A

RiNWERSlﬁgluinw C .FT:M ON oljojs.AIamos

E R S I T Y NATIONAL LABORATORY
EST.1943

GreenlA: Green Linear Algebra Software for
GPU-Accelerated Heterogeneous Computing

JieyangChen* ¥, Li Tan** %, Panruo Wu*, Dingwen Tao*, Hongbo Li*, Xin

Liang*, Sihuan Li*, Rong Ge*, Laxmi Bhuyan*, and Zizhong Chen*

*University of California, Riverside
*Clemson University
*Ultra Scale Systems Research Center, Los Alamos National Laboratory
3 Authors contributed equally

Outline

* Introduction and our research motivation
* Our new algorithmic slack prediction

e GreenlA Library

* Experimental Evaluation

* Conclusion

K

Outline

* Introduction and our research motivation

K

Introduction

* Large-scale HPC system
* High power consumption

Rmax Rpeak Power
Rank Site System Cores (TFlop/s) (TFlop/s) | (kW)
1 National Supercomputing Sunway TaihuLight - Sunway MPP, 10,649,600 93,014.6 125,435.9]15,371
Center in Wuxi Sunway SW26010 260C 1.45GHz, Sunway
China NRCPC
2 National Super Computer Tianhe-2 (MilkyWay-2) - TH-IVB-FEP 3,120,000 33,862.7 54,902.4)17,808
Center in Guangzhou Cluster, Intel Xeon E5-2692 12C
China 2.200GHz, TH Express-2, Intel Xeon Phi
31S1P
NUDT
3 DOE/SC/Oak Ridge National Titan - Cray XK7 , Opteron 6274 16C 560,640 17,590.0 27,112.5)8,209
Laboratory 2.200GHz, Cray Gemini interconnect,
United States NVIDIA K20x
Cray Inc.
4 DOE/NNSA/LLNL Sequoia - BlueGene/Q, Power BQC 14C 1,572,864 17,173.2 20,132.7]7,890
United States 1.60 GHz, Custom
IBM
5 RIKEN Advanced Institute for K computer, SPARC64 VllIfx 2.0GHz, Tofu 705,024 10,510.0 11,280.4§12,660
Computational Science (AICS) interconnect
Japan Fujitsu

Energy Consumption of Top5 Supercomputers(June, 2016 - TOPS500 List)

Summary of Our Contributions

* Most of the existing energy saving approaches focus on the
system/OS level or architecture level, without considering application
characteristic.

* In this work, we proposed an energy saving technique that combine
both architecture and specific application knowledge to achieve
better energy efficiency.

* We designed GreenlLA: Green Linear Algebra Software for GPU-
Accelerated Heterogeneous Computing.

K

DVFS for energy saving

e Dynamic Voltage and Frequency Scaling (DVFS)

* By adjusting the processer’s voltage and frequency dynamically, energy
consumption can be reduced.

* Theoretically: Power « f%*and ExecTime « f.
* E.g.:l freq by 50%—> | power by 81%—> Save 62% Energy.

* Itis proved in many previous works that applying DVFS to slacks in application
can save considerable energy without significantly impact performance.

K

Slacks

* Slacks exist in many applicationsin parallel computing systems.
* Slacks can be caused by: dependency, communications, I/0O, etc.

Task dependency

— e i e
— o - ol ————-II

|
. | | |
cru: [| I siocc2 !, G |

Sync. Sync. Sync.

Task execution

UCR

Motivation of Slack-based Energy Saving
crv: [N oo 1 [5o S

GPU: e (| Taska | stack2 I! Task6

- = =l I

1 | 1
Sync. Sync. Sync.

Task execution
CPU Power: ?////A High W

GPU Power: High HiW High

Power status

* |If we keep the same frequency and voltage, the energy in shadow areas
would be wasted.

-

* Many energy saving techniques have been developed utilizing the slacks

* Race-to-Halt (R2H);
* Slack Reclamation (SR). I%

Existing Approach: Race-to-Halt |
ceu. | oot) I I 5 S

1 - — = |
GPU: Task2 | | Taskd | Siack2 ,I: Task6 I
I T I
Sync. Sync. Sync.
Task execution
CPU Power: High e | High High —Towest |
GPU Power: High High | romesr High

Power status
* Race: process tasks atthe processors highest power state.
* Halt: idling at the processors to lowest power state.
* Simple, no application knowledge required.
* Butitis proved*, running tasks at highest power state is not very energy efficient.

*Rountree, Barry, et al. "Adagio: making DVS practical for complex HPC applications." Proceedings of the 23rd international conference on Supercomputing.

ACM, 2009. I%

Existing Approach: Slack Reclamation

|
|

— L

GPU: Task2 Task4 :
[1 |
Sync. Sync. Sync.
Task execution
CPU Power: Adijlgted High Adjifsted
GPU Power: High Adjited High

Power status

* |dentify critical path of application
 Adjust frequency when running tasks on non-critical path =2 reclaim slacks
* More energy efficient than R2H, requires prediction on slack to adjust freq. in

advance. R

Existing Approach: Slack Reclamation

1 Sync.
——————— I
GPU: Task2 1 GPU Power: fGPU—High
|
|

Ty
» Assume freq. is linearly proportional to execution time

. __ Jcpu-High X T1§ _ o
fepu—1deal = Requies prediction on

T, L. :
Adjust freq. before executiontime(i.e.: Ty, T,)
execution T, Sync
- } e
GPU: Task2 1 GPU Power: fepu—nign
I
[

Challenges of Slack Reclamation

* [t requires accurate prediction on execution time.

* Inaccurate predicted execution time = inaccurate target frequency
* Target frequency >ideal frequency —> Still waste energy

?’2 Sync.
— —I :— —————————————————————
cru: [siock | CPU Power: 7=
-— - - JI
GPU: Task2 1 GPU Power: fGPU—High
. 1
T, :
 Target frequency < ideal frequency = Impact performance
T, Sync.
GPU: Task2 | Slack 11~ GPU Power: fepu ~Hign
==

T, Extra Exec.Time

Existing Slack Prediction

* |t requires accurate prediction on execution time.

* Existing approach: statistic learning based slack prediction
* It predicts future execution time based on history.
* It assumes constant slack length or based on history data.

* However, its prediction ability is limited.
* It can only capture limited or inaccurate application characteristic from history data.

* When the target application is complicated or irregular patterned, the history data
can be less useful, the prediction results can be inaccurate.

* Inaccurate execution time prediction = inaccurate target frequency - less energy
saving or even more energy cost and worse performance.

* It requires to use first 10%-20% iteration as training set 2 extra energy cost and
wastes valuable energy saving opportunities.
* So, in order to achieve better prediction result, we need to know more
about the target application.

K

Outline

* Our new algorithmic slack prediction

K

Linear Algebra Operations

* To achieve high accurateslack prediction, we need to know:

 Algorithmic knowledge: the application characteristicin algorithm level.
* Architecture characteristic: the application characteristic running on given
hardware platforms.
* In mostlinear algebra operations, the algorithms inside them usually
follows iterative fashion, which can help us capturing those information.

* Most linear algebra libraries are open-sourced, we are able to capture the algorithmic
knowledge inside each linear algebra operation.

* The iterative execution fashion makes the computation work of each task on different
iterations similar. With minimum profiling, we can easily approximate the architecture

characteristic.
* So, we proposed Algorithmic Slack Prediction model for linear algebra
operations.

K

Our Propose: Algorithmic Slack Prediction

* Leverage both algorithmic knowledge and architecture characteristic
to achieve more accurate slack prediction.

* Algorithmic knowledge

* We exam the target application to identify: (1) potential slacks (2)overall tasks
execution characteristic (We assume source code is assessable.)

* Architecture characteristic

* We do profiling on the first slack-related tasks on target hardware platform to
capture the computing efficiency. (We assume this efficiency for each tasksin
eachiteration stays constant.)

 Benefits over statistic learning based prediction

* Our model is built directly from application 2 more accurate result.

* One-time profiling is good enough to capture the architecture characteristic 2>
much lower prediction model training cost.

K

Algorithmic Slack Prediction Model

» Offline applicationinspection = capture algorithmic knowledge

* Find potential slacks: Tasks scheduled concurrently with same synchronization point
(e.g.: Slacks may cause by Task, and Taskp)

* Derive task execution characteristic: Identify the regziutlonshlp of ex(e)cutlon time

T
between two neighbor iterations. (e.g.: R4(i) = (l 5, Rp (i) = e)
A B

* Online prediction
1. Tﬁo), Téo) « profiling = capture architecture characteristic
2. lteratefrom 1> n

3. T T R, (i) = utilizing algorithmic knowledge
4. Tgi)<— Tzi_l) * Rg (i) = utilizing algorithmic knowledge
5. Ideal freq. € Calculate Ideal Frequency(Tf), Téi))

6. Slack Reclamation(ldeal freq.)

7. .. process tasks ...

K

Outline

e GreenlA Library

GreenLA Library

e Build based on MAGMA

 State-of-the-art highly optimized linear algebra library on heterogeneous
system with GPUs.

* |t assign tasks statically to CPUs and GPU to achieve high performance
than traditional linear algebra library.

* We identified that potential slacks existin MAGMA’s implementation.

So, we implemented our algorithmic slacks prediction energy saving to
MAGMA library.

* As the initial stage of this project, we start with three core linear
algebra functions: LU, Cholesky and QR factorization.

Applicationon LU factorization

> Capturealgorithmic knowledge
Identify potential slacks

Level 2
BLAS
on CPU

Level 3 Trailing Matrix
BLAS :
on GPU

U

Global View

Potential Slacks

I:l Not Yet Processed

| | | | |
C | | | | |
[| | | le— | | -
U | | | | |
| | | | |
panel factorization ! send panel to GPU I wait I recv panel [from GPU I panel factorization ! end panel to GPU
CPU slack: no || CPU slack: N/A | CPU slack: yes | CPUslack|N/A | CPU slack: possible | PU slack: N/A
GPU slack: yes GPU slack: N/A GPU slack: no GPU slack{ N/A GPU slack: possible PU slack: N/A
wait I recv panel from CPU I update the next panel I send pangl to CPU I update the rest trailing) Y panel from CPU
| | | | |
G | | | | |
[| | | - | | -
U | | | | |
| | | | |
| | | | |
Step O | Step 1 | Step 2 | Step 3 | Step 4 | Step 5
Local View

I:l Partially Finished - Finished —> Data Uploading/Downloading

One iteration of LU factorization

Example: Slacks in LU factorization

=
S

/

Time (second)
l

|

e slack_10240_high_high

slack_10240_low_high

e s|lack_10240_high_low

e 5|ack_20480_high_high

— \ e s|lack_20480_low_high

T
o —q'

10 20 30 40 50 60 70 80 90 100
Iteration Number

Slack time of the first 100 iteration of LU factorization in MAGMA
Slack time = Trailing Matrix Update(on GPU) - Panel Factorization(on CPU)

S
=

v

o
N

o

Application on LU factorization

Sync. Point

Sync. Point
| |
| |
|
CPU Data Panel Data
I Transf.(DT) Factorization(PF) Transf.(DT)
-------------- #I..-............................-.--.u.u.u."uu"uT-
| h
GPU -r Trailing Matrix Update(TMU) g) tmir
|
1

. @D €) (D ©)
TSlack T +T TTMU

. Slgn(TP)9Whlch side is the slack

. |T5(llc)l k|9 Length of the slack

Applicationon LU factorization

 Capture algorithmic knowledge
* Derive task execution characteristic
* We determine the execution relation between neighbor
iterations as follow:

©) Q)

Tpp _ Floppr 1 nb _ RPF(i)

(i-1) — (i-1) — o -

Top Flop, N—i*nb

(D (D 2

. Trmu — FlOpTMU — (1 _ nb) — RTMU(l)

(-1 — (-1 — i -

ey FlopTMU N—i*nb

T[(,i% . Sizel()i%w 1 1 R .
G-D =D L T N ftor (@)
DT DT

(0) 4 (0) = (0) : : -
* 1., T, , T, can be determined by offline profiling

F '’ DT.” " TMU

Panel
Factorization

Trailing Matrix
Update

K

Application on LU factorization

* Online prediction

1. T,E,‘?, Tg‘}?,TSI’V,)U < profiling = architecture characteristic
2. lterate from1 9 n

4. T(‘) Dy Rpp(i)
5 T(g T(l Y s Ry (i)
' TMU T™MU TMU

|deal freq. < Calculate Ideal Frequency(T1§F)']gl%, T(l) Mu)
if Slack on CPU - SetGPUFreq.(ldeal freq.)

if Slack on GPU = SetCPUFreq.(ldeal freq.)

Process task: PF, DT,and TMU (Slack-related tasks)

0. Restore power state after slack-related computations.

LN

Optimization 1

* |f target freq. no available:
* We use Frequency Split
* Combine two nearby frequencies to approximate ideal frequency.
* Determine freq. split ratior:
* Ty =1Tpow + (r— 1)Tygp forr
* Trow @and Ty;4pn can be determined by our slack prediction algorithm

T2 Sync. T'Tl‘ow (T' - 1)THigh
f Ii l'- -------- | | 1
|
GPU: Task2 1 GPU Power: fepu—nign
y 1
|

T,

Optimization 2

e Reduce DVFS Overhead

* Frequent power state adjustment may brings much overhead
* We use Relax Factor to adjust necessity of power state adjustment.

* Algorithm with Relaxed Slack Reclamation:
1. If figeq: NOt available

r € determine freq. split ratio

if r < RIxFctr
Avoid freq. split, use original freq.

else
Perform freqg. split

o U b WN

Outline

* Experimental Evaluation

K

Experimental Environment

* Heterogeneous System: IVY

Processor

Peak Perf.

Frequency Scaling Capability

Memory
Power Meter

Freq. Adjustment Method

2*10-core Intel Xeon E5-2670 2496-core NVIDIA Kepler K20c

0.4 TFLOPS
Core Freg. (GHz)

1.2-2.5(" by 0.1)

64 GB RAM
Power Pack

CPU Freq. Register Files

1.17 TFLOPS
Core Freq. (MHz)

324,614,640, 666,705,758

5 GB RAM
Nvidia-smi tool

NVIDIA GPU Freq. Setting API

K

Experiment Settings

* We tested and compared:
e Original MAGMA implementation
* OS Level Race-to-Halt
* Library Level Race-to-Halt
* OS Level Statistic Learning Based DVFS
* OS Level Statistic Learning Based DVFS(Relaxed)
 Algorithmic Prediction Based DVFS
* Algorithmic Prediction Based DVFS(Relaxed)

e All versions are build on MAGMA 1.6.1

* Cholesky, LU, QR factorization on 4 sizes:
« 5120,10240,15360,and 20480

K

Experiment

e Slack Prediction Error Rate:

Pred. Slack Time — Ture Slack Time
* Error Rate = Average(I |)

True Slack Time

Statistic Learning Prediction Algorithmic

Base Iter.(First 10%) Base Iter. (First 20%) Prediction

Cholesky 10.51% 6.62% 0.96%
LU 9.95% 5.45% 0.16%
QR 11.29% 5.77% 0.52%

Slack prediction accuracy comparison on input matrix size 2048020480

* Our Algorithmic prediction has much lower prediction error rate.

K

CPU & GPU Energy Saving

CPU Energy Saving Comparison GPU Energy Saving Comparison

20.00% 20.00%

9
15.00% 15.00%

10.00%
10.00%

5.00%
5.00%

0.00%
holesky LU QR
0.00%
5.00% I:holesky I LU I QR
-5.00%
-10.00%

-15.00% -10.00%

BOQOS_r2h BQOS_cpsr_str 0OS_cpsr_rix lib_r2h M|ib_cpsr_str Mlib_cpsr_rix ®OS_r2h MOS cpsr_str OS_cpsr_rix lib_r2h Wlib_cpsr_str Mlib_cpsr_rix

CPU energy saving on input matrix size: 2048020480 GPU energy saving on input matrix size: 2048020480

R

Overall Energy Saving & Performance

Total Energy Saving Comaprison . Execution Time Comparison
ec
10.00% 25
8.00%
20
6.00%
4.00%
15
2.00%
0.00%
lholesky I LU QR 10
-2.00%
-4.00% 5
I
-8.00% 0
R Cholesky LU QR
-10.00%
W QOS_r2h ®WOQOS_cpsr_str OS_cpsr_rix lib_r2h M[ib_cpsr_str Mlib_cpsr_rix M Original ®OS_cpsr_str OS_cpsr_rix ™ OS_r2h Wlib_r2h Mlib_cpsr_str Mlib_cpsr_rix

Total energy saving on input matrix size: 20480*20480 Overall execution time with input matrix size: 2048020480

R

Outline

* Conclusion

K

Conclusion

* Slack-based energy saving approach requires accurate slack prediction
to achieve high energy saving.

* Existing approaches cannot accurately predicts slacks.

* So, we proposed a new algorithmic slack prediction approach
considering both algorithmic knowledge and architecture
characteristic.

e Our experiments show that our approach can save 2x-3x more
energy than existing approaches.

K

* Thanks everyone for attending!

K

