
RSVP: Soft Error Resilient Power Savings at

Near-Threshold Voltage using Register Vulnerability

Li Tan, Nathan DeBardeleben, Qiang Guan, Sean Blanchard, and Michael Lang

Ultrascale Systems Research Center 1

Los Alamos National Laboratory

darkwhite29@gmail.com, {ndebard, qguan, seanb, mlang}@lanl.gov

Abstract—With the ever-growing scaling of computing capa-
bility, computing systems like supercomputers and embedded
systems are bounded by limited power nowadays. Upon the mu-
tually constrained nature between power efficiency and resilience,
trade-offs of them have been extensively studied for achieving the
optimal performance-power ratio, either under a certain power
cap, or within the requirement of quality metrics of applications.
Theoretically, running programs in the low-power mode of com-
putational components (e.g., CPU/GPU) can lead to increasing
on-chip failure rates in terms of register-level susceptibility to soft
errors. However, experimentally, such errors may not arise due to
register vulnerability – errors occur at non-vulnerable register
access intervals are invalidated and thus will not propagate to
later execution. In this work, leveraging register vulnerability,
we investigate the validity of failure rates in computing systems
at Near-Threshold Voltage (NTV), and empirically evaluate the
practice of achieving optimal power savings without incurring
observable number of soft errors during program runs. We
propose the framework of RegiSter Vulnerability based Power
efficiency (RSVP) for reliable and power efficient computing.
Experimental results for a wide spectrum of applications on a
power-aware simulated platform demonstrate the power saving
capability of RSVP, by 11.2% on average, without incurring
runtime soft errors at the optimal NTV level for power savings.

I. INTRODUCTION

Considering ever-growing power bills and limited power
supply capability of electrical facilities, power efficiency has
already become a first-class citizen in scalable and cost-
efficient High Performance Computing (HPC) systems, in-
cluding supercomputers, embedded/mobile systems. Numerous
software/hardware solutions have been proposed to achieve
power savings at different levels of system abstraction, with
little performance degradation. Operating HPC runs in the
low-power mode is one of the most promising solutions to
system power efficiency, with the well-studied trade-off of
system reliability – Various types of errors can be incurred
into any stages of HPC runs, potentially leading to severe
system-level faults. Resilience to such errors in HPC systems
can be expensive in terms of software costs (e.g., perfor-
mance loss) and hardware costs (e.g., extra hardware). For
reliability purposes, hardware components such as processors
are conservatively equipped with high supply voltage for
stable operations without errors. However, considerable power
savings can be achieved by aggressive but appropriate voltage
reduction, like near-threshold voltage computing [1].

1This work was performed at the Ultrascale Systems Research Center at Los
Alamos National Laboratory, assigned the LANL identifier LA-UR-17-23454.

CMOS-based hardware components such as CPU, GPU,
and memory are generally the dominant power consumers in
a computing system. Lowering supply voltage of them can
effectively reduce power costs of the system, given that power
consumption of these components is proportional to the prod-
uct of operating frequency and supply voltage squared [2], (i.e.,
voltage reduction has a greater impact on power savings than
frequency reduction). Existing efforts extensively show that
Dynamic Voltage and Frequency Scaling (DVFS) techniques
can effectively save power/energy when the peak performance
of components (CPU [3] [4], GPU [5] [6], memory [7] [8],
and network [9]) is not necessary. Nevertheless, a critical
limitation of existing DVFS work lies in the fact that the
employed DVFS techniques are essentially frequency-directed:
Voltage and frequency are scaled down together in the presence
of hardware idle time, i.e., slack [10], which fails to fully
exploit potential power saving opportunities during HPC runs.
As a remedy solution, undervolting [11] [12] [10] has been
employed to further reduce power costs, which reduces voltage
of computational components independent of frequency scaling
to maintain performance. Namely, the undervolting-enabled
hardware components are supplied with a voltage that is lower
than the one paired with a given frequency used in DVFS.

As a generic NTV approach applicable during any stages
of HPC runs, undervolting is capable of saving extra power in
addition to that achieved using DVFS during hardware slack.
Nevertheless, the trade-off is increased failure rates [1] of the
components with lowered voltage, e.g., register-level vulnera-
bility to soft errors [13]. Quantifying register vulnerability is
beneficial to determine the extent of power savings when NTV
techniques are used. In this work, we investigate the validity of
failure rates at Frequency-independent NTV (FiNTV for short),
proposing a framework of RegiSter Vulnerability based Power
efficiency (RSVP for short) to save the most power without
incurring observable number of soft errors during HPC runs.
In summary, the contributions of this paper include:

• We quantify register vulnerability metrics to exclude
invalid soft errors at register level, in order to achieve
the optimal power savings at FiNTV without incurring
observable amount of soft errors during HPC runs;

• We devise an integrated quantitative framework RSVP
to calculate register vulnerability of HPC runs, and
utilize fine-grained fault and power models to estimate
adjusted failure rates and power savings at FiNTV;

• Our approach is experimentally evaluated on a power-
aware simulated platform for a number of HPC appli-
cations to save 11.2% in power on average, without
affecting program outputs by incurring soft errors.

The remainder of the paper is organized as follows: Brief
background knowledge is introduced in Section 2, and Section
3 discusses related work. Details of the proposed empirical
RSVP framework are presented in Section 4. Experimental
results are provided in Section 5. Section 6 concludes.

II. BACKGROUND

A. Register Vulnerability for HPC Systems

For high performance computing, modern microprocessors
employ a large number of quickly accessible registers with
multiple ports. For instance, Alpha 21264 processor utilizes
80 integer and 72 floating-point physical registers [14]; Intel
Itanium processor uses 128 general-purpose registers, 128
floating-point registers, 64 predicate registers, and 8 branch
registers [15]. Registers are the most frequently accessed
microarchitectural component, since in general the employed
registers are on the critical path of program execution. Regard-
less of the intensive access of registers, enabled by state-of-the-
art nano-technology, lower supply voltage, higher operating
frequency, and higher density of processors cause increasing
chip susceptibility to soft errors, i.e., a type of transient errors
such as bit-flips and logic circuit errors. For HPC systems,
register-level vulnerability to soft errors is of the greatest
concern, since errors occurred in registers can easily propagate
to other critical functional units of the systems such as ALU,
FPU, and memory, and consequently lead to more severe
system-level faults [16], e.g., crashes, hangs, and Silent Data
Corruption (SDC) that spread throughout the whole system.

B. Near-Threshold Voltage Reduction

As introduced, undervolting is an NTV technique regard-
less of frequency scaling for greater power savings than DVFS.
Undervolting differs from traditional DVFS techniques in the
sense that the frequency of hardware components is kept
the same during undervolting, with computation throughput
maintained. Ideally, if the resulting errors can be tolerated
by inherent resilient applications, no performance impacts
will be incurred together with the maximized power savings.
Using undervolting, supply voltage can be lowered as close as
threshold voltage of the components, the lowest voltage level
that guarantees the minimum electronic activities in the circuit.
Note that undervolting can be conducted together with DVFS,
i.e., as an appropriate frequency is scaled to by DVFS, instead
of using the voltage paired with the selected frequency, voltage
can be further reduced as close as threshold voltage. In this
work, we assume that DVFS techniques are employed when
necessary, and near-threshold voltage reduction is conducted
on top of the selected frequency by DVFS, if employed.

Nowadays, hardware vendors have launched cutting-edge
nano-technology that enables processors to be supplied with
a significantly low voltage, e.g., using Intel’s Near-Threshold
Voltage (NTV) design [1], the 32nm low-leakage Intel Clare-
mont processor can operate from 280 mV at 3 MHz and scale
up to 1.2 V at 915 MHz, with the minimum power of 2 mW.
Note that this NTV technique requires low supply voltage
accompanied by low operating frequency as well, different
from our FiNTV technique in this work. Empirically, protected
by the OS, production processors are generally locked and
will typically shut down or crash, when near-threshold voltage

reduction without frequency reduction is performed. Exper-
imentally, for a customized pre-production Intel Itanium II
9560 processor [12], FiNTV has been validated to save power
effectively at the cost of increased ECC memory errors, as the
first practical undervolting effort on real machines. Tan et al.
[10] [17] relaxed the hardware requirements of undervolting
to general production machines by emulated scaling, evaluated
on an HPC cluster with production AMD Opteron 2380
processors. Figure 1 shows different voltage levels voltage
reduction techniques are capable of scaling to, where Vh/Vl,
Vntv , Vth refer to the maximum/minimum voltage (paired with
the maximum/minimum frequency), a near-threshold voltage,
and the threshold voltage individually. General production
processors can be scaled within the voltage range [Vl, Vh],
while for customized pre-production processors, they can be
supplied with a near-threshold voltage Vntv . Our goal is to
enable production processors with FiNTV for the maximum
power savings, although empirically they cannot be supplied
with Vntv without accompanying frequency reduction.

Fig. 1. Voltage Levels for Empirical Processor Voltage Reduction.

C. The gem5 Simulator

The gem5 simulator [18] is a modular platform that sim-
ulates system-level architecture as well as processor microar-
chitecture, extensively used for computer-system architecture
research. It is a highly configurable cycle-accurate simulation
framework that encompasses multiple Instruction Set Architec-
tures (ISA) (Alpha, ARM, SPARC, MIPS, POWER, and x86),
and diverse CPU models (simple one-CPI, detailed in-order,
detailed out-of-order, and KVM-accelerated). It also supports
two operation modes: System Call Emulation (SE) and Full
System (FS), where the SE mode simulates user-space only
programs while system services are provided directly by the
simulator (system calls are emulated by passing to the host
OS), and the FS mode is capable of simulating a complete
system with devices and OS. Specifically, gem5 models the
processor microarchitectural components including rename
map, history/reorder buffer, instruction/load-store/fetch/decode
queue, and allows to track the read and write operations at fine-
grained bit-level to the components, which is thus the basis
of modeling register vulnerability accurately. In this work, our
implementation using gem5 supports both SE and FS operation
modes, and also two mainstream ISA, ARM and x86.

III. RELATED WORK

There exist a large body of work on vulnerability factors
at software level, e.g., Program Vulnerability Factor (PVF)
[19] and enhanced Program Vulnerability Factor (ePVF) [20],
and at hardware/microarchitecture level, e.g., Architectural

Vulnerability Factor (AVF) [21] and Register Vulnerability
Factor (RVF) [22]. Next we overview existing efforts based on
RVF and studying power efficiency using vulnerability factors.

REGISTER VULNERABILITY FACTOR: Carretero et al. [23]
presented a hardware mechanism using linear regression to
estimate AVF of register files at low costs. Their approach
needs to track microarchitectural events, as well as physical
and architectural registers, while our approach only need to
track accesses to physical and architectural registers. They
further optimized their approach by sampling while accuracy
was affected as a trade-off. Yan et al. [22] devised two cost-
effective compiler-guided techniques to reduce RVF up to
9.5%, specifically, hyperblock-based instruction re-scheduling
and reliability-oriented register assignment. They claimed that
their solution can effectively protect register files against
transient errors. Although RVF values are lowered, transient
errors may still arise while our work focuses on pinpointing
the optimal voltage that does not incur observable number of
soft errors. Lee et al. [24] proposed another compiler approach
based on interprocedural program analysis to reduce RVF
values by around 30% on average. This solution benefited
from integer linear programming and an efficient heuristic al-
gorithm. However, their goal is to reduce RVF while ours is to
save the maximum power leveraging RVF. As a compiler-based
approach, they used extensive program analysis techniques,
while we conduct analysis on the power and fault models.

POWER SAVING USING VULNERABILITY FACTORS: Lee
et al. [25] proposed an energy efficient soft error protection
scheme based on compiler-managed register vulnerability for
embedded systems. They formulated and solved several com-
piler optimization problems to save energy for register file
protection schemes by up to 24%. This effort differs from our
work by the focus on compile-time optimization and embedded
benchmarks. Considering GPU register file reliability, a recent
study [26] modeled the process variation impacts on GPU
register files at different voltage levels, and presented an
architectural solution that utilizes register dead time for reliable
operations from unreliable register files at low voltage. In
our work, we focus on register access and its vulnerability
impacts on the validity of failure rates in HPC environments.
Fazeli et al. [27] presented a circuit-level soft error tolerant
technique for register files in embedded processors, where
the most vulnerable registers are cached in a small reliable
register cache. Clock gating techniques was exploited to enable
low-power register operations. Experimental results showed
the AVF values of register files become about 1% at low-
power, area, and performance overhead to the evaluated LEON
processor. This effort employed clock gating as the power
reduction solution, different from our FiNTV technique, and
they targeted embedded processors instead of HPC clusters.

IV. RSVP: QUANTIFICATION OF REGISTER

VULNERABILITY, FAILURE RATES, AND POWER SAVINGS

AT THE OPTIMAL NEAR-THRESHOLD VOLTAGE

In this section, we explore the quantification of register
vulnerability, and discuss models of failure rates and power
costs in terms of supply voltage, and how NTV impacts the
models as a joint parameter for resilience and power efficiency.
We elaborate the steps of power saving using RSVP. Note that
the terms failure, fault, and error are used interchangeably.

A. Register Access Model and Register Vulnerability Metrics

Registers are the most frequently accessed microarchitec-
tural component, due to its nature of enabling high perfor-
mance data access between CPU and memory. In general,
register accesses are on the critical path of program execu-
tion, which means errors occurred in register files can easily
propagate to other critical system functional units involved in
program execution, e.g., ALU/FPU within CPU, and storage
components, e.g., caches and memory cells. If values in
register files are contaminated, more severe system-level faults
can be caused as a consequence of extensive error propagation
[16]. Therefore, it is crucial to protect registers from soft
errors. It is well studied that not all soft errors occurred during
register accesses will lead to observable erroneous system-
level outputs, due to the factor of register vulnerability [22],
a factor that measures the probability that soft errors can
effectively propagate to other system components. In general,
soft errors arising at non-vulnerable register access intervals
are overwritten/invalidated by new register values, and thus
will not manifest themselves in later program execution. Such
soft errors need not to be accounted for a source of potential
system-level faults, as an over-estimation.

Fig. 2. An Example of Write/Read Accesses to Register r.

Figure 2 depicts an example of register accesses to register
r occurred in HPC runs, where W and R represent register
write and register read individually, and Val1/Val2/Val3 rep-
resents register values written during the program execution.
Typically, a register write operation is followed by zero or
more register read operations. The lifetime of a register value
spans from the first access (must be a write) to the last access
(can be either a read or a write). Vulnerable intervals of a
register value refer to the time periods ranging from a write
w1 to the last read before the next write w2. Any time periods
otherwise are non-vulnerable by definition. Therefore, any soft
errors occurred after w1, however falling into a non-vulnerable
interval before w2, is overwritten/invalidated by w2, and thus
cannot be propagated to later program execution. A well-
known metric to measure register vulnerability is referred to as
Register Vulnerability Factor (RVF), similar to other vulner-
ability metrics such as AVF and PVF. Equation 1 formulates
the calculation of original RVF, under the circumstance of the
nominal frequency/voltage of computational components, i.e.,
in their nominal power mode. The original RVF is calculated
as the average of the sum of vulnerable intervals of register
ri divided by the lifetime of register ri (0 ≤ i < n, where n
denotes the number of registers used in an HPC run).

φorig
RegV ul =

n
avg
i=0

(∑

V ulT ime(ri)

LifeT ime(ri)

)

(1)

When FiNTV is employed during HPC runs, vulnerable in-
tervals of registers remain the same, since operating frequency
of computational components is kept unchanged throughout

the runs and thus the time of register write and read operations
is the same as that in the nominal power mode. Therefore, in
Equation 2, we hypothesize that the RVF in FiNTV (low-power
mode) equals to the RVF in the nominal power mode:

φntv
RegV ul = φorig

RegV ul (2)

B. Voltage-directed Failure Rate Modeling and RVF-based
Failure Validation

Existing studies indicate failures of combinational logic
circuits comply with a Poisson distribution, determined by
both operating frequency and supply voltage [28]. Our previous
work summarized a handy formula of average failure rates in
terms of supply voltage only [10], by substituting frequency
with voltage (frequency has a non-linear positive correlation
with voltage [29]) in the general equation stated in [30]:

λ(f, Vdd) = λ(Vdd) = λ0 e
d(fmax−β(Vdd−2Vth+

V 2
th

Vdd
))

fmax−fmin (3)

Constants d and β are architecture-dependent, reflecting
the sensitivity of failure rate variation with frequency/voltage
scaling. Vth and Vdd are threshold voltage and supply voltage
respectively. fmax and fmin are the maximum frequency
and the minimum frequency within the scope of DVFS in-
dividually. As mentioned in Section 2, near-threshold voltage
reduction is disabled by the OS for production machines as
hardware protection mechanism. Therefore real errors at NTV
levels cannot be observed experimentally, since our target is
production machines used in real HPC clusters. Based on the
observed error data for an Intel pre-production processor [12],
Equation 3 was demonstrated to be accurate to model failure
rates at different voltage levels [10], and is thus adopted in
this work for failure modeling when the optimal NTV level is
determined during failure rate validation.

However, the failure rates calculated by Equation 3 can
be inaccurate, due to the fact that only a fraction of register
access intervals are vulnerable – errors fall into the non-
vulnerable intervals are overwritten/invalidated by later register
writes and thus have no chance to affect program outputs.
Straightforward, Equation 4 shows the calculation of adjusted
failure rates by considering RVF in FiNTV, where only errors
occurred in vulnerable intervals of all registers are regarded as
valid sources of potential system-level faults.

λ(f, Vdd)
′ = λ(f, Vdd)× φntv

RegV ul (4)

λ(f, Vdd)
′ denotes the real valid failure rate when FiNTV

is employed, and it is used to obtain the optimal power savings
at FiNTV, as shown later in Figure 3 and Algorithm 1.

C. Measurement/Estimation-based Power Modeling

For an HPC system, the following power model is used
to calculate the nodal power consumption [31], assuming the
processor is DVFS-enabled and FiNTV-enabled:

P = P processor
dynamic + P processor

leakage + P other
leakage

= ACfV 2

dd + IsubVdd + I ′subV
′
dd (5)

where A and C are the percentage of active gates and the
total capacitive load in a CMOS-based processor respectively.
Isub/I ′sub and Vdd/V ′

dd are subthreshold leakage current and
supply voltage of processors and all other nodal components,
individually. When voltage scaling techniques (e.g., DVFS and
FiNTV) are applied to processors, I ′subV

′
dd can be denoted as a

constant Pc. With measured power data, the simplified power
equation is employed to estimate the nodal power costs at
near-threshold voltage, as shown in Algorithm 1 (where Vdd

is denoted as V for short). We elaborate the mechanism of
obtaining the optimal power savings using RSVP next.

D. Soft Error Resilient Power Saving using RSVP

We now demonstrate that RSVP is an effective approach
for HPC power savings without incurring errors from low-
power operations. Figure 3 overviews the RSVP framework,
consisting of dynamic profiling of HPC runs to obtain power
data and RVF values for adjusted failure rates, and static
estimation of the maximum power savings at FiNTV without
incurring observable number of soft errors in HPC runs.

Fig. 3. Overview of the RSVP Framework.

The goal of using RSVP is to calculate adjusted failure rates
that exclude the errors fall into the non-vulnerable intervals of
registers used in HPC runs, and leverage the adjusted failure
rates to find out the optimal supply voltage V opt

ntv that does
not incur observable number of soft errors in HPC runs,
thus achieving the maximum power savings without errors.
As shown in Figure 3, utilizing the fault models presented
in Section III.B and an RVF estimator built on top of the
gem5 simulator, we obtain adjusted failure rates at different
NTV levels. Given an HPC run and the failure rates, number
of errors during the HPC run can be calculated. In order to
maximize power savings, we keep lowering down voltage if
the calculated number of errors is still below 1. Otherwise,
the lowest supply voltage that does not cause more than 1
error during HPC runs is adopted as the optimal NTV level
V opt
ntv . Based on measured power data using embedded on-chip

hardware counters and the power estimation models presented
in Section III.C, we can easily estimate the power savings
when supply voltage is scaled down to V opt

ntv .

Specifically, the workflow of RSVP proceeds as shown
in Algorithm 1: Given a DVFS-enabled and FiNTV-enabled
platform, there exist a group of scalable frequency/voltage
levels of processors, from which failure rates can be calculated
using the fault models in Equation 3. We test run a candidate
HPC application to obtain the RVF value, the nominal power
costs, and the execution time during the HPC run, and solve
the constants in Equation 5 by sampling different power

Algorithm 1: Calculation of the Maximum Power Sav-
ings at the Optimal NTV Level without Incurring Ob-
servable Number of Soft Errors at Runtime

Input: A candidate application app, frequency/voltage
pairs used in DVFS: {fh/Vh, fm/Vm, fl/Vl},
near-threshold voltage Vntv between Vl and Vth, and
the calculated failure rate λntv at Vntv .

Output: Maximum power savings at the lowest
near-threshold voltage V opt

ntv without incurring
observable number of soft errors.

1 begin
2 make the system idle, operating at the nominal f/V
3 for f/V ∈ {fh/Vh, fm/Vm, fl/Vl} do
4 scale to the selected f/V and run app
5 measure power P = ACfV 2 + IsubV + Pc

6 if fh/Vh then
7 measure power Ph and execution time T

8 solve AC, Isub, and Pc, given Ph, Pm, and Pl

9 for V ∈ (Vth, Vl) do
10 scale to the selected V and run app
11 calculate φntv

RegV ul and λ(f, Vdd)
′

12 if ⌈GetErrNum(λ(f, Vdd)
′, T)⌉ < 1 then

13 measure power Pntv

14 V opt
ntv = V

else
15 /* Errors arise (may need fault injection) */

16 Psav ←
Ph−Pntv

Ph
× 100%

17 return V opt
ntv

modes. When FiNTV is applied, per the scaled voltage, we
calculate adjusted failure rates from original failure rates and
RVF values. Based on the adjusted failure rates and execution
time of HPC runs, we can further get the number of errors
during HPC runs. Therefore, the optimal NTV level V opt

ntv
can be obtained by scaling down voltage until the number
of errors with FiNTV is greater than 1. Psav refers to the
percentage of power savings relative to the nominal power
costs, achieved by near-threshold voltage reduction. Function
GetErrNum() abstracts the straightforward procedure of
calculating the number of runtime errors at FiNTV.

Note that the output power Pntv is obtained by a measure-
ment/estimation-based method: All constants used in Equation
5 are solved from measured power data, while power costs at
unscalable Vntv are calculated from the same equation with
fh and Vntv in place. Leveraging both measurement and fine-
grained power models, this method is more accurate than
purely estimation-based methods, and can emulate power costs
at unscalable voltage for production machines in HPC clusters.

V. EVALUATION

In this section, we present details of experimental eval-
uation on our RSVP approach for a wide spectrum of HPC
applications running on a power-aware simulated platform
based on the gem5 simulator. Overall, the empirical study
aims to showcase that: (a) RSVP is capable of calculating RVF

values with accuracy for both sequential and parallel versions
of HPC applications, and (b) RSVP is capable of identifying
the optimal NTV level that saves the maximum power costs
without incurring observable number of soft errors at runtime.

A. Experimental Setup

TABLE I. HARDWARE CONFIGURATION FOR ALL EXPERIMENTS.

System Size 40 logical cores

Processor Intel Xeon E5-2660 (10-core)

CPU Frequency 1.2 to 2.6 GHz incremented by 0.1 GHz

CPU Voltage
1.05, 0.65, 0.49, 0.40 V

(Vh/Vl/Vsafe min/Vth)

Memory 128 GB RAM

Cache 640 KB L1, 2560 KB L2, 25600 KB L3

OS Ubuntu 14.10, 64-bit Linux kernel 3.16.0

Power Meter Intel RAPL

Experiments were conducted on a wide scope of nine main-
stream HPC applications to benchmark our approach, from
domains of numerical linear algebra, cryptography, and finan-
cial analytics, summarized in Table III. The benchmarks were
selected from PARSEC [32], MiBench [33], and NPB [34]
benchmark suites, including one self-coded implementation of
matrix multiplication. Table I lists hardware configuration of
the experimental server where all gem5 simulation ran. It is
equipped with two Intel Xeon E5-2660 processors based on
the Haswell microarchitecture [35]. Various voltage levels are
scalable using our FiNTV techniques. Power consumption of
simulated HPC runs on the server was collected by Intel RAPL
hardware counters [36] that reports in-band power costs of
the total processor package and DRAM, which can be used
to estimate the total system power costs during HPC runs
(note that power savings reported henceforth are system-wide).
Using RAPL and its API, it is convenient and lightweight to
emulate power consumed during HPC runs without physical
power meters attached. Table II lists detailed microarchitectural
parameters used in the gem5 simulation. We evaluated our
approach on both SE and FS modes and on two popular ISA,
ARM and x86. Before presenting experimental results, we
detail the implementation of techniques used in our approach.

TABLE II. SIMULATOR CONFIGURATION FOR ALL EXPERIMENTS.

Operation Mode System Call Emulation and Full System

OS (Full System Mode) Ubuntu 14.04, 64-bit Linux kernel 3.16.0

Memory (Full System Mode) 512 MB

Instruction Set Architecture ARM and x86

L1 Cache Size 8 KB (data), 4 KB (instruction)

L1 Cache Associativity 2

L2 Cache Size 32 KB

L2 Cache Associativity 4

Cache Line Size 64

B. Empirical Implementation

As discussed and shown in Figure 1, production computing
nodes used in HPC clusters are protected by the OS from scal-
ing down to voltage levels lower than Vl. Keeping the proces-
sor frequency constant, we manage to implement Frequency-
independent Near-Threshold Voltage reduction (FiNTV) below
Vl on the experimental Intel processors by directly modifying
the core voltage Model-Specific Register (MSR, specifically
MSR PERF STATUS), defined in [36]. The high 16-bit (i.e.,
VID) of the 48 bit register value determines the P-state core
voltage, which can be calculated as VID/213. The optimal

TABLE III. BENCHMARK DETAILS. FROM LEFT TO RIGHT: BENCHMARK NAME, BENCHMARK SUITE, BENCHMARK DESCRIPTION AND TEST CASE USED,
PROBLEM DOMAIN, MAIN FUNCTION, EXECUTION TIME PERCENTAGE OF THE FUNCTION RELATIVE TO THE TOTAL, AND PARALLELIZATION SYSTEM USED.

Benchmark Suite Description and Test Case Domain Function
Runtime

Parallelized by
(in %)

FT NPB
Solve partial differential equations using Numerical Linear

cffts1 79.7% OpenMP
fast Fourier transform, Class A. Algebra

LU NPB
Solve partial differential equations using Numerical Linear

ssor 89.7% OpenMP
Lower-Upper symmetric Gauss-Seidel, Class A. Algebra

CRC32 MiBench
Calculate 32-bit CRC for 10 files of

Coding Theory main 100.0% Pthreads
total size 3.065 MB.

bitcount MiBench
Perform bit counting functions using

Coding Theory main 100.0% OpenMP
bit lookup table with a 75000 bit set.

patricia MiBench
Insert/remove nodes, and search in a

Computation Theory pat search 86.9% OpenMP
Patricia trie for IP addresses and netmasks.

sha MiBench
Perform the Secure Hash Algorithm

Cryptography sha stream 91.2% OpenMP
with a security string file of 311824 bytes.

MatMul Self-coded
Calculate matrix multiplication on two 10k×10k Numerical Linear

mmm 99.7%
MPI

global matrices, saving into a third one. Algebra (gem5 dist tool)

blackscholes PARSEC
Perform option pricing with the Black-Scholes

Financial Analytics bs thread 82.4% Pthreads
partial differential equation.

swaptions PARSEC
Compute prices of a portfolio of 64 swaptions

Financial Analytics main 100.0% Pthreads
with 20000 Monte Carlo simulations.

TABLE IV. ORIGINAL/ADJUSTED (BITCOUNT) FAILURE RATES AT

VOLTAGE LEVELS (UNIT: VOLTAGE (V); FAILURE RATE (ERRORS/MIN.)).

Core Supply Original Failure Rate Adjusted Failure Rate Observable Num.

Voltage (Calc. by Equation 3) (Calc. by Equation 4) of Errors (≥ 1)?

1.05 1.33 × 10
−5

0.21 × 10
−5 No

0.95 1.62 × 10
−4

0.26 × 10
−4 No

0.85 1.77 × 10
−3

0.28 × 10
−3 No

0.75 1.70 × 10
−2

0.27 × 10
−2 No

0.65 0.14 0.02 No

0.55 1.06 0.17 No

0.49 2.79 0.45 Yes

0.45 6.72 1.07 Yes

NTV level was selected using Algorithm 1, given an applica-
tion, the experimental hardware platform, and the power and
fault models. We scaled to this selected voltage by altering the
value of the high 16-bit of the core voltage MSR.

As stated, although power efficient, FiNTV on production
processors incurs an exponentially growing number of failures.
The calculated failure rates at different voltage levels using
Equation 3 are theoretical and can be adjusted using Equation
4 by RVF. In Table IV, we obtain the adjusted failure rates
using an example RVF value (0.159) of the sequential run
of bitcount with the input listed in Table III, to demonstrate
failure rate difference by adjustment. Note that in Equation 3,
there is a reference failure rate λ0 at Vh/fmax, which can be
eliminated by dividing an unknown failure rate with a known
one. We used the failure rates reported in [12] as known data
as our baseline. Table IV lists the original and adjusted failure
rates at voltage levels ranging from Vh to Vth. We can see that
for voltage levels higher than Vl (including Vl), the rates is
low so that no errors arise at runtime during our experimental
HPC runs. For NTV levels that incur more than one error in
an HPC run, e.g., 0.55 V, 0.49 V and 0.45 V, the adjusted
failure rate at 0.55 V practically cause less than one error at
runtime, while the adjusted failure rates at 0.49 V and 0.45 V
could incur observable number of soft errors. Therefore, for
the given RVF value 0.159, the optimal NTV level V opt

ntv for
power savings while incurring no observable number of soft
errors, is experimentally 0.55 V. Likewise, we can obtain V opt

ntv
for other HPC runs using corresponding RVF values.

We implemented the register-level vulnerability estimation

module RegVul as a plug-in functionality in the O3 (Out-
of-Order) CPU model of gem5 (the tracking sub-module is
embedded in existing code, while the calculating sub-module
is alongside). When an instruction is being executed in gem5,
the module captures register reads and writes in the simu-
lated instruction pipeline stages (all register classes: integer,
floating-point, and miscellaneous of physical and architectural
registers are tracked), and accumulate register access inter-
vals throughout all associated microarchitectural components,
based on the register index and the CPU cycle (tick). After the
instruction is committed, the module finishes calculating the
vulnerability for registers involved in this instruction, based
on the RVF definition in Figure 2 and Equation 1. When the
simulated program execution is completed, the module collects
all register vulnerability data and outputs an integrated RVF
value for this execution, according to Equation 1.

gem5 is a simulation framework and system-wide power
measurement is not supported in gem5 (while DVFS is enabled
in the latest release). The most accurate solution to measure
power consumption of the gem5 simulated environments is to
integrate gem5 with power modeling enabled tools such as
the McPAT framework [37]. We observed that using hardware
counters (or physical power meters), the measured power costs
on the gem5 host follow the trend of real power usage in the
simulated system using gem5, with acceptable minor errors. In
order to focus on our approach itself, we adopt the host power
data reported by the RAPL hardware counters and leave the
power modeling with gem5 as future work. Although RAPL
only collects power data of processor and DRAM, we estimate
the system-wide power costs using sampling and the nodal
power model in Equation 5, i.e., the measurement/estimation-
based method elaborated in Section IV.C and Algorithm 1.

For comparing the RVF difference between sequential and
parallel versions of HPC applications, we parallelize the se-
lected benchmarks using the industrial-standard parallelization
libraries Pthreads and OpenMP, as shown in Table III. Note that
Pthreads and OpenMP are not supported in the SE operation
mode of gem5, we used m5threads in gem5 to convert the
parallelized code to gem5-enable multithreaded semantics.
We ran multithreaded versions of all benchmarks in 4 or 8
simulated cores using the SE mode of gem5. In particular, we
parallelized the matrix multiplication program by MPI, using

the gem5 utility tool dist [38]. We ran the MPI version of
MatMul in 10 processes using the FS mode of gem5.

C. Results

In this section, we present detailed experimental results
for all benchmarks on power saving capabilities of our RSVP
approach based on RVF values and adjusted failure rates,
where RVF is in percentage and power data is system-wide
power consumption and normalized. We elaborate the collected
data by analyzing trends, root causes, and inferences.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

FT LU CRC32
bitcount

patricia
sha MatMul

blackscholes

swaptions
average

R
e

g
is

te
r

V
u

ln
e

ra
b

ili
ty

 F
a

c
to

r

Sequential Run
Parallel Run

Fig. 4. Register Vulnerability Factors of Seq./Para. Runs for All Benchmarks.

1) Register Vulnerability Factors of Sequential and Parallel
HPC Runs: Figure 4 depicts RVF values of both sequential and
parallel runs of all benchmarks. We can see that the RVF values
of parallel runs are in general higher than (except for patricia
and swaptions) those of sequential runs (by 4.1% on average),
since although the program semantics between the parallel
version and the sequential version are basically preserved,
overall the parallel version brings more data contention and
thus more vulnerable register intervals due to accessing shared
program resources. Moreover, compute-intensive applications
(e.g., FT, LU, and bitcount) tend to have higher RVF values
than other types of applications. On average, the RVF values
of all benchmarks amount to around 14%, which means a large
proportion (∼86% on average) of register access intervals is
non-vulnerable, and thus errors falling into such intervals are
invalidated and cause no effects on the final program outputs.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

FT LU CRC32
bitcount

patricia
sha MatMul

blackscholes

swaptions
average

N
o

rm
a

liz
e

d
 P

o
w

e
r

Power Savings from RSVP for Different Benchmarks

baseline
RSVP

Fig. 5. Maximum Power Savings at V
opt

ntv for All Benchmarks.

2) Power Savings at the Optimal NTV: RSVP is evaluated
to be effective in power savings by aggressively scaling down
to the optimal NTV level, without incurring observable number
of soft errors. As shown in Figure 5, we can see that on
average, RSVP is capable of saving 11.2% system-wide power
costs, compared to original HPC runs without RSVP. Note
that all the power data presented here is for sequential HPC
runs (power data for parallel HPC runs is similar and thus not
shown). In summary, HPC runs with lower RVF values (e.g.
sha, blackscholes, and CRC32) tend to achieve higher power
savings, due to a higher percentage of non-vulnerable register
intervals, and thus lower V opt

ntv . The total power savings do
not seem to be significantly high. This is because the reported
power data is system-wide, while the voltage reduction tech-
nique employed in our approach, FiNTV, only affects processor
power costs. The 11.2% nodal power savings can however
make a huge difference if considering the massive amount of
compute nodes in large-scale HPC clusters nowadays.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

FT LU CRC32
bitcount

patricia
sha MatMul

blackscholes

swaptions
average

N
o

rm
a

liz
e

d
 P

e
rf

o
rm

a
n

c
e

 D
e

g
ra

d
a

ti
o

n

Performance Loss from RSVP for Different Benchmarks

baseline (gem5)
RSVP

Fig. 6. Performance Loss from RSVP for All Benchmarks.

3) Performance Degradation: As demonstrated, our RSVP
approach has been evaluated effective to save power, using
RVF to adjust failure rates, for voltage reduction opportuni-
ties without incurring soft errors. The primary performance
degradation of RSVP comes from tracking microarchitectural
components for calculating RVF values. Figure 6 shows an
average performance loss of 10.6% for all benchmarks in
our experiments. We can see that for HPC applications with
higher instruction count and more types of instructions (e.g.,
patricia and MMM), the performance degradation from RSVP

tends to be higher, due to more trackable microarchitecture
components relative to the total. Obviously, the fundamental
simulation platform based on gem5 incurs significant perfor-
mance overhead compared to the native execution, due to the
heavyweight processor and system emulation. It is well studied
that using hardware acceleration techniques such as KVM [39]
can efficiently speed up the simulation/emulation, and thus
potentially accelerate our RSVP approach as well. However,
improving the performance of simulation in our approach is
out of the scope of this work. We consider this part of efforts
as potential future work for the usability of our framework.

VI. CONCLUSIONS

Upon the mutually constrained nature between system-
wide resilience and power efficiency for current and projected
supercomputers, trade-offs of them have been widely studied

in HPC community, with the goal of achieving the optimal
performance-power ratio under power caps or resilience re-
quirements. Although registers are susceptible to soft errors
due to its nature of the most frequently accessed microar-
chitectural component, we observe that soft errors may not
necessarily manifest themselves in register accesses because
of the fact that errors occur at non-vulnerable register access
intervals are overwritten/invalidated, and will not propagate
to later program execution. In this work, theoretically, we
quantify the validity of failure rates using the calculated RVF
values of HPC runs. Practically, we propose and develop a
power saving framework RSVP that leverages the adjusted
failure rates to exclude invalid soft errors at register level, and
identifies the optimal NTV level to maximize power savings
without incurring observable amount of soft errors, based on
fine-grained fault and power models. For a wide spectrum
of HPC applications, using the popular simulation framework
gem5, the proposed systematic approach is evaluated on a
power-aware simulated platform to accurately obtain RVF for
both sequential and parallel HPC runs, and save considerable
system-wide power with no effects on program outputs.

REFERENCES

[1] H. Kaul, M. Anders, S. Hsu, A. Agarwal, R. Krishnamurthy, and
S. Borkar, “Near-threshold voltage (NTV) design – opportunities and
challenges,” in Proc. DAC, 2012, pp. 1153–1158.

[2] A. Miyoshi, C. Lefurgy, E. V. Hensbergen, R. Rajamony, and R. Ra-
jkumar, “Critical power slope: Understanding the runtime effects of
frequency scaling,” in Proc. ICS, 2002, pp. 35–44.

[3] B. Rountree, D. K. Lowenthal, B. R. de Supinski, M. Schulz, V. W.
Freeh, and T. Bletsch, “Adagio: Making DVS practical for complex
HPC applications,” in Proc. ICS, 2009, pp. 460–469.

[4] L. Tan and Z. Chen, “Slow down or halt: Saving the optimal energy
for scalable HPC systems,” in Proc. ICPE, 2015, pp. 241–244.

[5] C. Liu, J. Li, W. Huang, J. Rubio, E. Speight, and X. Lin, “Power-
efficient time-sensitive mapping in heterogeneous systems,” in Proc.

PACT, 2012, pp. 23–32.

[6] J. Chen, L. Tan, P. Wu, D. Tao, H. Li, X. Liang, S. Li, R. Ge, L. N.
Bhuyan, and Z. Chen, “GreenLA: Green linear algebra software for
GPU-accelerated heterogeneous computing,” in Proc. SC, 2016, p. 57.

[7] H. David, C. Fallin, E. Gorbatov, U. R. Hanebutte, and O. Mutlu,
“Memory power mamagement via dynamic voltage/frequency scaling,”
in Proc. ICAC, 2011, pp. 31–40.

[8] Q. Deng, D. Meisner, L. Ramos, T. F. Wenisch, and R. Bianchini,
“Memscale: Active low-power modes for main memory,” in Proc.

International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), 2011, pp. 225–238.

[9] L. Tan, L. Chen, Z. Chen, Z. Zong, R. Ge, and D. Li, “HP-
DAEMON: High performance distributed adaptive energy-efficient
matrix-multiplication,” in Proc. ICCS, 2014, pp. 599–613.

[10] L. Tan, S. L. Song, P. Wu, Z. Chen, R. Ge, and D. J. Kerbyson,
“Investigating the interplay between energy efficiency and resilience
in high performance computing,” in Proc. IPDPS, 2015, pp. 786–796.

[11] C. Wilkerson, H. Gao, A. R. Alameldeen, Z. Chishti, M. Khellah,
and S.-L. Lu, “Trading off cache capacity for reliability to enable low
voltage operation,” in Proc. ISCA, 2008, pp. 203–214.

[12] A. Bacha and R. Teodorescu, “Dynamic reduction of voltage margins
by leveraging on-chip ECC in Itanium II processors,” in Proc. ISCA,
2013, pp. 297–307.

[13] N. J. Wang, J. Quek, T. M. Rafacz, and S. J. Patel, “Characterizing the
effects of transient faults on a high-performance processor pipeline,” in
Proc. DSN, 2004, p. 61.

[14] R. E. Kessler, “The Alpha 21264 microprocessor,” IEEE Micro, pp.
24–36, Mar. 1999.

[15] Intel R© Itanium R© Processor. http://ark.intel.com/products/family/451/Intel-
Itanium-Processor, 2016.

[16] R. A. Ashraf, R. Gioiosa, G. Kestor, R. F. DeMara, C.-Y. Cher, and
P. Bose, “Understanding the propagation of transient errors in HPC
applications,” in Proc. SC, 2015, p. 72.

[17] L. Tan, Z. Chen, and S. L. Song, “Scalable energy efficiency
with resilience for high performance computing systems: A quantita-
tive methodology,” ACM Trans. Architecture and Code Optimization,
vol. 12, no. 4, p. 35, Jan. 2016.

[18] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5
simulator,” ACM SIGARCH Computer Architecture News, vol. 39, no. 2,
pp. 1–7, May 2011.

[19] V. Sridharan and D. Kaeli, “Eliminating microarchitectural dependency
from architectural vulnerability,” in Proc. HPCA, 2009, pp. 117–128.

[20] B. Fang, Q. Lu, K. Pattabiraman, M. Ripeanu, and S. Gurumurthi,
“ePVF: An enhanced program vulnerability factor methodology for
cross-layer resilience analysis,” in Proc. DSN, 2016, pp. 168–179.

[21] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin,
“A systematic methodology to compute the architectural vulnerability
factors for a high-performance microprocessor,” in Proc. MICRO, 2003,
p. 29.

[22] J. Yan and W. Zhang, “Compiler-guided register reliability improvement
against soft errors,” in Proc. EMSOFT, 2005, pp. 203–209.

[23] J. Carretero, E. Herrero, M. Monchiero, T. Ramı́rez, and X. Vera,
“Capturing vulnerability variations for register files,” in Proc. DATE,
2013, pp. 1468–1473.

[24] J. Lee and A. Shrivastava, “Software-based register file vulnerability
reduction for embedded processors,” ACM Trans. Embedded Computing

Systems, vol. 13, no. 1s, p. 38, Nov. 2013.

[25] ——, “Compiler-managed register file protection for energy-efficient
soft error reduction,” in Proc. ASP-DAC, 2009, pp. 618–623.

[26] J. Tan, S. L. Song, K. Yan, X. Fu, A. Marquez, and D. Kerbyson,
“Combating the reliability challenge of GPU register file at low supply
voltage,” in Proc. PACT, 2016, pp. 3–15.

[27] M. Fazeli, A. Namazi, and S. G. Miremadi, “An energy efficient
circuit level technique to protect register file from MBUs and SETs
in embedded processors,” in Proc. DSN, 2009.

[28] S. M. Shatz and J.-P. Wang, “Models and algorithms for reliability-
oriented task-allocation in redundant distributed-computer systems,”
IEEE Trans. Reliability, vol. 38, no. 1, pp. 16–27, Apr. 1989.

[29] Y. Zhang, K. Chakrabarty, and V. Swaminathan, “Energy-aware fault
tolerance in fixed-priority real-time embedded systems,” in Proc. IC-

CAD, 2003, pp. 209–213.

[30] D. Zhu, R. Melhem, and D. Mossé, “The effects of energy management
on reliability in real-time embedded systems,” in Proc. ICCAD, 2004,
pp. 35–40.

[31] C.-H. Hsu and W.-C. Feng, “A power-aware run-time system for high-
performance computing,” in Proc. SC, 2005, p. 1.

[32] The Princeton Application Repository for Shared-Memory Computers

(PARSEC). http://parsec.cs.princeton.edu/index.htm.

[33] MiBench: A free, commercially representative embedded benchmark

suite. http://vhosts.eecs.umich.edu/mibench/.

[34] NASA Advanced Supercomputing Parallel Benchmarks (NPB).
http://www.nas.nasa.gov/publications/npb.html.

[35] Intel R© Xeon R© Processor E5-2660 v3 Specifications.
http://ark.intel.com/products/81706/Intel-Xeon-Processor-E5-2660-
v3-25M-Cache-2 60-GHz, 2014.

[36] Intel R© 64 and IA-32 Architectures Software Developer Manu-

als. http://www.intel.com/content/www/us/en/processors/architectures-
software-developer-manuals.html, 2016.

[37] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “McPAT: An integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in Proc. MICRO,
2009, pp. 469–480.

[38] M. Alian, D. Kim, and N. S. Kim, “pd-gem5: Simulation infrastructure
for parallel/distributed computer systems,” IEEE Computer Architecture

Letters, vol. 15, no. 1, pp. 41–44, Jan. 2016.

[39] KVM (Kernel-based Virtual Machine). http://www.linux-kvm.org/.

