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Abstract—While many linear algebra libraries have been
developed to optimize their performance, no linear algebra
library considers their energy efficiency at the library design
time. In this paper, we present GreenLA - an energy efficient
linear algebra software package that leverages linear algebra
algorithmic characteristics to maximize energy savings with
negligible overhead. GreenLA is (1) energy efficient: it saves
up to several times more energy than the best existing energy
saving approaches that do not modify library source codes; (2)
high performance: its performance is comparable to the highly
optimized linear algebra library MAGMA; and (3) transparent
to applications: with the same programming interface, existing
MAGMA users do not need to modify their source codes to benefit
from GreenLA. Experimental results demonstrate that GreenLA
is able to save up to three times more energy than the best existing
energy saving approaches while delivering similar performance
compared to the state-of-the-art linear algebra library MAGMA.

Index Terms—energy, performance, critical path, algorithmic
slack prediction, DVFS, CPU, GPU, dense matrix factorizations

I. INTRODUCTION

Scientific applications running nonstop on large-scale High
Performance Computing (HPC) systems must efficiently use
energy for execution. Comprising millions of components,
today’s HPC systems already consume megawatts of power;
to meet an insatiate demand for performance from mission-
critical applications, future systems will consist of even more
components and consume more power [3]. Efficient use of
energy by scientific applications not only reduces energy costs
but also allows greater performance under a given power
budget and improves system reliability.

Scientific applications can greatly benefit from heteroge-
neous computing technologies for energy efficiency. Het-
erogeneous computing systems are accelerated with many-
core processing units. Such accelerators, including GPUs
and coprocessors, consist of hundreds to thousands of low-
power cores, delivering highly power efficient computing. By
offloading massively parallel and compute intensive kernels to
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accelerators, scientific applications can achieve better perfor-
mance while consuming less energy. Today, five of the top
ten [6] computing systems are accelerated with either Intel
Xeon Phi coprocessors or NVIDIA GPUs. Moreover, libraries
and packages commonly used by scientific applications begin
to have heterogeneous computing versions, such as MAGMA
[4] numerical linear algebra library.

Improving the energy efficiency of commonly used libraries
is an effective approach to energy efficient scientific com-
puting. Unfortunately, existing libraries are focused on per-
formance, inconsiderate of energy savings opportunities that
do not adversely impact performance. For example, MAGMA
decomposes a program to tasks and schedules sequential and
less parallelizable tasks on CPU and larger more parallelizable
ones on GPU. Consequently, MAGMA achieves better perfor-
mance than its counterpart libraries for homogeneous CPU
computing. Yet, inherent in the DAG-based task scheduling
in MAGMA, processing units scheduled with tasks on non-
critical paths unavoidably experience idle time, i.e., slack. The
slack can be further exploited for energy savings by leveraging
hardware power-aware techniques including Dynamic Voltage
and Frequency Scaling (DVFS). DVFS has been used to save
energy on CPU by scaling down CPU speed during underused
execution phases [16] [30] [29] [31], and now is also available
on memory [13] [14] and GPU cards [25] [5].

Numerical linear algebra libraries are used in a wide
spectrum of high performance scientific applications. These
libraries solve systems of linear equations, linear least square
problems, and eigenvalue/eigenvector problems. Among nu-
merical linear algebra operations, dense matrix factorizations
can sometimes take a large portion of execution time or even
dominate the whole scientific application execution.

This paper presents GreenLA - an energy efficient linear al-
gebra software package for heterogeneous scientific computing
on GPU-accelerated systems. At the initial stage of the project,
we analyzed highly optimized dense matrix factorization al-
gorithms including Cholesky, LU and QR factorizations. Then
we developed GreenLA to exploit algorithmic knowledge
of linear algebra operations to predict slack on CPU and
GPU, and use application-level DVFS strategies to reclaim the
slack for energy savings. Compared to OS level solutions thatSC16; Salt Lake City, Utah, USA; November 2016
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rely on online learning and prediction for DVFS scheduling
decisions, GreenLA accurately pinpoints and fully reclaims
the slack, achieving more energy savings with less overhead.
As a software package, GreenLA can work in place of
existing numerical linear algebra library MAGMA. Moreover,
GreenLA can be freely enabled or disabled, less intrusive
than the OS level solutions.

The main contributions of this paper are:
• This paper develops GreenLA - an energy efficient linear

algebra software package that effectively leverages the
algorithmic characteristics of the linear algebra operations
to maximize energy savings. GreenLA exploits linear al-
gebra algorithmic knowledge combined with light-weight
online profiling to accurately predict the length of tasks
and slacks, and hence can maximize the reclamation of
slacks via algorithm-based DVFS scheduling.

• GreenLA saves up to three times more energy than the
best existing energy saving approaches that do not modify
the library source codes;

• GreenLA achieves comparable performance to the
highly optimized linear algebra library MAGMA but
needs less energy than MAGMA.

• GreenLA is transparent to applications. With the same
programming interface as the existing library MAGMA,
existing MAGMA users do not need to modify their
source codes to benefit from GreenLA.

The remainder of this paper is organized as follows. Section
II introduces background knowledge. We present GreenLA
design in Section III and its implementation in Section IV.
Evaluation methodology and experimental results are provided
in Sections V and VI respectively. Section VII discusses the
related work and Section VIII concludes the paper.

II. DENSE MATRIX FACTORIZATIONS ON CPU-GPU
HETEROGENEOUS SYSTEMS

Dense matrix factorizations solve systems of linear equa-
tions, linear least square problems, and eigenvalue/eigenvector
problems, etc. The commonly used algorithms include
Cholesky, LU and QR factorizations. These algorithms de-
compose the coefficient matrix A in a linear system Ax = b
into simpler forms, such as LLT and PLU . Consequently
the solution x can be calculated using forward and backward
substitutions. Widely accepted heterogeneous computing li-
braries including MAGMA [4] provide routines of these matrix
factorizations as standard functionality.

Although each suitable for different problem classes,
Cholesky, LU and QR factorizations share similar algorithmic
characteristics. Figure 1 illustrates the main steps of highly-
optimized dense matrix factorizations on CPU-GPU heteroge-
neous systems in a global view. Factorizing a panel matrix is
a Level 2 BLAS [1] operation and involves diagonal matrices
factorization and panel factorization. Due to the low compu-
tational complexity and high sequentiality, panel factorization
is performed on the CPU, shown as the green/yellow boxes.
Updating a trailing matrix is a Level 3 BLAS operation with

high computation complexity and high degrees of parallelism.
It is performed on the GPU for performance efficiency, shown
as the white boxes.

Figure 1 also demonstrates how a dense matrix factoriza-
tion proceeds on a CPU-GPU platform with data movement
between CPU and GPU in a local view. As mentioned,
factorizing the panel matrices is executed on the CPU; and
updating the trailing matrix is massively parallelized on the
GPU. The panel matrices calculated on the CPU are offloaded
to the GPU and used by the GPU to update the trailing
matrices. For the sake of performance, the next panel matrix
that is updated on the GPU is immediately copied back to
the CPU before the entire trailing matrix finishes. As such,
panel factorization is simultaneously executed on the CPU
as the rest of trailing matrix is updated on the GPU. These
processes proceed by a submatrix block, starting from the left
upper corner of the global matrix and finishing when the whole
global matrix is fully factorized.

III. GREENLA ENERGY SAVING METHODOLOGY

At the coarse level, the matrix factorization algorithms
repeatedly assign two dependent types of tasks to CPU and
GPU respectively. In each iteration slack presents on both CPU
and GPU. GreenLA reclaims the slack for energy savings
with three main components. First, it identifies the critical
path and slack on the non-critical paths on the CPU and
GPU by analyzing the heterogeneous algorithms. Second,
it uses algorithmic knowledge to predict and quantify the
slack. Third, it exploits DVFS on the CPU and GPU to fully
reclaim the slack on the non-critical paths for energy savings.
The following subsections present detailed design of each
components.

A. Critical Path and Slack Analysis

For task-parallel applications, a slack refers to a time
period when one computer component idly waits for another.
Typical causes of slack include load imbalance, inter-task or
interprocess communication, and memory access stalls. Due
to the pervasive presence in applications and systems, slack
has been recognized as important energy saving opportunities
in HPC. In a task-parallel application, a Critical Path (CP) is
a particular sequence of tasks spanning from the beginning to
the end of the execution where the total slack amounts to zero.
While slack on the non-critical paths is usually exploited for
energy savings, it is non-trivial to fully reclaim them without
impacting application performance [32].

As shown in Figure 1, slack is present on the CPU and
GPU in the heterogeneous matrix factorization algorithms.
Specifically, the CPU must wait for the next updated panel
from the GPU, and the GPU must wait for the factorized panel
from the CPU. In addition, either the CPU waits for the GPU
to finish updating the trailing matrix or the GPU waits for the
CPU to finish factorizing the panel matrix. Moreover, the slack
varies over iterations as the task sizes change. Being able to
accurately quantify and predict the slack is necessary before
reclaiming them for optimal energy savings.



Fig. 1. Global View and Local View of Dense Matrix Factorizations on CPU-GPU Heterogeneous Systems.

B. Online Algorithmic Slack Prediction
For energy saving purposes, we must first know where

and when the slack occurs and for how long they last.
Given an application, one method to obtain such knowledge
is to instrument the source code with timing functions and
run the instrumented program with various problem sizes to
collect the profiles. Alternatively, OS-level profiling can be
performed with hardware performance counters on processors.
Neither method is portable, and both methods require extensive
profiling. In GreenLA, we investigate an online algorithmic
slack prediction approach that accurately predicts the varying
slack at runtime with minimum profiling.

Given the heterogeneous matrix factorization algorithms, the
slack on the CPU and GPU is mainly impacted by the software
and hardware parameters.
• Problem size: the sizes of the panel matrix and trailing

matrix scheduled on the CPU and GPU respectively based
on the algorithmic characteristics;

• CPU compute capacity: the number of floating point
operations the CPU are able to perform in one second
for the assigned tasks;

• GPU compute capacity: the number of floating point
operations the GPU are able to performance in one second
for the assigned tasks.

• Data transfer speed: the number of bytes the GPU are
able to transfer between CPU memory and GPU memory.

Figure 2 plots the difference between CPU and GPU task
execution time for the first 100 iterations of LU factorization
with various problem sizes and compute rates. For instance,
10240 and 20480 are two global matrix sizes, and high low
means that the CPU runs at the highest speed and the GPU
runs at the lowest speed. A non-zero difference between the
execution time indicates that either CPU or GPU waits for
the other in the current iteration. Appropriately adjusting the
compute rate of CPU or GPU can narrow and even eliminate
the time difference.

In GreenLA, we leverage our prior knowledge about the
factorization algorithms to quantitatively predict the slack be-

Fig. 2. The difference between CPU and GPU execution time for the first
100 iterations of LU Factorization. The difference varies over iterations, and
is a function of problem size and the CPU and GPU compute rates.

tween CPU and GPU in each iteration. Two major factors that
will affect the behavior of slack are the CPU/GPU execution
time and the data copy time between CPU and GPU.

We first focus on the execution time. We use LU factoriza-
tion as an example here. It would be similar for Cholesky
and QR factorization. Assuming the execution time of the
first iteration of a N × N with block size nb factorization
are known, we denote the CPU time for the N × nb panel
factorization as TCPU

0 , and the GPU time for the N ′ × N ′
trailing updating as TGPU

0 where N ′ = N − nb. We can use
the algorithmic information to predict the execution time of
the remaining iterations. For now we consider fixed compute
capacity for the CPU and GPU. As the time complexities
of panel factorization and trailing updating are O(N3) for
a matrix size N, the execution time for iteration k and k + 1
have the following relation.

TCPU
k+1

TCPU
k

=
O(N3

k+1)

O(N3
k)

=
(N − (k + 1)× nb)× nb2

(N − k × nb)× nb2

= 1− nb

N − k × nb
(1)

TGPU
k+1

TGPU
k

=
O(N3

k+1)

O(N3
k)

=
(N − (k + 1)× nb)2 × nb

(N − k × nb)2 × nb

=

(
1− nb

N − k × nb

)2

(2)



Similarly, we can also predict the data copy time between
CPU and GPU. Assuming the data copy time of the first
iteration is TCOPY

0 for transferring a panel to GPU from
CPU and then transfer it back. Assuming the data transfer
speed is constant, we can use TCOPY

0 and the size change
of panel over iterations to predict future data copy time. In
LU factorization, the space complexity of panel needed to be
transferred is O(N2), the data copy time for iteration k and
k + 1 have the following relation:

TCOPY
k+1

TCOPY
k

=
O(N2

k+1)

O(N2
k)

=
(N − (k + 1))× nb2

(N − k)× nb2

= 1− 1

N − k
(3)

Since, CPU must wait for data copy is done before it
can starts it computation, the slack during iteration k can be
quantified as follows:

slackk =
∣∣ TCPU

k + TCOPY
k − TGPU

k

∣∣; 0 ≤ k < N

nb
(4)

A positive value indicates that the GPU have slack time
to wait for the CPU, while a negative value indicates that the
CPU has slack to wait for the GPU. Value zero means that the
CPU and GPU finish the current iterations at the same time.
The initial slack is the time difference for the first iteration,
i.e., k = 0.

slack0 =
∣∣ TCPU

0 + TCOPY
0 − TGPU

0

∣∣ (5)

From Equations 1-4, we can quantify the slack for the rest
CPU-GPU tasks, provided with the execution time of the first
iteration. This algorithmic slack prediction is accurate and
lightweight compared to OS level slack prediction. By using
the prior algorithmic knowledge, only minimal profiling is
necessary.

C. CP-Aware Slack Reclamation

With predicted slack over the iterations, we explore CP-
aware slack reclamation to save energy [22] [28] [32]. To
adjust the time it takes for CPU or GPU, we can either
adjust the computation time or data copy time. However,
since it is usually hard to accurately adjust data transfer
speed and it also brings much less energy saving benefit
than computation, we focus on adjusting the execution time.
Specifically, we employ properly reduced compute capability
on the processing units on the non-critical path such that the
total slack amount to zero. We exploit DVFS, an effective
power-saving hardware technology available on the CPU and
GPU for this purpose. DVFS-capable processing units have
multiple performance/power states. Prior studies [17] [9] [7]
show that running these processing units at lower states
during slack significantly reduces power and energy without
impacting overall application performance. As shown in Figure
2, with different inputs and power states, even within one run,
slack can reside at either CPU side or GPU side. We apply
accordingly either CPU DVFS or GPU DVFS depending on
the source of slack.

Fig. 3. Offline and Online Framework of GreenLA.

In order to quantitatively evaluate GreenLA, we theoret-
ically analyze the upper bound of possible energy savings
for heterogeneous matrix decomposition algorithms. Theoret-
ically, the maximum energy savings is as follows:

∆Esys =
Enew

Eold
=

(Pnew
s + Pnew

d + Pother)× Tnew
(P old

s + P old
d + Pother)× Told

(6)

Tnew = T ′new + TDV FS (7)

Here, Ps and Pd are the static power and dynamic power
respectively consumed by the CPU and GPU, where Pd is
a function of processor frequency for DVFS-capable compo-
nents. Pother is the power consumption of other computer
components. Tnew is the execution time of GreenLA in-
cluding the overhead brings by the DVFS, while Told is the
execution time of the original heterogeneous factorization. We
denote Pd = nPtotal, Ps + Pother = (1 − n)Ptotal, where n
is a ratio of dynamic CPU/GPU power Pd within the total
system power costs. By assuming Tnew = Told and adopting
Pd =∝ f2.4 from [15], we can simplify Equation 7 as:

∆Esys =
nPtotal

fnew

fold

2.4
+ (1− n)Ptotal

nPtotal + (1− n)Ptotal
= 1− n

(
1− fnew

fold

2.4
)

= 1− n

1− nb

N

N
nb∑
1

(
min(TCPU

k , TGPU
k )

max(TCPU
k , TGPU

k )

)2.4


(8)

IV. GREENLA DESIGN AND IMPLEMENTATION

We present the design and implementation details of
GreenLA, including strict and relaxed slack reclamation and
coupled GPU DVFS.

Figure 3 illustrates the architecture and main components
of GreenLA. It minimally profiles the application offline to
obtain the execution time of the first CPU-GPU tasks at dif-
ferent power states and first data copy time. Such data is used



to derive the slack time during the first iteration. GreenLA
uses online algorithmic slack prediction to accurately obtain
the slack for the rest of the CPU-GPU tasks. In cases where
an available frequency is unable to eliminate a slack, we split
the slack and use two consecutive available frequencies.

TABLE I
NOTATION IN ALGORITHMS AND FORMULATION.

task One task of CPU-GPU dense matrix factorizations
fl The lowest CPU/GPU core frequency set by DVFS
fh The highest CPU/GPU core frequency set by DVFS

f ′l
The lowest GPU core frequency paired with the
highest GPU memory frequency set by DVFS

fideal The optimal ideal frequency to eliminate slack
T Execution time of a task running at fh
Tx Execution time of a task running at fx

slack
Amount of time that a task can be delayed by w/o
increasing the total runtime of the application

flower The neighboring frequency smaller than fideal
fupper The neighboring frequency greater than fideal
fSet The frequency set consisting of all used frequencies

CP
One task trace consisting of tasks to finish the
application with the total slack of zero

LastFreq Frequency used after the last frequency scaling
r Ratio between two durations at split frequencies

A. Strict Slack Reclamation

With strict slack reclamation, we apply DVFS on the non-
critical path in each iteration of the factorization algorithm.
By properly lowering the frequency of the processing units
to just eliminate the slack, we can reduce power consumption
without impacting performance for the current iteration.

Prior studies have shown that the execution time of
compute-intensive workloads is proportional to the frequency
of processing units. Based on this observation, we derive the
ideal target frequency for the processing units on the non-
critical path for given current and targeting execution time.
In GreenLA, we take into account the available discrete fre-
quencies provided by CPU/GPU DVFS. In cases that the ideal
target frequency is not equivalent to an available frequency, we
use a weighted sum of two available neighboring frequencies
and run the processing units at each frequency for a ratio of
duration. Table I lists the notation used in the algorithms and
formulation henceforth.

Algorithm 1 details the selection of the CPU or GPU fre-
quency if slack occurs and Algorithm 2 presents the frequency
approximation [35] [29] with CP-aware energy efficient DVFS
scheduling. For simplicity and readability, we use five helping
functions in these two algorithms: SetFreq(), GetApprox-
Ratio(), GetSlack(), GetCurFreq(), and GetOptFreq(). Of
these, SetFreq() is a wrapper of CPU/GPU DVFS APIs
that set specific CPU/GPU frequencies and GetCurFreq() is
used to inquire the current frequency in use. The other three
functions are more complex and will be detailed next.

These three functions use prior knowledge of the mapping
between frequency and execution time for the CPU and GPU
tasks. Specifically, GreenLA records runtime of the first
CPU-GPU tasks at different frequencies by instrumenting

Algorithm 1 CPU/GPU DVFS Scheduling

CPU GPU DVFS(CP , fSet, task, k)
1: if (task ∈ CP ) then
2: SetFreq(fh)
3: else
4: slack ← GetSlack(task, k)
5: if (slack > 0) then
6: fideal ← GetOptFreq(task, slack)
7: LastFreq ← GetCurFreq()
8: fSet ← fSet ∪ fideal ∪ LastFreq
9: if (TCPU < TGPU ) then /* CPU DVFS */

10: Call CP SSR(slack, fSet) or CP RSR(slack,
fSet)
11: else if (TCPU > TGPU ) then /* GPU DVFS */
12: Call GPU DVFS(slack, fSet)
13: end if

Algorithm 2 Strict CP-aware Slack Reclamation

CP SSR(slack, fSet)
1: if (fl ≤ fideal ≤ fh) then
2: if (fideal /∈ fSet) then
3: r ← GetApproxRatio(Tlower, Tupper, slack)
4: SetFreq(flower, fupper, r)
5: else SetFreq(fideal)
6: else if (fideal < fl) then
7: SetFreq(fl)
8: end if

timestamps in the source codes, and use them to estimate the
runtime and slack for the rest of the CPU-GPU tasks using
Equations 1-4. Given T , Tlower, Tupper, and slack of each
pair of CPU-GPU tasks, we split frequency with ratio r and
the ideal frequency fideal can be solved as follows:

T + slack = Tlower × r + Tupper × (1− r)
fideal × (T + slack) = fh × T
where T 7→ fh, Tlower 7→ flower, Tupper 7→ fupper

subject to f ′l ≤ flower < fideal < fupper ≤ fh

(9)

The resulting target frequency fideal is compared against the
available frequencies (i.e., line 2 in Algorithm 2). If it matches
an available frequency, the matched available frequency can
be used directly. Otherwise, neighboring frequencies flower

and fupper are assigned in accordance with the ratios r and
1− r individually. In case that fideal is lower than the lowest
available frequency, the lowest available frequency is adopted,
as sketched in Algorithm 2.

B. Relaxed Slack Reclamation

In contrast to strict slack reclamation that applies DVFS
at each iteration of the algorithms, relaxed slack reclamation
forms multiple iterations into groups and apply DVFS at the
group level. Relaxed slack reclamation offers two advantages.
First, it reduces the time and energy overhead incurred by



Algorithm 3 Relaxed CP-aware Slack Reclamation

CP RSR(slack, fSet)
1: if (fl ≤ fideal ≤ fh) then
2: if (fideal /∈ fSet) then
3: r ← GetApproxRatio(Tlower, Tupper, slack)
4: if (r < RlxFctr) then
5: if (LastFreq 6= fupper) then
6: SetFreq(fupper)
7: LastFreq = fupper
8: else Do Nothing
9: else SetFreq(flower, fupper, r)

10: else SetFreq(fideal)
11: else if (fideal < fl) then
12: SetFreq(fl)
13: end if

frequent DVFS scheduling [31]. Second, it reclaims extra
slack on the CPU and GPU caused by data dependencies,
in addition to the slack caused by workload imbalance that
strict reclamation targets. In each iteration, the GPU waits for
the factorized panel from the CPU, and the CPU waits for
the updated panel from the GPU. The slack is reclaimed by
relaxed slack reclamation but not by strict slack reclamation.

We use a relaxation factor (RlxFctr in Algorithm 3) to
determine the number of iterations in a group for scheduling
decisions. As shown in Algorithm 3, if the calculated split
frequency ratio r is less than RlxFctr (e.g., 0.05), the
duration at flower is negligible according to Equation 9. In
this case, we run the processing units at fupper. The selection
of RlxFctr is based on algorithmic characteristics. Slack
varies with iterations and the variation rate provides us the
criteria of choosing an appropriate RlxFctr for the optimized
energy efficiency. Note that even with a constant RlxFctr,
the number of iterations in a group may vary over time during
a run.

C. Coupled GPU Core and Memory DVFS

DVFS can be applied to power-scalable hardware compo-
nents, including CPU, GPU, and memory. It is noteworthy
that on today’s architectures such as GPU, core and memory
frequencies are coupled and have to be switched simultane-
ously as a combination [5], which differs from CPU DVFS
where only core frequency is scaled. Table II lists memory-
core frequency pairs for two NVIDIA GPU.

TABLE II
GPU MEM.-CORE FREQ. PAIRS (UNIT: MHZ).

NVIDIA Kepler Tesla K20c NVIDIA Kepler Tesla K40c
Memory Freq. Core Freq. Memory Freq. Core Freq.

2600

758

3004

875705 810666 745640 666614
324 324 324 324

Algorithm 4 GPU Core/Memory DVFS Scheduling

GPU DVFS(slack, fSet)
1: if (f ′l ≤ fideal ≤ fh) then
2: Call CP SSR(slack, fSet) or CP RSR(slack,
fSet)

3: else if (fl ≤ fideal < f ′l ) then
4: r ← GetApproxRatio(Tl, T ′l , slack)
5: SetFreq(fl, f ′l , r)
6: else if (fideal < fl) then
7: SetFreq(fl)
8: end if

As discussed earlier, in our scenario, slack may occur either
on the CPU side or on the GPU side. Algorithm 1 strategically
makes CPU/GPU DVFS decisions depending on the source
of slack. In particular, for the case of eliminating slack from
GPU side, due to the coupled core and memory frequencies
of GPU, a combined GPU core/memory DVFS scheduling
strategy is necessary. Line 3-7 in Algorithm 4 details the
combined strategy, where split frequency ratio r is calculated
similarly as Equation 9. Equation 10 shows the calculation,
and the difference is that scaling down to fl pairs with memory
frequency reduction to the lowest.

T + slack = Tl × r + T ′l × (1− r)
fideal × (T + slack) = fh × T
where T 7→ fh, Tl 7→ fl, T

′
l 7→ f ′l

subject to fl ≤ fideal < f ′l

(10)

In our experiments, GPU tasks that update the trailing matri-
ces involve considerable computation and memory accesses.
Therefore simultaneously decreasing GPU core/memory fre-
quencies has dual performance impact on computation and
memory accesses. Our approach takes care of these scenarios
since the dual slowdown has been recorded in T ′, which is the
runtime of a task at the lowest core and memory frequencies.

V. EVALUATION

In this section we detail the evaluation of GreenLA on
a GPU-accelerated heterogeneous system: a linear algebra
library of dense matrix factorizations (Cholesky, LU and
QR) with an energy efficient CPU/GPU DVFS co-scheduling
approach via online algorithmic slack prediction.

A. Evaluation Methodology

For comparison purposes, we present a state-of-the-art OS
level method for slack prediction, and another type of classic
DVFS scheduling strategy for saving energy. We stress the
difference in other approaches against ours, and argue that
our solution can outperform in both the accuracy of slack
prediction and the amount of energy savings in our scenario.
OS Level Slack Prediction. As another important slack
prediction method, OS level slack prediction either work for
a specific type of applications sharing similar features, e.g.,
with stable/slowly-varying execution characteristics, or require
considerable training to obtain accurate prediction results.



Online prediction mechanism presented in [24] [30] [29] is
based on a simple assumption that task behavior is identical
every time a task is executed. It is however defective for appli-
cations with variable workloads, such as matrix factorizations,
where the remaining unfinished matrices become smaller as
the factorizations proceed. Execution time shrinks and slack
varies as the workloads become lighter, which invalidates the
above prediction mechanism.

Regardless of the simplest prediction above, several en-
hanced history-based workload prediction algorithms have
been proposed to handle the variation in HPC runs and produce
more accurate prediction results [34] [12] [21] [18]. The
RELAX algorithm employed in CPU MISER [18] exploits
both prior predicted profiles and current runtime measured
profiles: W ′i+1 = (1 − λ)W ′i + λWi, where λ is a relaxation
factor for adjusting the percentage of dependent information
on the current measurement. This enhanced prediction can
also be error-prone for dense matrix factorizations, since using
a fixed λ cannot handle length variation of iterations of the
core loop due to the shrinking remaining unfinished matrices.
The use of 2-D block cyclic data distribution further brings
complexity to the prediction. Moreover, statistical predictive
models have been adopted for accurate workload prediction,
e.g., Hidden Markov Models (HMM) used in [36] and Pre-
dictive Bayesian Network (PBN) used in [23]. Using offline
training and learning based on historical records, results with
high accuracy were achieved (average prediction error 3.3%
via HMM and 0.43% via PBN). Although effective offline,
online slack prediction for HPC applications using statistical
models can be costly: Considerable amount of execution
traces are required to train the statistical predictive models for
accurate slack prediction. For instance, the training dataset in
[36] was obtained by running applications on one server and
evaluated on one different server, which can be impractical for
HPC runs as discussed earlier.
Race-to-halt Energy Saving. As the name suggests, race-to-
halt (or race-to-idle) is an energy saving strategy that enforces
power-scalable processors (e.g., CPU and GPU) to race when
workloads are ready for processing, and to halt when no tasks
are present and the processors are idle/waiting. In other words,
race refers to executing the workloads at the highest frequency
and voltage of the processors for the peak performance until
the finish of the workloads, and halt implies that processor
frequency and voltage are switched to the lowest level from
the end of the last executed workload to the start of the
next workload. This straightforward solution can effectively
save energy without incurring performance loss due to the
following inferences: (a) The peak performance of processors
is guaranteed during computation as in original runs; (b) the
peak performance of processors is not needed when no tasks
are being executed and processors are waiting for data. As
discuss earlier, in our scenario, slack can arise at either CPU
side or GPU side, depending on various factors. In either
case, the peak performance of the idle/waiting processors is
not necessary. Per race-to-halt, we apply to them the lowest
power state during the slack and switch back to the highest

one until the next workload is available. race-to-halt is CP-
free such that no CP detection is required before any energy
saving decisions are made. Thus it is generally lightweight and
easy to implement.

We implemented OS and library level approaches using
race-to-halt and online HMM-enabled statistical slack pre-
diction individually. Further, we implemented relaxed slack
reclamation to compare with the default strict slack recla-
mation. Evaluated metrics include slack prediction accuracy,
and energy and performance efficiency. For readability, we
henceforth denote different test cases as follows:
• MAGMA: The original MAGMA runs of different-scale

CPU-GPU Cholesky, LU and QR factorizations without
any energy saving approaches;

• OS_r2h: The OS level implementation [2] based on a
CPU race-to-halt workload prediction algorithm similar
to the RELAX algorithm;

• lib_r2h: The library level implementation based on
algorithmic race-to-halt on both CPU and GPU;

• OS_cpsr_str: The OS level implementation based on
online HMM-enabled statistical slack prediction, with
strict slack reclamation for each iteration;

• OS_cpsr_rlx: The OS level implementation based on
online HMM-enabled statistical slack prediction, with
relaxed slack reclamation (RlxFctr = 0.05) for blocked
iterations;

• lib_cpsr_str: The library level implementation
based on online algorithmic slack prediction, with strict
slack reclamation for each iteration;

• lib_cpsr_rlx: The library level implementation
based on online algorithmic slack prediction, with re-
laxed slack reclamation (RlxFctr = 0.05) for blocked
iterations.

Among all energy saving solutions, lib_cpsr_rlx em-
pirically achieves the optimal energy efficiency with negligible
performance loss, and thus we adopt it as our GreenLA in
the comparison against MAGMA later.

B. Experimental Setup

We applied all above test scenarios to CPU-GPU Cholesky,
LU and QR factorizations (MAGMA version 1.6.1) with mul-
tiple global matrix sizes each (ranging from 5120 to 20480).
However, due to limit space, we only show the result for
input size of 20480 × 20480. For other input matrix sizes,
the results are similar. All experiments were performed on
a power-aware many-core CPU-GPU server. Table III lists
hardware configuration of the experimental platform. The total
system dynamic and static/leakage energy consumption of the
above runs was measured using nvidia-smi tool [5] provided
by NVIDIA, and following [26], we used PowerPack [19], an
integrated software/hardware framework for profiling and anal-
ysis of power/energy costs of HPC systems and applications.
A separate meter node with PowerPack deployed was used to
collect power/energy costs of all hardware components of the
system, and the data was recorded in a log file and accessed
after the above runs.



TABLE III
HARDWARE CONFIGURATION FOR EXPERIMENTS.

Component CPU GPU

Processor 2×10-core Intel Xeon 2496 CUDA-core NVIDIA
Ivy Bridge E5-2670 Kepler GK110 Tesla K20c

Peak Perf. 0.4 TFLOPS 1.17 TFLOPS
Core&Mem. Core:1.2-2.5(↑by0.1)GHz See left column of Table IIFreq. Gear Mem.:Not DVFS-capable

Memory 64 GB RAM 5 GB RAM

Cache 64 KB L1, 256 KB L2, 13 SMX units, 64 KB and
25.6 MB L3 48 KB read-only d-cache

OS Fedora 21, 64-bit Linux kernel 3.17.4
Pwr. Meter PowerPack nvidia-smi with -ac option

VI. RESULTS

Next we present experimental results of our evaluation via
fine-grained comparison. We first demonstrate the performance
and energy efficiency of our approach by comparing to the
widely used numerical linear algebra MAGMA library.

TABLE IV
AVERAGE ERROR RATES OF SLACK PREDICTION FOR FOUR RUNS EACH

OF CHOLESKY/LU/QR FACTORIZATION.

OS Level Statistical
Benchmarks & Slack Prediction Library Level Algorit-
Test Scenarios Base Iter. Base Iter. hmic Slack Prediction

(First 10%) (First 20%)
Cholesky 10.51% 6.62% 0.96%(5120 - 20480)

LU 9.95% 5.45% 0.16%(5120 - 20480)
QR 11.29% 5.77% 0.52%(5120 - 20480)

A. Average Error Rate of Slack Prediction

We first showcase the accuracy of slack prediction of the
OS level statistical approach with two training datasets and our
library level algorithmic approach. Table IV summarizes the
average error rate of slack prediction of the two approaches. As
stated in section 4.3, HMM-based statistical slack prediction
requires a group of base iterations (usually the first few
iterations of a HPC run) to serve as an online training dataset.
The prediction accuracy is highly associated with the size of
the training dataset according to Table IV: The more base
iterations are used, the more accuracy is achieved. However,
the highest accuracy of the OS level approach is 5.45% for LU,
while our library level approach can be as accurate as having a
0.16% error rate for LU. This low error rate of slack prediction
can greatly facilitate forthcoming energy saving. For further
comparison, we select the OS level statistical approach with
higher slack prediction accuracy for more experiments.

B. Total Energy Saving Comparison

As shown in Figure 4, our library level CP-aware slack
reclamation approaches could save more energy than current
state-of-the-art approaches. Current approaches could only
either save less energy or even costs extra energy. For example,
OS level race-to-halt only slows down CPU when CPU uti-
lization is below a threshold, while library level race-to-halt
reduces both CPU and GPU speed when no corresponding

workloads are running according to algorithmic character-
istics. Due to high online probing overhead, the OS level
race-to-halt approach incurs even more energy consumption,
while the more lightweight library level race-to-halt approach
can save minor energy savings (up to 3.6%) as shown in
Figure 4. Other two approaches we compared are OS level
approaches statistical slack prediction OS_cpsr_str and
OS_cpsr_rlx. Since the two solutions produced inaccurate
slack prediction, the inaccuracy results in inappropriate timing
and duration of DVFS, which cannot eliminate possible slack
– saving less energy than the optimal, or incurs performance
loss due to overdue or overdone DVFS – consuming even
more energy than the original run. As shown in Figure 4, those
two approaches consumed more energy(1%–2%). Even if the
OS level slack prediction can achieve the same accuracy as
our library level approaches, the OS level solutions can waste
much more energy saving opportunities than our library level
approaches due to the considerable amount of iterations used
for training, compared to only execution information of the
first iteration needed by our library approach. On the other
hand, our library level CP-aware slack reclamation approaches
could save several times more energy. specifically, the energy
saved from our approach is 2.5x of the energy saved using
current best approach in Cholesky factorization, 1.5x in LU
factorization and 3x in QR factorization. Moreover, different
than our strict slack reclamation, which tries to reclaim all
slacks using DVFS, our relaxed slack reclamation only tries
to apply DVFS when split frequency ratio is larger than the
RlxFctr, which eliminated some unnecessary power state
adjustments. The reduced number of power adjustment brings
less DVFS performance overhead, which further saves more
energy for the overall application. Note that, the Cholesky,
LU and QR factorizations are very compute intensive. Based
on the energy efficiency model in [11], their heterogeneous
implementations in MAGMA have really high computation ef-
ficiency, which make them hard to save more energy. Although
there are many hardware components involve the execution
process, we only focus on reducing the energy consumption
of CPU and GPU.

C. CPU Energy Saving Comparison

Now, we focus on the energy saving on the CPU side.
Note that since we only focus on reducing the energy cost
of CPU, the energy measurement here does not include RAM
energy consumption. We can see from Figure 5 the single core
CPU energy comparison of Cholesky, LU and QR factorization
using different energy saving solutions. As mentioned before,
OS level race-to-halt only adjust the performance/power state
of the CPU, which also introduce more probing overhead,
it cost more energy on the CPU side (7%–8%). As for
the OS level online HMM-enabled statistical slack prediction
approaches, they need first 10%–20% iterations to do online
training on the CPU, which not only brings more overhead,
but also wastes valuable slack reclamation(energy saving) op-
portunities. However, thanks to the high accurate algorithmic
slack prediction, our library level CP-aware slack reclamation
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using several different energy saving solutions. Positive values indicate energy
saving. Negative values indicate extra energy cost. Our approaches(right two
bars in each group) shows more energy saving on CPU than existing state-
of-the-art solutions.

approaches could save more energy on the CPU side when the
slack resides on CPU.

D. GPU Energy Saving Comparison

Next, we focus on the energy saving on the GPU side.
As we can see from Figure 6, even GPU is assigned more
computation tasks, it usually finish its tasks faster than the
CPU, so slacks are more likely to occur on the GPU side,
and thus it can save more energy. For library level race-to-
halt approach, since it rely on algorithmic execution time
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Fig. 6. The amount of energy saved in percentage on GPU using several
different energy saving solutions. Positive values indicate energy saving.
Negative values indicate extra energy cost. Our approaches(right two bars in
each group) shows more energy saving on GPU than existing state-of-the-art
solutions.
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Fig. 7. Execution time of Cholesky, LU and QR factorization using several
different energy saving solutions. Right two bars in each group show our re-
sults, which have similar performance than existing state-of-the-art solutions.

prediction, it can save energy to some degree. But it still
waste some energy in ”halt” state, so it saves less energy than
our approach. As for OS level race-to-halt, it does not adjust
the performance/power of the GPU at all and poor CPU side
adjustment brings more performance overhead, so the overall
execution time is prolonged, which results higher GPU energy
consumption. Similar as on the CPU, OS level online predic-
tion approach suffers from inaccurate slack prediction, which
leads to higher GPU energy consumption. Our approaches, on
the other hand, could save up to 16% energy on the GPU.



E. Time Overhead

All kinds of performance loss is observed from the ex-
periments as shown in Figure 7. Typical performance de-
grading factors for OS level solutions consist of dynamic
monitoring overhead (OS_r2h), online training overhead
(OS_cpsr_str and OS_cpsr_rlx), DVFS overhead (all
solutions), and performance loss from overdue or overdone
DVFS due to inaccurate slack prediction (OS_cpsr_str and
OS_cpsr_rlx). On the other hands, observed performance
loss for library level solutions is from frequency approxi-
mation errors and DVFS overhead. Among all approaches,
OS_cpsr_str has the highest performance loss (up to
14.4%, due to overdone DVFS from inaccurate slack pre-
diction), while our lib_cpsr_str/lib_cpsr_rlx incurs
minor performance loss (as low as 1.2%).

VII. RELATED WORK

The growing prevalence of heterogeneous architectures has
motivated a large body of energy efficient approaches[27],
but few of them were designed specifically for numerical
linear algebra operations, such as dense matrix factorizations
extensively used in HPC. Some efforts presented next can also
be applied to heterogeneous systems with similar techniques.

OS-LEVEL SCHEDULING. Liu et al. [25] proposed several
power-aware techniques for a CPU-GPU heterogeneous sys-
tem including two static/dynamic mapping algorithms and one
aggressive voltage reduction scheme. Decent power and energy
savings were achieved (more than 20%) towards several matrix
workloads, but our work targets different matrix algorithms
with less slack and thus less energy saving opportunities. Their
work focused on time-sensitive applications that require signif-
icant computational capacity, such as real-time scoring of bank
transactions, live video processing, etc. Our work can also
meet fine-grained timing requirements of applications, which
is guaranteed by respecting tasks on the critical path. Hong et
al. [20] proposed an integrated power and performance model
to statically determine the optimal number of processors for a
given application running on GPU, based on the intuition that
using more cores is not necessary for applications reaching the
peak memory bandwidth. By using fewer GPU cores, average
11% energy savings can be achieved for memory bandwidth
limited applications. The proposed system can be used by a
thread scheduler for online energy saving decision-making.
This approach was also evaluated on different applications
than us – the more energy savings do not demonstrate their
strength.

LIBRARY-LEVEL SCHEDULING. Alonso et al. [8] incorpo-
rated two energy saving techniques at library level to schedule
the computation of dense linear algebra operations on a hybrid
platform of a multicore CPU and multiple GPU. Specifically,
idle threads were blocked when no tasks to process, and
busy-waiting threads were also blocked by synchronization
primitives when waiting for a device to finish its work. Due

to lack of consideration of algorithmic characteristics of dense
linear algebra operations, the reported average energy cost
reduction was around 4% for Cholesky and 7% for LU.
Anzt et al. [10] applied energy efficient techniques on GPU-
accelerated iterative linear solvers for memory-intensive sparse
linear systems, and demonstrated that considerable energy
savings (17.8% on average) can be fulfilled without harming
performance noticeably, by setting CPU to a low power state
during the time when GPU is running while CPU is busy-
waiting. However, the proposed solution cannot work for our
scenario where CPU and GPU frequently interact with data
movement. Note that there exists more slack for sparse linear
algebra operations and more energy savings are expected
compared to dense ones.

ONLINE AND OFFLINE WORKLOAD PREDICTION. There
exist numerous solutions that predict workload and slack,
facilitating energy saving decision-making, spanning from
online to offline. Zhu et al. [36] proposed a power-aware
consolidation scheme of scientific workflow tasks for energy
and resource cost optimization. The pSciMapper framework
consists of online consolidation and offline analysis for re-
source usage prediction (e.g., CPU utilization) using Hidden
Markov Model (HMM), with reported average prediction error
of moderate 3.3%. However, the drawback of this approach is
considerable slowdown around 15%, which is unacceptable
in HPC nowadays. For comparison purposes, we also adopt
HMM-based slack prediction in an online fashion instead, and
experimental results indicate a higher prediction error (up to
11.29%) can be incurred. Li et al. [23] applied a Predictive
Bayesian Network to identify daily workload patterns and
adjust resource provisioning accordingly for cloud datacenters.
The prediction algorithm was evaluated to be considerably
effective (only 0.43% average prediction error was observed).
Our work differs from this offline workload prediction –
GreenLA is able to achieve energy savings online for HPC
runs using negligible amount of training dataset from the
earlier stage of the runs. Tse et al. [33] proposed a novel
Monte Carlo simulation framework that supports multiple
types of hardware accelerators (FPGA and GPU) and provided
scheduling interfaces to adaptively perform load balancing at
runtime for performance and energy efficiency. The energy
savings achieved is however from performance gain obtained
from the collaborative simulation framework, not from an
energy efficient strategy.

VIII. CONCLUSIONS AND FUTURE WORK

Energy efficiency is becoming a critical factor of concern
when achieving parallelism in high performance scientific
computing in this era. The growing prevalence of hetero-
geneous architectures nowadays brings more concerns on
saving energy for the emerging systems. Essentially fulfilling
energy efficiency requires accurate slack prediction with minor
performance degradation. Existing energy efficient approaches
span from OS level to application level, which can either be



inaccurate or cost-inefficient due to variable execution patterns
of the target applications and lengthy training of the employed
prediction model. In this paper, we propose a lightweight
energy efficient approach for widely used numerical linear
algebra software that utilizes algorithmic characteristics to
obtain accurate slack prediction and thus gain the optimal
energy savings. Experimental results on a many-core CPU-
GPU platform demonstrate that our library level solution can
achieve up to 8.5% energy saving than original implementation
with negligible performance loss (as low as 1.2%), which
3x more energy savings compared to classic race-to-halt and
workload prediction approaches.

Although the currently achieved energy savings are mod-
erate, provided a limited amount of slack for the target
applications, more energy can be saved by reducing the minor
performance loss incurred by our approach. It is practical and
worthwhile since careful and fine-grained DVFS analysis is
able to further decrease the number of DVFS switches and
errors of frequency approximation. Possible energy savings
can also be obtained from improved application characteris-
tics that facilitate power reduction, such as CPU workload
centralization and idle/unused core isolation, etc. We are
also interested in investigating the energy impact of matrix
factorization block sizes. It is possible that the optimal block
size for performance differs from the optimal block size for
energy costs. There may exist a trade-off between them. We
further plan to extend the work to more scientific applications
on other emerging hardware and architectures in the near
future.
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