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Source: http://science.energy.gov/~/media/ascr/ascac/pdf/
Exascale Roadmap i im0z corasoncvaper

Systems 2009|2012 (2016 200

System peak 2 Peta 20 Peta 100-200 Peta 1 Exa

System memory 0.3PB 1.6 PB 5PB 10 PB

Node memory BW 25 GB/s 40 GB/s 100 GB/s 200-400 GB/s
Node concurrency 12 32 O(100) O(1000)
Interconnect BW 1.5 GB/s 22 GB/s 25 GB/s o0 GB/s

Total concurrency 225,000 3,200,000 0(50,000,000)  O(billion)
Mean Time To Interrupt (MTTI)  1-4 days 5-19 hours  50-230 min 22-120 min
Power 6 MW ~10 MW ~10 MW ~20 MW

* Explosive increase in parallelism
e Large increase in the number of failures
e large increase in the power costs



Energy and Resilience Concerns in HPC

 Power and energy costs of high performance
computing systems are a growing severity
nowadays = operating costs and system reliability
— AvgPwr of top 5 supercomputers (TOP500)—>10.1MW
oA\  Energy Costs in Data Centers >l FLOPS)

ng costs
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High Vulnerability of Large-Scale HPC Systems

* Failure Rate Explosion

— Small on a single node, increasingly susceptible at scale

— Up to 1,700 ECC memory errors in 2 months for a 692-node
(22,144 cores in total) cluster at PNNL [1]

— K computer (15t on TOP500 in 2011): hardware failure rate
of up to 3% + affected by 70 soft errors in 1 month [2]

— A 128,000-node BlueGene/L system: 1 soft error in the L1
cache every 4-6 hours due to radioactive decay [3]

— What about the forthcoming exascale systems in 20207?

* More Error-Prone Components
— Memory bit-flips, CPU/GPU logic errors, FPGA soft errors

[1] PIC: Pacific Northwest National Laboratory Institutional Computing. https://cvs.pnl.gov/PIC/wiki/PicCompute.
[2] Keiji Yamamoto et al., The K computer Operations: Experiences and Statistics, in Proc. ICCS, 2014, pp. 576-585.
[3] Greg Bronevetsky and Bronis de Supinski, Soft error vulnerability of iterative linear algebra methods, In Proc. ICS, 2008, pp. 155-164.




Interplay: Energy Efficiency and Resilience

* Motivation

— There exist entangled effects between the two: Some
HPC parameters involved in both (f/V, number of cores)

— Improving one does not necessarily improve the other

— Goal: The optimal HPC configuration that can balance
the trade-offs (e.g., minimizing energy with resilience)

e Limitations of Related Work

— Little has been done to investigate this issue both
theoretically and empirically

— Little has been done on this for large-scale HPC systems
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Amdahl’s Law and Karp-Flatt Metric

* Two Classic Metrics Quantifying Perf. of Parallel Sys.
— Amdahl’s Law (basic model for processor performance)

Speedup, = TS+? = (1_Q)T+Z£ - : a
T.+2  (-a)T+— l-—a+5
— Karp-Flatt Metric (consider parallel overhead eg. comm.)
Ts + T, (1—a)T+aT
Speedupys = T = T
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Fig. 2. Investigated Architecture — Symmetric Multicore Processors Interconnected by Networks.



Extended Amdahl’s Law and Karp-Flatt Metric

* Incorporate Power/Energy Efficiency and Resilience
— Extended Amdahl’s Law for Power Efficiency (CPU)

Energy _|(@Q+ (P—1)pQ)(1 — a)T H{PQE 1| PuQr(N, P)
Time (1—Q)T+%+H(N’P)
(14 p(P —1))(1 — @) + a + pp=ULE)

o K',N,P
(1—Q)+§+JT—Z

Power =

:QX

— Extended Karp-Flatt Metric for Speedup with Resilience
Tor = 5™ —1)T (Checkpoint/Restart)
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Integrated Energy Efficiency for HPC Systems

* Quantitatively Modeling the Integrated Energy
Efficiency with Resilience for Typical HPC Scenarios

Perf  Speedup
Watt  Power

— HPC Runs + No Faults + No DVFS + No Undervolting

— HPC Runs + Faults & C/R + No DVFS + No Undervolting

— HPC Runs + Faults & C/R + DVFS + No Undervolting

— HPC Runs + Faults & C/R + No DVFS + Undervolting
(Increased Failure Rates)




Optimizing Integrated Energy Efficiency

* Objective Function of Optimization

Perf  Speedup
Watt  Power

 HPC Parameters in Concern(Perf/Energy/Resilience)

Typical HPC Parameters ‘ Formulation ‘ Dimension in HPC
Checkpoint/Restart Overhead C /R Performance/Resilience
Checkpoint Interval T Performance/Resilience

Failure Rate A Performance/Resilience
Number of Cores P Performance/Energy

Problem Size N Performance/Energy
Frequency/Voltage J ]V Performance/Energy/Resilience
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Benchmarks and Experimental Setup

Table I. Benchmark details. From left to right: benchmark name, benchmark suite, benchmark description and test case used, problem domain, lines of code
in the benchmark, parallelization system employed, and parallelized code percentage relative to the total.

Benchmark | Suite Description and Test Case Domain LOC | Parallelized in Percer.ltage of
Parallelized Code
Solve a discrete Poisson equation discrete
MG NEB using multigrid method (Class B). mathematics —— OpenMP/MRI 5.0
Estimate eigenvalue of a sparse matrix numerical linear
CG HES with conjugate gradient method (Class B). algebra A KipenbRME 98.3%
Solve a partial differential equation numerical linear
L NFE using fast Fourier transform (Class B). algebra 2054 UpenkiP/aF 58.7%
Generate Gaussian random variates probability theory
HE HEB using Marsaglia polar method (Class B). and statistics 853 CpentiF{MP .5%
Matrix multiplication on two 10k x 10k numerical linear OpenMP/MPI
Maithul Self-programed global matrices, saving into a third one. 7 algebra 7 008 |  /Pthreads RA%
Chol FT-ScaLAPACK Cholesky fa_ctorization ona 10k x 10k numerical linear 21892 MPI 92.7%
global matrix to solve a linear system. algebra
LU FT-ScaLAPACK LU factorlza.ltmn ona 101:1>< 10k numerical linear 9899 MPI 61.6%
global matrix to solve a linear system. algebra
QR FT-ScaLLAPACK QR factoriz?.tion on a 101_()( 10k numerical linear 3371 MPI 76.5%
global matrix to solve a linear system. algebra ‘ _
LULESH | DARPAUHPC | ‘:Pproximate hydrodynamics equations hydrodynamics | 6014 | OpenMP/MPI 14.6%
using 512 volumetric elements on a mesh.
An algebraic multigrid solver for linear numerical linear
AMG CORAL systems on a 4 x4 x6 unstructured grid. algebra 3098 OpenbP/MP| 65.1%
Table Il. Hardware Configuration for All Experiments.
Cluster HPCL ARC
System Size
(# of Nodes) 8 108
Pro 2xQuad-core 2x8-core
ssesd AMD Opteron 2380 AMD Opteron 6128
CPUTreq. | 08,13,18,25CGHz _ 08,10,12, 15,20 CHz
CPU Voltage 1.300, 1.100, 1.025, 0.850 V N/A
__(Undervolting) Vi/Vi/Vsafemin/Vin) e
Memory 8 GB RAM 32 GB RAM
Gk 128 KB L1, 512 KB L2, 128 KB L1, 512 KB L2,
6 MB L3 12 MB L3
Network 1 GB/s Ethernet 40 GB/s InfiniBand
0S CentOS 6.2, 64-bit CentOS 5.7, 64-bit
Linux kernel 2.6.32 Linux kernel 2.6.32
Power Meter PowerPack Watts up? PRO




Normalized Values

Results on Validation of Modeling Accuracy
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Results on Effects on EE from HPC Parameters
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Solving Power and Energy Concerns in HPC

 Dynamic Voltage and Frequency Scaling (DVFS)
— CMOS-based components(CPU/GPU/mem.) dominant

— Strategically switch processors to low-power states
when the peak processor performance is unnecessary

— voltage/frequency |, =2 power |, =2 energy efficiency
PocfV/? supply voltage

wasted
energy

>

CPU demand

conventional per-core voltage



Beyond DVFS: Undervolting w/ Fixed Frequency

* Basics of Energy Saving DVFS Solutions
— Power consumption of these components Pocfl/?

— Supply voltage has a loositive correlation with (not
strictly proportional/linear to) operating frequency

* Limitations of Existing Solutions
— Most DVFS approaches are frequency-directed for slack

* Our Contributions
— Undervolting: For a given frequency, hardware can be
supplied w/ a voltage lower than the original paired one
= Hardware throughput is preserved due to fixed frequency
= Uniformly applied to both slack and non-slack of HPC runs



Challenges

* Caused Increasing Failure Rates
— Both hard & soft errors may occur during undervolting
— Energy savings may be offset: error detection/recovery
— Theoretical validation holds or not? Any conditions?

 Hardware Support Constraints

— Architectural solutions to support reliable undervolting
= Simulation-based: Intel’s Wilkerson et al. [ISCA’08, ISCA’11]

= Real-machine: Bacha et al. [ISCA’13] =2 firmware/software +
pre-prod. multicore processor + only studied ECC mem. errors

= Large-scale HPC systems? = portability + scalability



Our Approach

Pt v Power,l,
Undervolfmg = Energy N ?

Resmence /
Time#4

Techniques

* Key Points

— Energy saving undervolting for HPC systems by
leveraging mainstream resilience techniques

— Positive effects: power reduction
— Negative effects: error detection/recovery overhead



Our Approach (Cont.)

e Goals (A Recap)

— Target: HPC systems consisting of a number of nodes
connected by networks based on msg-passing comm.

— Q1: Trade-off between power savings & performance
loss at the increased failure rates from undervolting

— Q2: Theoretically&empirically study if undervolting with
a fixed frequency is able to saving energy w/ resilience

— Q3: If it is feasible to save more energy than state-of-
the-art frequency-directed DVFS solutions w/ resilience



Trade-off for Undervolting

* Errors/Faults/Failures in a Computing System
— Hard errors: permanent, e.g., node crash, system abort
— Soft errors: transient, e.g., memory bit-flips, logic errors
— Concerned error types: hard + soft ( T by undervolting)

* Error Detection and Recovery
— We employ resilience techniques that can do both
— Different techniques have different overhead
— Trade-off between overhead and generality



Failure Rate Modeling

* Assumption

— Failures of combinational logic circuits follow a Poisson
distribution, determined by frequency and voltage

d(fmax—T1)

/\(]( Irdd) p— }\(}() p— }\D {'-ff;rna:a:—fmiﬂ

— Relationship between frequency and voltage

Vi — Vi )2
F = ¢ (Vaa. Vin) = p L4 —T10)

— By substitution, we get
-2
d‘ffmar—-"5'(1'“'11({—91'}!1_"%%”

)\(}1 Irdd) — )\(I’:‘fd) — )\[] € fmaz—Fmin




Failure Rate Modeling (Cont.)

-2
‘[r_.-
d(fmaz —-'S(Vdd—?"’ﬂﬁrﬁ%”

)\(j Irdd) — )\(Itdd) — )\U (& Ifmax—Fmin

— We manage to present the average failure rate as a
function of supply voltage V;; only

— Let the first derivative of the above equation =0

N\ envany) 480 = (Vin/Vaa)?)

(DI"rdd }( max }( min
— Irdd — :|ZI th

— We thus obtain the monotonic increasing/decreasing
domain of A(Viq) with regard to Vaad

=0
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An Example
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Figure 2. Observed and Calculated Failure Rates as a Function of Supply
Voltage for a Pre-Production Intel Itanium IT 9560 8-Core Processors (V,:
max volt. paired with max freq., V;: min voltage paired with min freq.,
Veafe_min: min volt. for pre-production processors. Viy,: threshold volt.).



Fault Tolerance in HPC

* Resilience Techniques

— Disk-Based Checkpoint/Restart (DBCR)
= Checkpoints saved in disk, high I/O overhead

— Diskless Checkpointing (DC)

= Checkpoints saved in memory, trade-off (mem. + generality)

— Triple Modular Redundancy (TMR)

= Detect and correct one erroneous run within three runs

— Algorithm-Based Fault Tolerance (ABFT)

= Leverage algorithmic characteristics to correct errors online

- Main
IE >< CPU | ¢m=m) memory




Fault Tolerance in HPC (Cont.)

* Examples (C/R and ABFT only)

T C T C

Ts = Nt Tc = (N-1)C R v C T

Figure 3. Checkpoint/Restart Execution Model for a Single Process.

—>

Original Global Matrix Checksum-Protected Global Matrix

Figure 4. Algorithm-Based Fault Tolerance Model for Matrix Operations.



Performance Modeling

* Checkpoint/Restart (C/R) for General Applications

— Given a failure rate, there exists an optimal checkpoint
interval that minimizes the total C/R overhead

= At nominal voltage, \(V,,;) is small (close to zero)

Topt = \/QG(% +R) forT+C < 1
" At further reduced voltage, (V) is raised significantly

{ % —C' for C <
T p—
opt

1 S
>\ for C' >

o= Sl

— Performance breakdown:
1 . )
T =T+ (— —1)C+ o(t+C)n+ Rn

-



Power Consumption Modeling

* With Undervolting and Resilience Techniques
— Use C/R as an example for model building
— Study homogeneous HPC systems w/o accelerators

— For a cluster of compute nodes, a nodal power model

 5CPU CPU other
P = de?m.mic T % leakage T Pff-"fﬂkﬂ-g"f

= AC’ f Irdzd + LoupVaa +1 ; ub Iréd

— Consider three power patterns for a node doing C/R

P = AC' fpVi? + Leup Vi + P
§ P = AC!JL h I';Qa fe_min + 1 S-ubl"?saf e_min T P,
L F)E — fl(jﬂfi I‘"E;Lfg_min Bl Isub";afe_min —+ Pc



Energy Consumption Modeling

* With Undervolting and Resilience Techniques

— For an HPC run, we have three variants
= A baseline run with nominal frequency and voltage
= A run with undervolting in the absence of failures
= A run with undervolting in the presence of failures

— Integrating three power patterns, energy cost models

Eba.ee — PhT
EST =P, Ts+ P (X —-1)C
EeT = Pp(Ts+omn)+P (2= +¢n)C+Rn)



Energy Savings over State-of-the-art DVFS

* Frequency-directed DVFS Approaches
— Processors equipped with a range of frequencies

— Predict and apply appropriate freq./volt. during slack
= Accurate workload prediction, frequency approximation, etc.
= Employ a state-of-the-art DVFS solution Adagio [ICS’09]

— Can we further save energy beyond DVFS?
= Continue undervolting further per selected appropriate F/V

= Also leverage resilience techniques to guarantee correctness

supply voltage

wasted
energy

CPU demand

olls a8l
& o o o

conventional per-core voltage per-core voltage



Experimental Setup

Cluster HPCL
System Size 64 Cores, 8 Compute Nodes
Processor AMD Opteron 2380 (Quad-core)

CPU Frequency

0.8, 1.3, 1.8, 2.5 GHz

CPU Voltage

[.300, 1.100, 1.025, 0.850 V
{Ifh XV;T KVSafE._THi?I fvth )

Memory 8 GB RAM
Cache 128 KB L1. 512 KB L2, 6 MB L3
Network | GB/s Ethernet

OS CentOS 6.2, 64-bit Linux kernel 2.6.32

Power Meter

PowerPack

Resilience Technique Recovery Model | Failure Type
Disk-Based Checkpoint/Restart (DBCR)
Diskless Checkpointing (DC) Backward Hard Errors
Triple Modular Redundancy (TMR) Retry Soft Errors
Algorithm-Based Fault Tolerance (ABFT) Local/Global




Benchmarks

e NASA-concerned HPC Benchmarks
— MG, CG, and FT from the NPB benchmark suite

e DOE-concerned HPC Benchmarks
— LULESH
— AMG

* Widely-used Numerical Linear Algebra Libraries
— Matrix multiplication
— Cholesky factorization
— LU factorization
— QR factorization



Implementation

* Undervolting Production Processors

— Modify the northbridge/CPU FID and VID control reg.
= \/oltage reg. values are altered via Model Specific Register
— This approach needs careful detection of the upper
and lower bounds of supply voltage of the processor
* Hardware-damaging issues may arise

— Different from the undervolting approach in [ISCA’13]
= Software/firmware control
" Pre-production processor is required
= ECC memory support is hecessary



Implementation (Cont.)

* Error Injection

— Minimum voltage we can undervolt to is V;
= No errors will be observed due to close-to-zero failure rates
— Based on the failure rates between V; and Vsafe min
we inject errors to emulate the erroneous scenarios
= Hard errors: manually kill an arbitrary MPI process
= Soft errors: modify values of matrix elements randomly

Vh Vi Vsafe min



Implementation (Cont.)

* Energy Cost Estimation

— Energy consumption cannot be experimentally
measured when undervolting to Vsa fe_min

— Apply the previous emulated scaling method to
estimate the energy costs at Vsafe_min

Ph = AC" th 2 4 LoV + P

P = AC" th qafe min + LsubVsafe_min + Pe

P = AC' iV te min + LsubVease_min + Pe

Ebase = Pl
ETT =P,Ts+ P (X —1)C
BT = Pp(Ts+émn)+ P (22 +¢n)C+Rn)

_A_




Evaluation

* Test Scenarios
— Checkpoint-kind resilience techniques (DBCR/DC)

= OneCkpt: Checkpoint/restart is only performed once

= OptCkpt@Vx: Checkpoint/restart is performed with the
optimal checkpoint interval at Vx

= OptCkpt@Vx + uv: OptCkpt@Vx + undervolting
— Non-checkpoint resilience techniques (TMR/ABFT)

= By nature, fault tolerant actions are performed at a fixed
frequency, not affected by failure rates

= Simply apply undervolting at different voltage levels
— Energy efficiency over Adagio

= Adagio: predicted frequency + paired voltage
= Adagio + uv: predicted frequency + undervolting



Experimental Results (DBCR vs. DC)
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Experimental Results (TMR vs. ABFT)
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Marmalizad Tima

Experimental Results (Adagio + Undervolting)
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Research Plan

Energy-Resilience Metrics (Energy-Failure Factor)

orithm-Based Fault Tolerance

,E’ﬂergy-Aware Parallelism

Algorithm-Based

Fault Tolerance
* Entangled effects among three critical challenges in HPC

* Improving one or more w/o degrading the others (much)
* Balance/trade-off among the three is worth digging into
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Two Classic Energy Saving DVFS Solutions
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Performance Modeling (Cont.)

* Algorithm-Based Fault Tolerance (ABFT) for Matrix
Operations (Cholesky/LU/QR factorization)

— In C/R, checkpoints are periodically saved
— While in ABFT, checksums are periodically updated

= Interval of updating checksums is fixed and not affected by
the variation of failure rates > more cost-efficient

— Performance breakdown:

1C N3 1C,N?2 O, N
Tabft. :}E ]{D i'Lf‘|‘JIE \/1@ ?Lv_%fm_Td‘l‘Tf.—FTc

* Performance modeling for other resilience
techniques is conceptually similar




Energy Savings over DVFS (Cont.)

e Our Strategy (A Recap)

— Use the frequency Adagio predicted for eliminating
slack and further lower the voltage paired with it

— We thus employ the following power patterns

( Rflg{%laﬁio = AC" Jm It,r-.-z?, +Lgup Vi + e
) Pyt =P
P[?iack =A C” f( -m I;Za fe_min _HT sub I"Fsa fe_min + F, c
\ P;}f-n—si{mﬁc — Pm

— Theoretical energy savings over baseline runs
AE = Epose — E.

uv

= (Ph—Prm)Ts® (P — Py Tataen—

(PméanLH ((TST_ ’ +¢n) C’+Rn))




Energy Saving Conditions over Baseline

* Given Platform-dependent Parameters
(c, c,, c3 AC, I, , V, P,)

— Before Model Relaxation

TS } Egc

.;:3(vﬁﬂ_mjgzcjmx)—c1+c2(x/2,\c—xc)

— After Model Relaxation (N-1 = N)
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R<—~-2(/Z—C)- +-)c
C3A  C3 ( A ) V20MC —)\C 2




Implementation

e Failure Rate Calculation

— Limitation: HPC production machines do not allow
further voltage reduction beyond 1/

= No real failures can be observed on our platform
— Estimate failure rates between V; and Ve, e min

— Use the equation below to calculate the failure rates
= High accuracy shown in the illustrated example
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Implementation (Cont.)

 NB/CPU FID/VID control register format and formula

63:32, 24:23, 21:19 Reserved

32:25 Northbridge Voltage ID, Read-Write
22 Northbridge Divisor ID, Read-Write
18:16 P-state ID, Read-Write

15:9 Core Voltage ID, Read-Write

8:6 Core Divisor ID, Read-Write

5:0 Core Frequency ID, Read-Write

= frequency = 100 MHz * (CPUFid + 10hex)/(2~CPUDid)

E.g.: 0x30002809 -> frequency = 100 * (9+16)/270 = 2.5 GHz

= voltage =1.550V -0.0125V * CPUVid

E.g.: 0x30002809 -> voltage = 1.550- 0.0125 * 0010100b =1.300 V



Conclusions and Future Work

* Undervolting can be beneficial to energy efficiency
— At the cost of increased failure rates (detection + recovery)
— Lightweight resilience techniques only incur minor
perf. loss on error detection/recovery = energy savings

— Undervolting is practical for future HPC systems
— Feasible to save energy beyond classic DVFS solutions

* Ongoing Directions
— Migrate undervolting to more types of hardware (eg, GPU)
— Undervolting w/ fixed freq. VS. overclocking w/ fixed volt.

— Is the other way around possible? = Imfpr.oving resilience
or performance at the cost of energy efficiency



