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Exascale Roadmap Source: http://science.energy.gov/~/media/ascr/ascac/pdf/

meetings/aug12/2012-ECI-ASCAC-v4.pdf

• Explosive increase in parallelism

•• Large increase in the number of failuresLarge increase in the number of failures

•• Large increase in the power costsLarge increase in the power costs



• Power and energy costs of high performance 
computing  systems are a growing severity 
nowadays �������� operating costs and system reliability

– AvgPwr of top 5 supercomputers (TOP500)��������10.1MW

Energy and Resilience Concerns in HPC

– AvgPwr of top 5 supercomputers (TOP500)��������10.1MW

– 20MW power-wall by DOE for exascale (1018 FLOPS)

– Overheat problems (aging/failures) and cooling costs



• Failure Rate Explosion
–– Small on a single node, increasingly susceptible at scaleSmall on a single node, increasingly susceptible at scale

– Up to 1,700 ECC memory errors in 2 months for a 692-node 
(22,144 cores in total) cluster at PNNL [1]

– K computer (1st on TOP500 in 2011): hardware failure rate 

High Vulnerability of Large-Scale HPC Systems

– K computer (1st on TOP500 in 2011): hardware failure rate 
of up to 3% + affected by 70 soft errors in 1 month [2]

– A 128,000-node BlueGene/L system: 1 soft error in the L1 
cache every 4-6 hours due to radioactive decay [3]

– What about the forthcoming exascale systems in 2020?

• More Error-Prone Components
– Memory bit-flips, CPU/GPU logic errors, FPGA soft errors

[1] PIC: Pacific Northwest National Laboratory Institutional Computing. https://cvs.pnl.gov/PIC/wiki/PicCompute.

[2] Keiji Yamamoto et al., The K computer Operations: Experiences and Statistics, in Proc. ICCS, 2014, pp. 576–585.

[3] Greg Bronevetsky and Bronis de Supinski, Soft error vulnerability of iterative linear algebra methods, In Proc. ICS, 2008, pp. 155-164.



• Motivation

– There exist entangled effects between the two: Some 
HPC parameters involved in both (f/V, number of cores)

– Improving one does not necessarily improve the other

Interplay: Energy Efficiency and Resilience

– Improving one does not necessarily improve the other

–– GoalGoal: The optimal HPC configuration that can balance

the trade-offs (e.g., minimizing energy with resilience)

• Limitations of Related Work

– Little has been done to investigate this issue both 
theoretically and empirically

– Little has been done on this for large-scale HPC systems
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• Two Classic Metrics Quantifying Perf. of Parallel Sys.

– Amdahl’s Law (basic model for processor performance)

– Karp-Flatt Metric (consider parallel overhead eg. comm.)

Amdahl’s Law and Karp-Flatt Metric

– Karp-Flatt Metric (consider parallel overhead eg. comm.)

– Problem Scope



• Incorporate Power/Energy Efficiency and Resilience

– Extended Amdahl’s Law for Power Efficiency (CPU)

Extended Amdahl’s Law and Karp-Flatt Metric

– Extended Karp-Flatt Metric for Speedup with Resilience

(Checkpoint/Restart)



• Quantitatively Modeling the Integrated Energy 
Efficiency with Resilience for Typical HPC Scenarios

Integrated Energy Efficiency for HPC Systems

– HPC Runs + No Faults + No DVFS + No Undervolting

– HPC Runs + Faults & C/R + No DVFS + No Undervolting

– HPC Runs + Faults & C/R + DVFS + No Undervolting

– HPC Runs + Faults & C/R + No DVFS + Undervolting

(Increased Failure Rates)



• Objective Function of Optimization

• HPC Parameters in Concern(Perf/Energy/Resilience)

Optimizing Integrated Energy Efficiency

• HPC Parameters in Concern(Perf/Energy/Resilience)

Typical HPC Parameters Formulation Dimension in HPC

Checkpoint/Restart Overhead / Performance/Resilience

Checkpoint Interval Performance/Resilience

Failure Rate Performance/Resilience

Number of Cores Performance/Energy

Problem Size Performance/Energy

Frequency/Voltage / Performance/Energy/Resilience





Benchmarks and Experimental Setup



Results on Validation of Modeling Accuracy

7.7%7.7% 9.4%9.4%



Results on Effects on EE from HPC Parameters

We injected an error at 55We injected an error at 55thth s (T~=100s)s (T~=100s) Optimal voltage that balances E+ and EOptimal voltage that balances E+ and E--
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• Dynamic Voltage and Frequency Scaling (DVFS)

– CMOS-based components(CPU/GPU/mem.) dominant

– Strategically switch processors to low-power states 
when the peak processor performance is unnecessary

Solving Power and Energy Concerns in HPC

when the peak processor performance is unnecessary

– voltage/frequency ↓ �������� power ↓ �������� energy efficiency



• Basics of Energy Saving DVFS Solutions
– Power consumption of these components
– Supply voltage has a positive correlation with (not 

strictly proportional/linear to) operating frequency

Beyond DVFS: Undervolting w/ Fixed Frequency

• Limitations of Existing Solutions
– Most DVFS approaches are frequency-directed for slack

• Our Contributions
–– UndervoltingUndervolting: For a given frequency, hardware can be 

supplied w/ a voltage lower than the original paired one
� Hardware throughput is preserved due to fixed frequency
� Uniformly applied to both slack and non-slack of HPC runs



• Caused Increasing Failure Rates
– Both hard & soft errors may occur during undervolting

– Energy savings may be offset: error detection/recovery

– Theoretical validation holds or not? Any conditions?

Challenges

Theoretical validation holds or not? Any conditions?

• Hardware Support Constraints
– Architectural solutions to support reliable undervolting

� Simulation-based: Intel’s Wilkerson et al. [ISCA’08, ISCA’11]

� Real-machine: Bacha et al. [ISCA’13]��������firmware/software + 
pre-prod. multicore processor + only studied ECC mem. errors

� Large-scale HPC systems? �������� portability + scalability



• Key Points

Our Approach

• Key Points

– Energy saving undervolting for HPC systems by 
leveraging mainstream resilience techniques

– Positive effects: power reduction

– Negative effects: error detection/recovery overhead



• Goals (A Recap)

–– TargetTarget: HPC systems consisting of a number of nodes 
connected by networks based on msg-passing comm.

–– Q1Q1: Trade-off between power savings & performance 

Our Approach (Cont.)

–– Q1Q1: Trade-off between power savings & performance 

loss at the increased failure rates from undervolting

–– Q2Q2: Theoretically&empirically study if undervolting with 
a fixed frequency is able to saving energy w/ resilience

–– Q3Q3: If it is feasible to save more energy than state-of-
the-art frequency-directed DVFS solutions w/ resilience



• Errors/Faults/Failures in a Computing System

– Hard errors: permanent, e.g., node crash, system abort

– Soft errors: transient, e.g., memory bit-flips, logic errors

– Concerned error types: hard + soft (↑by undervolting)

Trade-off for Undervolting

– Concerned error types: hard + soft (↑by undervolting)

• Error Detection and Recovery

– We employ resilience techniques that can do both

– Different techniques have different overhead

– Trade-off between overhead and generality



• Assumption
– Failures of combinational logic circuits follow a Poisson 

distribution, determined by frequency and voltage

Failure Rate Modeling

– Relationship between frequency and voltage

– By substitution, we get



– We manage to present the average failure rate as a 
function of supply voltage         only

– Let the first derivative of the above equation = 0

Failure Rate Modeling (Cont.)

– Let the first derivative of the above equation = 0

– We thus obtain the monotonic increasing/decreasing 
domain of             with regard to 



An Example



• Resilience Techniques
– Disk-Based Checkpoint/Restart (DBCR)

� Checkpoints saved in disk, high I/O overhead

– Diskless Checkpointing (DC)
� Checkpoints saved in memory, trade-off (mem. + generality)

Fault Tolerance in HPC

� Checkpoints saved in memory, trade-off (mem. + generality)

– Triple Modular Redundancy (TMR)
� Detect and correct one erroneous run within three runs

– Algorithm-Based Fault Tolerance (ABFT)
� Leverage algorithmic characteristics to correct errors online

CPU
disk



• Examples (C/R and ABFT only)

Fault Tolerance in HPC (Cont.)



• Checkpoint/Restart (C/R) for General Applications
– Given a failure rate, there exists an optimal checkpoint 

interval that minimizes the total C/R overhead
� At nominal voltage,               is small (close to zero)

Performance Modeling

� At further reduced voltage, is raised significantly

– Performance breakdown:



• With Undervolting and Resilience Techniques

– Use C/R as an example for model building

– Study homogeneous HPC systems w/o accelerators 

– For a cluster of compute nodes, a nodal power model

Power Consumption Modeling

– For a cluster of compute nodes, a nodal power model

– Consider three power patterns for a node doing C/R



• With Undervolting and Resilience Techniques

– For an HPC run, we have three variants

� A baseline run with nominal frequency and voltage

� A run with undervolting in the absence of failures

Energy Consumption Modeling

� A run with undervolting in the absence of failures

� A run with undervolting in the presence of failures

– Integrating three power patterns, energy cost models



• Frequency-directed DVFS Approaches
– Processors equipped with a range of frequencies

– Predict and apply appropriate freq./volt. during slack
� Accurate workload prediction, frequency approximation, etc.

� Employ a state-of-the-art DVFS solution Adagio [ICS’09]

Energy Savings over State-of-the-art DVFS

� Employ a state-of-the-art DVFS solution Adagio [ICS’09]

– Can we further save energy beyond DVFS?
� Continue undervolting further per selected appropriate F/V

� Also leverage resilience techniques to guarantee correctness



Experimental Setup



• NASA-concerned HPC Benchmarks
– MG, CG, and FT from the NPB benchmark suite

• DOE-concerned HPC Benchmarks
– LULESH

Benchmarks

– LULESH

– AMG

• Widely-used Numerical Linear Algebra Libraries
– Matrix multiplication

– Cholesky factorization

– LU factorization

– QR factorization



• Undervolting Production Processors
– Modify the northbridge/CPU FID and VID control reg.

� Voltage reg. values are altered via Model Specific RegisterModel Specific Register

– This approach needs careful detection of the upper 
and lower bounds of supply voltage of the processor

Implementation

and lower bounds of supply voltage of the processor
� Hardware-damaging issues may arise

– Different from the undervolting approach in [ISCA’13]
� Software/firmware control

� Pre-production processor is required

� ECC memory support is necessary



• Error Injection
– Minimum voltage we can undervolt to is

� No errors will be observed due to close-to-zero failure rates

– Based on the failure rates between        and                 , 
we inject errors to emulate the erroneous scenarios

Implementation (Cont.)

we inject errors to emulate the erroneous scenarios
� Hard errors: manually kill an arbitrary MPI process

� Soft errors: modify values of matrix elements randomly



• Energy Cost Estimation

– Energy consumption cannot be experimentally 
measured when undervolting to

– Apply the previous emulated scaling method to 

Implementation (Cont.)

– Apply the previous emulated scaling method to 
estimate the energy costs at 



• Test Scenarios
– Checkpoint-kind resilience techniques (DBCR/DC)

�� OneCkptOneCkpt: Checkpoint/restart is only performed once

�� OptCkpt@VxOptCkpt@Vx: Checkpoint/restart is performed with the 
optimal checkpoint interval at Vx

Evaluation

optimal checkpoint interval at Vx

�� OptCkpt@VxOptCkpt@Vx + + uvuv: OptCkpt@Vx + undervolting

– Non-checkpoint resilience techniques (TMR/ABFT)
� By nature, fault tolerant actions are performed at a fixed

frequency, not affected by failure rates

� Simply apply undervolting at different voltage levels

– Energy efficiency over Adagio
�� AdagioAdagio: predicted frequency + paired voltage

�� Adagio + Adagio + uvuv: predicted frequency + undervolting



Experimental Results (DBCR vs. DC)

7.5%7.5%



Experimental Results (TMR vs. ABFT)

12.1%12.1%



Experimental Results (Adagio + Undervolting)

9.1%9.1%



Research Plan

HPCHPC

Energy-Resilience Metrics (Energy-Failure Factor)

Energy Efficient Algorithm-Based Fault Tolerance

• Entangled effects among three critical challenges in HPC

• Improving one or more w/o degrading the others (much)

• Balance/trade-off among the three is worth digging into

PerformancePerformance

HPCHPC

SystemsSystems

Energy-Aware Parallelism
Cache-Friendly 

Algorithm-Based 

Fault Tolerance
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Source: Peter Kogge and John Shalf, Exascale Computing Trends: Adjusting to the "New Normal"' 

for Computer Architecture, IEEE Computing in Science & Engineering, Vol. 15, No. 6, pp. 16-26, 2013



Two Classic Energy Saving DVFS Solutions

Critical Path Aware 

Slack ReclamationSlack Reclamation

Race-to-halt/idle



• Algorithm-Based Fault Tolerance (ABFT) for Matrix 
Operations (Cholesky/LU/QR factorization)
– In C/R, checkpoints are periodically saved

– While in ABFT, checksums are periodically updated
� Interval of updating checksums is fixed and not affected by 

Performance Modeling (Cont.)

� Interval of updating checksums is fixed and not affected by 
the variation of failure rates �������� more cost-efficient

– Performance breakdown:

• Performance modeling for other resilience 
techniques is conceptually similar



• Our Strategy (A Recap)
– Use the frequency Adagio predicted for eliminating 

slack and further lower the voltage paired with it
– We thus employ the following power patterns

Energy Savings over DVFS (Cont.)

– Theoretical energy savings over baseline runs



• Given Platform-dependent Parameters
(c1, c2, c3, AC’, Isub, f, V, PC)

– Before Model Relaxation

Energy Saving Conditions over Baseline

– After Model Relaxation (N-1 ≈ N)



• Failure Rate Calculation
–– LimitationLimitation: HPC production machines do not allow 

further voltage reduction beyond
� No real failures can be observed on our platform

– Estimate failure rates between      and

Implementation

– Estimate failure rates between      and

– Use the equation below to calculate the failure rates
� High accuracy shown in the illustrated example



• NB/CPU FID/VID control register format and formula

Implementation (Cont.)

Bits (64 bits in total) Description

63:32, 24:23, 21:19 Reserved

32:25 Northbridge Voltage ID, Read-Write

22 Northbridge Divisor ID, Read-Write

� frequency = 100 MHz * (CPUFid + 10hex)/(2^CPUDid)
E.g.: 0x30002809 -> frequency = 100 * (9+16)/2^0 = 2.5 GHz
� voltage = 1.550 V – 0.0125 V * CPUVid
E.g.: 0x30002809 -> voltage = 1.550 - 0.0125 * 0010100b = 1.300 V

22 Northbridge Divisor ID, Read-Write

18:16 P-state ID, Read-Write

15:9 Core Voltage ID, Read-Write

8:6 Core Divisor ID, Read-Write

5:0 Core Frequency ID, Read-Write



• Undervolting can be beneficial to energy efficiency
– At the cost of increased failure rates (detection + recovery)
– Lightweight resilience techniques only incur minor

perf. loss on error detection/recovery �������� energy savings
– Undervolting is practical for future HPC systems
– Feasible to save energy beyond classic DVFS solutions

Conclusions and Future Work

– Feasible to save energy beyond classic DVFS solutions

• Ongoing Directions
– Migrate undervolting to more types of hardware (eg, GPU)
– Undervolting w/ fixed freq. VS.VS. overclocking w/ fixed volt.
– Is the other way around possible? �������� Improving resilience 

or performance at the cost of energy efficiency


