task t1, not shown
in the algorithms). SetFreq() is a wrapper of DVFS APIs
that set specific CPU frequencies, and Send() and Recv() are
wrappers of MPI communication routines that send and receive
flag messages among tasks respectively. IsLastInstance() is
employed to determine if the current task is the last instance
of the same type of tasks operating the same data block, and
IsFinished() is employed to determine if the current task is
finished: Both are easy to implement at library level.

B. Scheduled Communication Approach

One effective and straightforward solution to save energy
for task-parallel applications is to set CPU frequency to high
during computation, while set it to low during communication,
given the fact that large-message communication is not bound
by CPU performance while computation is, so the peak CPU
performance is not necessary during communication. Although
substantial energy savings can be achieved from the Scheduled
Communication (SC) approach [23] [8], it leaves potential
energy saving opportunities from other types of slack (e.g., see
slack shown in Figure 3) untapped. More energy savings can be
fulfilled via fine-grained analysis of execution characteristics of
the applications, in particular during non-communication. Next
we present two well-designed approaches that take advantage
of computation slack to further energy savings. Note since the
SC approach does not conflict with solutions exploiting slack
from non-communication, it can be incorporated with the next
two solutions seamlessly to maximize energy savings.

C. Critical Path Approach vs. TX Approach

Given a detected CP (e.g., via static analysis [3] or
local information analysis [9]) for task-parallel applications,
the Critical Path (CP) approach saves energy as shown in
Algorithm 1 and Figure 3: For all tasks on the CP, the
working CPU frequency is set to the highest for attaining
the peak CPU performance, while for tasks not on the CP
whose total slack is larger than zero (e.g., tasks with no
outgoing explicit data dependencies in Figure 3), lowering
frequency appropriately is performed to dilate the tasks into
their slack as much as possible, without incurring performance
loss of the applications. Due to the discrete domain of available
CPU frequencies defined for DVFS, if the calculated optimal
frequency that can eliminate slack lies in between two available
neighboring frequencies, the two frequencies can be leveraged
to approximate it by calculating a ratio of durations operating
at the two frequencies. The two frequencies are then assigned
to the durations separately based on the ratio. Lines 7-9
in Algorithm 1 sketch the frequency approximation method
[9]. The ratio of split frequencies is calculated via prior
knowledge of the mapping between frequency and execution
time of different types of tasks. Note that we denote the two
neighboring available frequencies of fopt as ⌊fopt⌋ and ⌈fopt⌉.

Different from the CP approach that reduces CPU fre-
quency for tasks off the CP to eliminate slack without per-
formance loss, TX employs a race-to-halt mechanism that

leverages TDSin and TDSout of each task to determine the
timing of race and halt, as shown in Algorithm 2 and Figure 3.
Respecting data dependencies, one dependent task cannot start
until the finish of its depended task. TX keeps the dependent
task staying at the lowest frequency until all its depended
tasks have finished when it may start, and then allows the
dependent task to work at the highest frequency to complete as
soon as possible, before being switched back to the low-power
state. A task sends a DoneF lag to all its dependent tasks to
notify them that data needed has been processed and ready
for use. A dependent task is retained at the lowest frequency
while waiting for DoneF lags from all its depended tasks, and
removes the dependency to a depended task from its TDSin,
once a DoneF lag from the depended task is received.

VI. IMPLEMENTATION AND EVALUATION

We have implemented TX, and for comparison purposes,
the library level SC approach to evaluate the effectiveness
of TX to save energy during non-communication slack. For
comparing with the OS level SC and CP approaches, we com-
municated with the authors of Adagio [9] and Fermata [8] and
received the latest version of both implementations. We also
compare with another OS level solution CPUSpeed [27], an
interval-based DVFS scheduler that scales CPU performance
according to runtime CPU utilization during the past interval.
Regarding workload prediction, Adagio and Fermata leverage
the PAST algorithm [28], and CPUSpeed uses a prediction
algorithm similar to the RELAX algorithm employed in CPU
MISER [11]. With application-specific knowledge known,
library level solutions do not need the workload prediction
mechanism. We denote the above approaches as follows:

- Orig: Original runs of different-scale distributed dense matrix
factorizations without any energy saving approaches;
- SC lib: A library level implementation of the SC approach;
- Fermata: An OS level implementation of the SC approach
based on the PAST workload prediction algorithm;
- Adagio: An OS level implementation of the CP approach
based on the PAST algorithm, where Fermata is incorporated;
- CPUSpeed: An OS level implementation of the SC approach
based on a workload prediction algorithm similar to RELAX;
- TX: A library level implementation of the race-to-halt ap-
proach based on TDS analysis, where SC lib is incorporated.

TABLE II. HARDWARE CONFIGURATION FOR EXPERIMENTS.

Cluster HPCL ARC

System Size
8 108

(# of Nodes)

Processor
2×Quad-core 2×8-core

AMD Opteron 2380 AMD Opteron 6128

CPU Freq. 0.8, 1.3, 1.8, 2.5 GHz 0.8, 1.0, 1.2, 1.5, 2.0 GHz

Memory 8 GB RAM 32 GB RAM

Cache
128 KB L1, 512 KB L2, 128 KB L1, 512 KB L2,

6 MB L3 12 MB L3

Network 1 GB/s Ethernet 40 GB/s InfiniBand

OS
CentOS 6.2, 64-bit CentOS 5.7, 64-bit

Linux kernel 2.6.32 Linux kernel 2.6.32

Power Meter PowerPack Watts up? PRO

A. Experimental Setup

We applied all five energy saving approaches to distributed
Cholesky/LU/QR factorizations with five different global ma-
trix sizes each. Experiments were performed on two power-
aware clusters: HPCL and ARC. Table II lists the hardware



configuration of the two clusters. Note that we measured the to-
tal dynamic and leakage energy consumption using PowerPack
[18], a comprehensive software and hardware framework for
energy profiling and analysis of high performance systems and
applications; the total of static and dynamic power consump-
tion was measured using Watts up? PRO [29]. Both energy
and power consumption refer to total energy and power costs
respectively on all involved components of one node such as
CPU, memory, disk, motherboard, etc. Due to shared power
meter for three nodes of the ARC cluster, power consumption
measured is for the total power consumption of three nodes,
while energy consumption measured is for all energy costs
collected from all eight nodes of the HPCL cluster. CPU
frequency switching was implemented via CPUFreq [16] and
directly modifying CPU frequency system configuration files.

B. Results

In this section, we present experimental results on power,
energy, and performance efficiency and trade-off by comparing
TX with the other energy efficient approaches, respectively.

POWER SAVINGS. First we evaluate the capability of power
savings from the five energy saving approaches for distributed
dense matrix factorizations on the ARC cluster (due to the
similarity of results, data for distributed LU and QR factoriza-
tions is not shown), where power consumption is measured by
sampling at a constant rate through the execution of the appli-
cations. Figure 4 depicts the total system power consumption
of three nodes (out of sixteen nodes in use) running distributed
Cholesky factorization with different solutions using a 160000
× 160000 global matrix, where we select time durations of the
first few iterations. Among the six executions, there exist four
power patterns (including the theoretical one CP theo that
calculates computation slack effectively, and lowers power to
eliminate the slack): (a) Orig and CPUSpeed – employed
the same highest CPU frequency for both computation and
communication, resulting almost constant power consumption
around 950 Watts; (b) SC lib, Fermata, and Adagio – low-
ered down CPU frequency during the communication, i.e., the
five low-power durations around 700 Watts, and resumed the
peak CPU performance during the computation; (c) CP theo
– not only scheduled low power states for communication, but
also slowed down computation to eliminate computation slack
– this is a theoretical value curve instead of real measurement,
which is how OS level approaches such as Adagio is supposed
to save more power as a CP-aware approach; and (d) TX
– employed the race-to-halt strategy to lower down CPU
performance for all durations other than computation.

Specifically, upon a workload prediction algorithm that in-
spects dynamic prior CPU utilization periodically, CPUSpeed
failed to produce accurate prediction and scale CPU power
states accordingly: It kept the peak CPU power all the time.
Either relying on known application characteristics (SC lib)
or detecting MPI communication calls (Fermata and Adagio),
all three approaches can identify communication durations and
apply DVFS accordingly. As discussed previously, solutions
only slow down communication are semi-optimal. Adagio and
TX are expected to utilize computation slack for achieving
additional energy savings. Due to the defective OS level pre-
diction mechanism, Adagio failed to predict behavior of future
tasks and calculate computation slack accurately. Consequently
no low-power states were switched to during computation
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Fig. 4. Power Consumption of Distributed Cholesky Factorization with
Different Energy Saving Approaches on a 16 × 16 Process Grid ARC Cluster.

for Adagio. Different from solutions saving energy via slack
reclamation, TX relies on the race-to-halt mechanism where
computation is conducted at the peak CPU performance and
the lowest CPU frequency is employed immediately otherwise.
The nature of race-to-halt also guarantees no high-power
states are employed during waiting durations resulting from
load imbalance and data dependency, i.e., the two low-power
durations in green where the application starts and ends,
additional energy saving opportunities exploited by TX only.

ENERGY SAVINGS. Next we compare energy savings achieved
by all five approaches on the HPCL cluster, as shown in
Figure 5, where energy consumption is measured by recording
on/off collection of power and time costs when an applica-
tion starts/ends. For eliminating errors from scalability, we
collected energy and time data of five matrix factorizations
with different global matrix sizes ranging from 5120 to 25600,
respectively. Considerable energy savings are achieved by
all approaches except for CPUSpeed, with similar energy
saving trends among all approaches: TX prevails over all other
approaches with higher energy efficiency; SC lib, Fermata,
and Adagio gain similar energy savings. Overall, for Cholesky,
TX can save energy 30.2% on average and up to 33.8%; for
LU and QR, TX can achieve 16.0% and 20.0% on average and
up to 20.4% and 23.4% energy efficiency, respectively. Due to
the reasons discussed for power savings, Adagio only achieves
similar energy efficiency to SC lib and Fermata, without
fulfilling additional energy savings from slack reclamation of
computation. With application-specific knowledge instead of
workload prediction, TX manages to achieve energy savings
during both computation and communication slack. Moreover,
TX benefits from the advantage of saving more energy from
load imbalance while other approaches cannot exploit. Next we
further evaluate energy savings by increasing load imbalance.

EFFECTS OF BLOCK SIZE. As depicted in Figure 3 and
discussed above, the additional energy savings can be achieved
from potential load imbalance, i.e., the area only covered by
green dashed boxes. Empirically, regardless of the workload
partition techniques, load imbalance can grow due to larger
tasks, longer communication, etc. For manifesting the strength
of TX in achieving additional energy savings for completeness,
we deliberately imbalance the workload through expanding
tasks by using greater block sizes for Cholesky, while keeping
the default block size for LU and QR. As shown in Figure
5, the average energy savings fulfilled by TX for Cholesky
(30.2%) are consequently greater than LU and QR (16.0%
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Fig. 5. Energy and Performance Efficiency of Distributed Cholesky/LU/QR Factorizations with Different Energy Saving Approaches on the HPCL Cluster.
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and 20.0%). Compared to the second most effective approach
Adagio, TX can save Cholesky 12.8% more energy on average.

PERFORMANCE LOSS. Figure 5 also illustrates performance
loss from different energy saving approaches against the orig-
inal executions. We can see TX only incurs negligible time
overhead: 3.8%, 3.1%, 3.7% on average for Cholesky, LU,
and QR individually, similar to the time overhead of all other
approaches except for CPUSpeed. The minor performance
loss on employing these techniques is primarily originated
from three facts: (a) Although large-message communication
is not CPU-bound, pre-computation required for starting up a
communication link before any data transmission is necessary
and is affected by CPU performance, so the low-power state
during communication can slightly degrade performance; (b)
switching CPU frequency via DVFS is essentially implemented
by modifying CPU frequency system configuration files, and
thus minor overhead is incurred from such in-memory file
read/write operations [14]; and (c) CPU frequency transition
latency is required for the newly-set frequency to take effect.
Further, TX suffers from minor performance loss from TDS
analysis, including TDS and CP generation, and maintaining
TDS for each task. The high time overhead of CPUSpeed is
another reason for its little and even negative energy savings
besides the defective prediction mechanism at OS level.

ENERGY/PERFORMANCE TRADE-OFF. A optimal energy
saving approach requires to achieve the maximal energy sav-
ings with the minimal performance loss. Per this requirement,
energy-performance integrated metrics are widely employed to
quantify if the energy efficiency achieved and the performance
loss incurred are well-balanced. We adopt Energy-Delay Prod-
uct (EDP) to evaluate the overall energy and performance
trade-off of the five approaches, in terms of MFLOPS/W,
which evaluates the amount of floating-point operations per
second within the unit of one Watt (i.e., the greater value, the
better efficiency). As shown in Figure 6, compared to other
approaches, TX is able to fulfill the most balanced trade-
off between energy and performance, with similar trends in
power/energy savings discussed above. Specifically, TX has
higher MFLOPS/W values for Cholesky compared to LU and
QR, due to the higher energy savings achieved from the more
imbalanced load without additional performance loss.

VII. CONCLUSIONS

The looming overloaded energy consumption of high per-
formance scientific computing brings significant challenges
to green computing in this era of ever-growing power costs
for large-scale computing systems. DVFS techniques have
been widely employed to improve energy efficiency for task-
parallel applications. With high generality, OS level solutions
are regarded as feasible energy saving approaches for such ap-
plications. We observe for applications with variable execution
patterns, OS level solutions suffer from defective prediction
mechanism and untapped potential energy savings from load
imbalance, and thus cannot optimize energy efficiency. Giving
up partial generality, the proposed library level approach TX
is evaluated to save more energy with little performance loss
for distributed Cholesky/LU/QR factorizations on two power-
aware clusters compared to classic OS level solutions.
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