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Power and Resilience Concerns in HPC

 Power and energy costs of high performance
computing systems are a growing severity
nowadays = operating costs and system reliability
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High Vulnerability of Large-Scale HPC Systems

* Failure Rate Explosion

— Small on a single node, increasingly susceptible at scale

— Up to 1,700 ECC memory errors in 2 months for a 692-node
(22,144 cores in total) cluster at PNNL [1]

— K computer (15t on TOP500 in 2011): hardware failure rate
of up to 3% + affected by 70 soft errors in 1 month [2]

— A 128,000-node BlueGene/L system: 1 soft error in the L1
cache every 4-6 hours due to radioactive decay [3]

— What about the forthcoming exascale systems in 20207?

* More Error-Prone Components
— Memory bit-flips, CPU/GPU logic errors, FPGA soft errors

[1] PIC: Pacific Northwest National Laboratory Institutional Computing. https://cvs.pnl.gov/PIC/wiki/PicCompute.
[2] Keiji Yamamoto et al., The K computer Operations: Experiences and Statistics, in Proc. ICCS, 2014, pp. 576-585.
[3] Greg Bronevetsky and Bronis de Supinski, Soft error vulnerability of iterative linear algebra methods, In Proc. ICS, 2008, pp. 155-164.




Interplay: Power Efficiency and Resilience

* Motivation

— There exist entangled effects between the two:
Improving one does not necessarily improve the other

— Goal: The optimal configuration that can balance the
trade-offs (e.g., minimizing power with resilience)

* Solutions and Challenges
— Operate HPC runs in the low-power mode of hardware

— Trade-off reliability by incurring more errors by
aggressive but appropriate voltage reduction (e.g., NTV)



RSVP: Register Vulnerability Power Saving

* Background

— Registers are the most frequently accessed component
and thus susceptible to soft errors

— Near-threshold voltage computing causes more failures

* Approach
— Build quantitative register vulnerability models

— Investigate the validity of increased failure rates at NTV
by the models to exclude invalid errors at register level

— Save the optimal power by {, voltage w/o incurring
observable number of soft errors during HPC runs



Quantitative Modeling of RSVP

* Register Access Model and Vulnerability Metric
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— W-R and R-R intervals are vulnerable to soft errors
— Adjusted failure rate is for calculating OPT power at NTV




Quantitative Modeling of RSVP (Cont.)
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— Dynamic profiling for power data and RVF values
— Static estimation of OPT power savings at NTV



Quantitat

e Algorithm

Algorithm 1: Calculation of the Maximum Power Sav-
ings at the Optimal NTV Level without Incurring Ob-
servable Number of Soft Errors at Runtime
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Input: A candidate application app, frequency/voltage
pairs used in DVES: { fi/Vi,, findVim. filVi},
near-threshold voltage V,,;,, between V; and V., and
the calculated failure rate A,.;, at Vi, .

Output: Maximum power savings at the lowest
near-threshold voltage V7! without incurring
observable number of soft errors.

begin

for .f.f”f S {fh ﬂ‘fh-. fnt.f”’ins fi/{ﬁ} do
scale to the selected f/V and run app
measure power P = ACfV? + 1.,V + P,
if fr/Vy then
L measure power Fj and execution time T

solve AC', I.,3. and F., given Py, P,,. and P,
for V e (Vi V) do
scale to the selected V' and run app
calculate ¢7%" . . and A(f, Viq)’
if [GetErrNum(A(f,Via)',T)] < 1 then
measure power F,;,
VPt = v

nty

else
L /* Errors arise (may need fault injection) */

Pugy o 5 100%

1
i . ropt
return V7

make the system idle, operating at the nominal f/V

ont.)



Evaluation

* Experimental Setup

TABLE 1. HARDWARE CONFIGURATION FOR ALL EXPERIMENTS.
System Size 40 logical cores
Processor Intel Xeon E5-2660 (10-core)

CPU Frequency 1.2 to 2.6 GHz incremented by 0.1 GHz
1.05, 0.65, 0.49, 040 V
' '[ V a0e . .
CPU OI“De (L/}I/’%XVSﬂfE_TRfHKVth}

Memory 128 GB RAM
Cache 640 KB L1, 2560 KB L2, 25600 KB L3
0S Ubuntu 14.10, 64-bit Linux kernel 3.16.0
Power Meter Intel RAPL
TABLE IL SIMULATOR CONFIGURATION FOR ALL EXPERIMENTS.
Operation Mode System Call Emulation and Full System
OS (Full System Mode) Ubuntu 14.04, 64-bit Linux kernel 3.16.0
Memory (Full System Mode) 512 MB
Instruction Set Architecture ARM and x86
L1 Cache Size 8 KB (data), 4 KB (instruction)
L1 Cache Associativity 2
L2 Cache Size 32 KB
L2 Cache Associativity 4
Cache Line Size 64




Evaluation (Cont.)

e Benchmarks

TABLE 111 BENCHMAREK DETAILS. FROM LEFT TO RIGHT: BENCHMARK NAME, BENCHMARE SUITE, BENCHMARK DESCRIFTION AND TEST CASE USED,

PROBLEM DOMAIN, MAIN FUNCTION, EXECUTION TIME PERCENTAGE OF THE FUNCTION RELATIVE TO THE TOTAL, AND PARALLELIZATION 3¥YSTEM USED.
Benchmark Suite Description and Test Case Domain Function Hrtl:t;:r:t Parallelzed by
. Solve partial differential equations using Numencal Lincar
] _ L AT T T —_iy
Fl NPB fast Founer transform, Class A Algebra cffis P OpenMl
. . Solve partial differential equations using Mumencal Linear S
2 . . 2 07 nMP
LL NPE Lower-Upper symmetnc Gauss-Seidel, Class A, Algebra ssar BO.7% OpenMI
S . Calculate 32-bit CRC for 10 fikes of - . . .
'.l'.l '.. . L iy - _ . N 1 . .
CR(C32 MiBench total size 3,065 MB. Coding Theory main 100 Pthreads
. - Perform bit counting functions using - - —
bt MiBench . B .- Coding Theory 100, 0% ChpenMP
sl tHene bat lookup table with a 75000 bit set. e o mam pen
. . Insert/mmove nodes, and search in a . . I
atric I “IC . X . . Larc O M P
patricia liBench Patricia trie for IP addresses and netmasks. Computation Theory pat_search B6.95% OpenMiE
. Pertorm the Secure Hash Algonthm . .
sh MiBench ; . L e Crypt by sha_stres 01.2¢ OpenM P
s HHene with a secunty sinng filke of 311824 bytes. TYPIOgTaphY A_sam - pen
. ¥ » mairn iphicat ; 2 10k Numencal Line: - Y
MatMul Self-coded Calculate mairix muliiplication on fwo 10k = 10k umencal Lincar S 9074 M].l
global matnces, saving mto a third one. Algebra {gem3 dist tool)
blackschokes PARSEC Ijq:rfurm.{:'upuc:-n prcing "."-Ith the Black-Scholcs Financial Analytics s_thread B2.4% Pthreads
partial differential equation.
swaptions | PARSEC | ‘Computc prices of a portfolio of 64 swaptions Financial Analytics msin 100.0% Pthreads
swaplion: o with 20 Monte Carlo simulations, FEE o




Evaluation (Cont.)

* Results (Failure Rates and RVF Values)

TABLE IV.

ORIGINAL/ADJUSTED (BITCOUNT) FAILURE RATES AT
VOLTAGE LEVELS (UNIT: VOLTAGE (V):; FAILURE RATE (ERRORS/MIN.)).

Core Supply

Original Failure Rate

Adjusted Failure Rate

Observable Num.

Voltage (Calc. by Equation 3) | (Calc. by Equation 4) of Errors (> 1)?
1.05 1.33 x 10~° 0.21 x 10~° No
0.95 1.62 x 102 0.26 x 102 No
0.85 1.77 x 103 0.28 x 103 No
0.75 1.70 x 102 0.27 x 102 No
0.65 0.14 0.02 No
0.55 1.06 0.17 No
0.49 2.79 0.45 Yes
0.45 6.72 1.07 Yes
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Fig. 4. Register Vulnerability Factors of Seq./Para. Runs for All Benchmarks.

— Adjusted failure rates by an example RVF value (bitcount)
— Data contention’]® = vulnerable register intervals



Evaluation (Cont.)

e Results (Power Savings and Performance Loss)
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Performance Loss from RSVP for Different Benchmarks

Fig. 6. Performance Loss from RSVP for All Benchmarks.

— 11.2 % system-wide power savings (RVF{, = OPT V)
— 10.6 % overhead tracking ARCH components for RVF



Conclusions

* Power Savings based on Register Vulnerability

— Soft errors may not necessarily manifest in register
access

— Quantify the validity of failure rates using RVF =
adjusted failure rates to rule out invalid soft errors

— ldentify the optimal NTV level w/o incurring
observable soft errors - power savings

* Systematic Evaluation on gem5
— A wide spectrum of HPC applications (parallelizable)

— Accurately obtain RVF values for both sequential and
parallel runs on a power-aware simulated platform



