
GreenLA: Green	Linear	Algebra	Software	for	
GPU-Accelerated	Heterogeneous	Computing	

JieyangChen*§,	Li	Tan*†§,	PanruoWu*,	Dingwen Tao*,	HongboLi*,	Xin	

Liang*,	Sihuan Li*,	Rong Ge‡,	Laxmi Bhuyan*,	and	Zizhong Chen*

*University	of	California,	 Riverside
‡Clemson	 University

†Ultra	Scale	Systems	Research	Center,	Los	Alamos	National	Laboratory
§Authors	contributed	equally	

Outline

• Introduction	and	our	research	motivation
• Our	new	algorithmic	slack	prediction
• GreenLA Library
• Experimental	Evaluation
• Conclusion

Outline

• Introduction	and	our	research	motivation
• Our	new	algorithmic	slack	prediction
• GreenLA Library
• Experimental	Evaluation
• Conclusion

Introduction
• Large-scale	HPC	system

• High	power	consumption

Energy Consumption of Top5 Supercomputers(June, 2016 - TOP500 List)

Summary	of	Our	Contributions
• Most	of	the	existing		energy	saving	approaches	focus	on	the	
system/OS	level	or	architecture	level,	without	considering	application	
characteristic.

• In	this	work,	we	proposed	an	energy	saving	technique	that	combine	
both	architecture and	specific	application knowledge	to	achieve	
better	energy	efficiency.

• We	designed	GreenLA:	Green	Linear	Algebra	Software	for	GPU-
Accelerated	Heterogeneous	Computing.

DVFS	for	energy	saving
• Dynamic	Voltage	and	Frequency	Scaling	(DVFS)

• By	adjusting	the	processer’s	voltage	and	frequency	dynamically,	energy	
consumption	can	be	reduced.

• Theoretically:	𝑃𝑜𝑤𝑒𝑟 ∝ 𝑓(.* and	𝐸𝑥𝑒𝑐𝑇𝑖𝑚𝑒 ∝ 𝑓.
• E.g.:	↓ 𝑓𝑟𝑒𝑞	𝑏𝑦	50%à ↓ 𝑝𝑜𝑤𝑒𝑟	𝑏𝑦	81%à𝑆𝑎𝑣𝑒	62%	𝐸𝑛𝑒𝑟𝑔𝑦.
• It	is	proved	in	many	previous	works	that	applying	DVFS	to	slacks	in	application	
can	save	considerable	energy	without	significantly	impact	performance.

Slacks	
• Slacks	exist	in	many	applications	in	parallel	computing	systems.
• Slacks	can	be	caused	by:	dependency,	communications,	I/O,	etc.

Task1

Task2

Task3

Sync.

Slack1

Task4 Slack2

Sync.

CPU:

GPU:

Task1

Task2

Task3

Task4

CPU:

GPU:

Task5

Task6

Task5

Task6

Slack3

Sync.

Task dependency

Task execution

Motivation	of	Slack-based	Energy	Saving

• If	we	keep	the	same	frequency	and	voltage,	the	energy	in	shadow	areas	
would	be	wasted.

• Many	energy	saving	techniques	 have	been	developed	utilizing	the	slacks
• Race-to-Halt	(R2H);
• Slack	Reclamation	(SR).	

CPU Power:

GPU Power: High High

High High

Task1

Task2

Task3

Sync.

Slack1

Task4 Slack2

Sync.

CPU:

GPU:

Task5

Task6

Slack3

Sync.
Task execution

High

High

Power status

Existing	Approach:	Race-to-Halt

• Race:	process	tasks	at	the	processors	highest	power	state.
• Halt:	idling	at	the processors	to	lowest	power	state.
• Simple,	no	application	knowledge	required.
• But	it	is	proved*,	running	tasks	at	highest	power	state	is	not very	energy	efficient.
*Rountree,	Barry,	et	al.	"Adagio:	making	DVS	practical	for	complex	HPC	applications." Proceedings	of	the	23rd	international	conference	on	Supercomputing.	
ACM,	2009.

CPU Power:

GPU Power: High High

LowestHigh High

Task1

Task2

Task3

Sync.

Slack1

Task4 Slack2

Sync.

CPU:

GPU:

Task5

Task6

Slack3

Sync.
Task execution

Lowest High

High Lowest

Power status

Existing	Approach:	Slack	Reclamation

• Identify	critical	path	of	application
• Adjust	frequency	when	running	 tasks	on	non-critical	path	à reclaim	slacks
• More	energy	efficient	than	R2H,	requires	prediction	on	slack	to	adjust	freq.	in	
advance.

CPU Power:

GPU Power: High High

High High

Task1

Task2

Task3

Sync.

Slack1

Task4 Slack2

Sync.

CPU:

GPU:

Task5

Task6

Slack3

Sync.
Task execution

High

High

Power status

Adjusted

Adjusted

Adjusted

Task1

Task4

Task5

Existing	Approach:	Slack	Reclamation

• Assume	freq.	is	linearly	proportional	to	execution	time

• 𝑓UVWXYZ[\] =
_̀ abcdefg 	×	ij

ik

Task1

Task2

SlackCPU:

GPU:

Sync.𝑇l

𝑇(

𝑓mVWXnopq

𝑓UVWXnopqCPU Power:

GPU Power:

Task1

Task2

CPU:

GPU:

Sync.𝑇(

𝑇(

𝑓mVWXnopq

𝑓UVWXYZ[\]CPU Power:

GPU Power:

Adjust	freq.	before	
execution

Requies	prediction	on	
execution	time(i.e.:		𝑇l,	𝑇()

Challenges	of	Slack	Reclamation
• It	requires	accurate prediction	on	execution	time.
• Inaccurate	predicted	execution	time	à inaccurate	target	frequency

• Target	frequency	>	ideal	frequency		à Still	waste	energy

• Target	frequency	<	ideal	frequency	à Impact	performance

Task1

Task2

CPU:

GPU:

Sync.𝑇′(

𝑇(

𝑓mVWXnopq

𝑓UVWXtuuXqopqCPU Power:

GPU Power:

Slack

Task1

Task2

CPU:

GPU:

Sync.𝑇′(

𝑇(

𝑓mVWXnopq

𝑓UVWXtuuX]uvCPU Power:

GPU Power:Slack

𝐸𝑥𝑡𝑟𝑎 	𝐸𝑥𝑒𝑐. 𝑇𝑖𝑚𝑒

Existing	Slack	Prediction	
• It	requires	accurate	prediction	on	execution	time.
• Existing	 approach:	statistic	 learning	based	slack	prediction

• It	predicts	future	execution	time	based	on	history.
• It	assumes	constant	slack	length	or	based	on	history	data.

• However,	its	prediction	ability	 is	limited.
• It	can	only	capture	limited or inaccurate	application	characteristic	from	history	data.
• When	the	target	application	is	complicated	or	irregular	patterned,	the	history	data	
can	be	less	useful,	the	prediction	results	can	be	inaccurate.

• Inaccurate	execution	time	prediction	à inaccurate	target	frequency	à less	energy	
saving	or	even	more	energy	cost	and	worse	performance.

• It	requires	to	use	first	10%-20%	iteration	as	training	set	à extra	energy	cost	and	
wastes	valuable	energy	saving	opportunities.

• So,	in	order	to	achieve	better	prediction	result,	we	need	to	knowmore
about	the	target	application.

Outline

• Introduction	and	our	research	motivation
• Our	new	algorithmic	slack	prediction
• GreenLA Library
• Experimental	Evaluation
• Conclusion

Linear	Algebra	Operations
• To	achieve	high	accurate	slack	prediction,	we	need	to	know:

• Algorithmic	knowledge:	the	application	characteristic	in	algorithm	level.
• Architecture	characteristic:	the	application	characteristic	running	on	given	
hardware	platforms.

• In	most	linear	algebra	operations,	the	algorithms	inside	them	usually	
follows	iterative	fashion,	which	can	help	us	capturing	those	information.

• Most	 linear	algebra	libraries	are	open-sourced,	we	are	able	to	capture	the	algorithmic	
knowledge	inside	each	linear	algebra	operation.

• The	iterative	execution	fashion	makes	the	computation	work	of	each	task	on	different	
iterations	similar.	With	minimum	profiling,	we	can	easily	approximate	the	architecture	
characteristic.

• So,	we	proposed	Algorithmic	Slack	Predictionmodel	for	linear	algebra	
operations.

Our	Propose:	Algorithmic	Slack	Prediction
• Leverage	both	algorithmic knowledge	and	architecture characteristic	
to	achieve	more	accurate	slack	prediction.

• Algorithmic knowledge	
• We	exam	the	target	application	to	identify:	(1)	potential	slacks (2)overall	tasks	
execution	characteristic	(We	assume	source	code	is	assessable.)

• Architecture	characteristic	
• We	do	profiling	on	the	first	slack-related	tasks	on	target	hardware	platform	to	
capture	the	computing	efficiency.	(We	assume	this	efficiency	for	each	tasks	in	
each	iteration	stays	constant.)

• Benefits	over	statistic	learning	based	prediction
• Our	model	is	built	directly	from	application	à more	accurate	result.
• One-time	profiling	 is	good	enough	to	capture	the	architecture	characteristic	à
much	lower	prediction	model	training	cost.

Algorithmic	Slack	Prediction	Model
• Offline	application	inspection	à capture	algorithmic knowledge	

• Find	potential	slacks:	Tasks	scheduled	concurrently	with	same	synchronization	point	
(e.g.:	Slacks	may	cause	by	𝑇𝑎𝑠𝑘}	and	𝑇𝑎𝑠𝑘�)

• Derive	task	execution	characteristic:	Identify	the	relationship	of	execution	time	
between	two	neighbor	iterations.	(e.g.:	𝑹𝑨 𝑖 = i�

(e)

i�
(ecj),	𝑹𝑩 𝑖 = i�

(e)

i�
(ecj))

• Online	prediction
1. T�

(�), T�
(�) ← profilingàcapture architecture characteristic

2. Iterate	from	1à n
3. 								T�

(�)← T�
(�Xl) ∗ 𝐑𝐀 i à utilizing	algorithmic knowledge	

4. 								T�
(�)← T�

(�Xl) ∗ 𝐑𝐁 i à utilizing	algorithmic knowledge	
5. Ideal	freq.	ßCalculate	Ideal	Frequency(T�

(�),	T�
(�))	

6. Slack	Reclamation(Ideal	freq.)
7. … process	tasks	…

Outline

• Introduction	and	our	research	motivation
• Our	new	algorithmic	slack	prediction
• GreenLA Library
• Experimental	Evaluation
• Conclusion

GreenLA Library
• Build	based	on	MAGMA

• State-of-the-art	highly	optimized	linear	algebra	library	on	heterogeneous	
system	with	GPUs.

• It	assign	tasks	statically	to	CPUs	and	GPU	to	achieve	high	performance	
than	traditional	linear	algebra	library.

• We	identified	that	potential	slacks	exist	in	MAGMA’s	 implementation.	
So,	we	implemented	our	algorithmic	slacks	prediction	energy	saving	to	
MAGMA	library.

• As	the	initial	stage	of	this	project,	we	start	with	three	core	linear	
algebra	functions:	LU,	Cholesky and	QR factorization.	

Application	on	LU	factorization

Capture	algorithmic	knowledge
Identify	potential	slacks

One iteration of LU factorization

Potential	Slacks

Example:	Slacks	in	LU	factorization

Slack time of the first 100 iteration of LU factorization in MAGMA
Slack time = Trailing Matrix Update(on GPU) - Panel Factorization(on CPU)

Application	on	LU	factorization

• 𝑇�]\��
(o) ≈ 𝑇V�

o + 𝑇�i.
o − 𝑇i�W

o

• 𝑆𝑖𝑔𝑛 𝑇�]\��
o àWhich	side	is	the	slack

• 𝑇�]\��
o àLength	of	the	slack

Panel
Factorization(PF)

Data	
Transf.(DT)

Data	
Transf.(DT)

Other
Comp.

CPU

GPU Trailing	 Matrix	 Update(TMU)

Sync. PointSync. Point

Potential	 Slack

Potential	 Slack

Application	on	LU	factorization
• Capture	algorithmic	knowledge

• Derive	task	execution	characteristic
• We	determine	the	execution	relation	between	neighbor	
iterations	as	follow:

•
ia�
(e)

ia�
(ecj) =

�]u�a�
(e)

�]u�a�
(ecj) = 1 − �

¡Xo∗�
= 𝑅V�(𝑖)

•
i£¤b
(e)

i£¤b
(ecj) =

�]u�£¤b
(e)

�]u�£¤b
(ecj) = 1 − �

¡Xo∗�

(
= 𝑅i�W(𝑖)

•
i¥£
(e)

i¥£
(ecj) =

�o¦[¥£
(e)

�o¦[¥£
(ecj) = 1 − l

¡Xo
= 𝑅�i(𝑖)

• 𝑇V�
� ,𝑇�i.

� ,𝑇i�W
� can	be	determined	by	offline		profiling

Panel
Factorization

Trailing Matrix
Update

Application	on	LU	factorization

• Online	prediction
1. 𝑇V�

� ,𝑇�i.
� ,𝑇i�W

� ← profilingà architecture characteristic
2. Iterate	from	1	à n
3. 								T§¨

(�)← T§¨
(�Xl) ∗ 𝐑𝐏𝐅 i

4. 								T«¬
(�)← T«¬

(�Xl) ∗ 𝐑𝐃𝐓 i
5. 								T¬¯°

(�) ← T¬¯°
(�Xl) ∗ 𝐑𝐓𝐌𝐔 i

6. Ideal	freq.	ßCalculate	Ideal	Frequency(T§¨
(�),	T«¬

(�),		T¬¯°
(�))	

7. if	Slack	on	CPU	à SetGPUFreq.(Ideal	freq.)
8. if	Slack	on	GPU	à SetCPUFreq.(Ideal	freq.)
9. Process	task:	PF,	DT,	and	TMU	(Slack-related	tasks)
10. Restore	power	state	after	slack-related	computations.	

Optimization	1

• If	target	freq.	no	available:
• We	use	Frequency	Split
• Combine	two	nearby	frequencies	to	approximate	ideal	frequency.
• Determine	freq.	split	ratio	r:	
• 𝑇(= 𝑟𝑇³uv + (𝑟 − 1)𝑇nopq for	r
• 𝑇³uv and 𝑇nopq can	be	determined	by	our	slack	prediction	algorithm

Task1

Task2

CPU:

GPU:

Sync.𝑇(

𝑇(

𝑓mVWXnopq

𝑓UVWXnopqCPU Power:

GPU Power:

𝑓UVWX³uv

𝑟𝑇³uv (𝑟 − 1)𝑇nopq

Optimization	2

• Reduce	DVFS	Overhead
• Frequent	power	state	adjustment	may	brings	much	overhead
• We	use	Relax	Factor	to	adjust	necessity	of	power	state	adjustment.
• Algorithm	with	Relaxed	Slack	Reclamation:
1. If	𝑓oZ[\] not	available
2. 𝑟ß determine	freq.	split	ratio
3. if	𝑟 < 𝑅𝑙𝑥𝐹𝑐𝑡𝑟
4. Avoid	freq.	split,	use	original	freq.
5. else
6. Perform	freq.	split

Outline

• Introduction	and	our	research	motivation
• Our	new	algorithmic	slack	prediction
• GreenLA Library
• Experimental	Evaluation
• Conclusion

Experimental	Environment
• Heterogeneous	System:	IVY

Component CPU GPU

Processor 2*10-core	Intel	 Xeon	E5-2670 2496-core NVIDIA	Kepler K20c

Peak	Perf. 0.4	TFLOPS 1.17	TFLOPS

Frequency	Scaling Capability

Core Freq.	(GHz) Core	Freq.	(MHz)

1.2-2.5(↑	by	0.1) 324, 614,	640,	666,	705,758

Memory 64 GB	RAM 5	GB	RAM

Power	Meter Power	Pack Nvidia-smi tool

Freq. Adjustment	Method CPU	Freq.	Register	Files NVIDIA GPU	Freq.	Setting	API

Experiment	Settings
• We	tested	and	compared:

• Original	MAGMA	implementation
• OS	Level	Race-to-Halt
• Library	Level	Race-to-Halt
• OS	Level	Statistic	Learning	Based	DVFS
• OS	Level	Statistic	Learning	Based	DVFS(Relaxed)
• Algorithmic	Prediction	Based	DVFS
• Algorithmic	Prediction	Based	DVFS(Relaxed)

• All	versions	are	build	on	MAGMA	1.6.1
• Cholesky,	LU,	QR	factorization	on	4	sizes:

• 5120,10240,15360,𝑎𝑛𝑑	20480

Experiment

• Slack	Prediction	Error	Rate:

• Error	Rate	=	Average(|Vº[Z.	�]\��	io»[X	i¼º[�]\��		io»[|
iº¼[�]\��	io»[

)

• Our	Algorithmic	prediction	has	much	lower	prediction	error	rate.	

Benchmarks Statistic	Learning Prediction Algorithmic	
PredictionBase	Iter.(First	10%) Base	Iter.	(First 20%)

Cholesky 10.51% 6.62% 0.96%

LU 9.95% 5.45% 0.16%

QR 11.29% 5.77% 0.52%

Slack prediction accuracy comparison on input matrix size 20480*20480

CPU	&	GPU	Energy	Saving

-15.00%

-10.00%

-5.00%

0.00%

5.00%

10.00%

15.00%

20.00%

Cholesky LU QR

CPU	Energy	Saving	Comparison

OS_r2h OS_cpsr_str OS_cpsr_rlx lib_r2h lib_cpsr_str lib_cpsr_rlx

CPU energy saving on input matrix size: 20480*20480

-10.00%

-5.00%

0.00%

5.00%

10.00%

15.00%

20.00%

Cholesky LU QR

GPU	Energy	Saving	Comparison

OS_r2h OS_cpsr_str OS_cpsr_rlx lib_r2h lib_cpsr_str lib_cpsr_rlx

GPU energy saving on input matrix size: 20480*20480

Overall	Energy	Saving	&	Performance

-10.00%

-8.00%

-6.00%

-4.00%

-2.00%

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

Cholesky LU QR

Total	Energy	Saving	Comaprison

OS_r2h OS_cpsr_str OS_cpsr_rlx lib_r2h lib_cpsr_str lib_cpsr_rlx

Total energy saving on input matrix size: 20480*20480

0

5

10

15

20

25

Cholesky LU QR

Sec
Execution	Time	Comparison

Original OS_cpsr_str OS_cpsr_rlx OS_r2h lib_r2h lib_cpsr_str lib_cpsr_rlx

Overall execution time with input matrix size: 20480*20480

Outline

• Introduction	and	our	research	motivation
• Our	new	algorithmic	slack	prediction
• GreenLA Library
• Experimental	Evaluation
• Conclusion

Conclusion

• Slack-based	energy	saving	approach	requires	accurate	slack	prediction	
to	achieve	high	energy	saving.

• Existing	approaches	cannot	accurately	predicts	slacks.
• So,	we	proposed	a	new	algorithmic	slack	prediction	approach	
considering	both	algorithmic	knowledge	and	architecture	
characteristic.

• Our	experiments	show	that	our	approach	can	save	2x-3x	more	
energy	than	existing	approaches.

• Thanks	everyone	for	attending!

