
Parallel Computing 73 (2018) 3–15 

Contents lists available at ScienceDirect 

Parallel Computing 

journal homepage: www.elsevier.com/locate/parco 

Using virtualization to quantify power conservation via 

near-threshold voltage reduction for inherently resilient 

applications 

� 

Li Tan 

∗, Nathan DeBardeleben, Qiang Guan, Sean Blanchard, Michael Lang 

Ultrascale Systems Research Center, Los Alamos National Laboratory, USA 

a r t i c l e i n f o 

Article history: 

Received 25 October 2016 

Revised 22 May 2017 

Accepted 26 July 2017 

Available online 27 July 2017 

MSC: 

68M14 

68M20 

68N25 

68W10 

68W15 

Keywords: 

Inherently resilient applications 

Power savings 

Fault injection 

Failure rates 

Soft errors 

Virtualization 

Near-threshold voltage reduction 

a b s t r a c t 

Power efficiency nowadays is a mainstream pressing issue in High Performance Computing 

(HPC), due to limited power supply capability of current and projected supercomputers. 

As a promising solution, leveraging inherent application resilience to relax power require- 

ments of HPC runs can effectively save power with minor/acceptable loss of output qual- 

ity. However, the challenges of this approach lie in: (a) how to reduce power usage of HPC 

runs online within allowable maximum extent such that quality metrics of applications can 

be satisfied, and (b) how to identify potential intrinsic nature of fault tolerance in general 

for an application. Existing efforts to date fail to address both challenges systematically 

and efficiently. In this work, based on virtualization and near-threshold voltage reduction 

techniques, we propose an empirical framework named V-Power to save the most power 

for inherently resilient applications. As an integrated empirical system, our approach effec- 

tively addresses the two above challenges using quantitative and fine-grained application 

inherent resilience analysis and frequency-independent near-threshold voltage reduction. 

Experimental results for a wide spectrum of scientific applications running on a 40-core 

power-aware server demonstrate that V-Power is capable of saving power up to 12.3%, 

resulting in a failure rate with acceptable program outputs. 

© 2017 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

1. Introduction 

Considering ever-growing power bills and limited power supply capability of electrical facilities, power efficiency has

already become a first-class citizen in scalable and cost-efficient High Performance Computing (HPC) systems. Numerous

software/hardware solutions have been proposed to achieve power savings at different levels of system abstraction, with

little performance degradation of HPC runs. Provided a growing number of specialized-purpose scientific applications in dif-

ferent domains nowadays, a promising solution is to leverage specifically inherent resilience of an application for operating in

the low-power mode, while the resulting errors are masked or tolerated by the application. Note that the inherent resilience

can be specific to certain error types, or be specific to certain portions of the application. Generally, HPC runs with masked
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errors result in successful completion, which highly depends on the application characteristics. For instance, the faulty values

caused by the errors are not reused in the rest of a run [1] . On the other hand, errors in some applications (e.g., from the

domains of image/video processing, recognition, and data mining) can be tolerated to some extent. Incorrect results in a run

of such applications within a given range are acceptable [2] (e.g., minor image errors can be unperceivable by users). These

applications can benefit from being operated in the low-power mode for power savings, with little loss of output quality. 

Strategies at various layers of abstraction can be applied to leverage the inherent resilience of applications, including

using inexact hardware [3,4] , voltage scaling [5,6] , load value approximation [7,8] , and task skipping [9,10] . However, little

work has been done to investigate the quantitative correlation between resilience and power efficiency of HPC runs, e.g.,

the integrated modeling between resilience factors such as failure rates, with power saving factors such as supply voltage.

In this work, we propose to achieve power efficiency for scientific applications with inherent resilience to different types

of soft errors including crashes, hangs, and silent data corruption, using near-threshold voltage reduction techniques [11,12] .

There exist several efforts on employing voltage scaling techniques for power savings with minor loss of output quality at

different levels of abstraction [5] and at GPU level [6] , but neither of them discuss the quantitative modeling of resilience

and power savings, nor experimentally evaluate the trade-offs between output quality loss and power efficiency. 

CMOS-based hardware components such as CPU, GPU, and memory are generally the dominant power consumers in a

computing system. Lowering supply voltage of them can effectively reduce power costs of the system, given that power

consumption of these components is proportional to the product of operating frequency and supply voltage squared

[13] , which means voltage reduction has a greater impact on power savings than frequency reduction. Existing efforts

extensively demonstrate that Dynamic Voltage and Frequency Scaling (DVFS) techniques can effectively save power/energy

when the peak performance of hardware components (CPU [14,15] , GPU [16,17] , and memory [18,19] ) is not necessary.

Nevertheless, a critical limitation of existing DVFS work lies in the fact that the employed DVFS techniques are essentially

frequency-directed : Voltage and frequency are scaled down together in the presence of hardware idle time [20] , which fails

to fully exploit potential power saving opportunities during HPC runs. As a remedy solution, undervolting [12,20,21] has

been employed to further reduce power costs, which reduces voltage independent of frequency scaling. Using undervolting,

hardware components are supplied with a voltage that is lower than the one paired with a given frequency used in DVFS. 

As a generic approach applicable during any stages of HPC runs, undervolting is capable of saving extra power in

addition to using DVFS during hardware idle time. Nevertheless, the trade-off of using undervolting is increased failure

rates [11] of the components with lowered voltage. For inherently resilient applications, the growing number of errors can

be tolerated to some extent, and thereby incur negligible impacts on performance and output quality. Therefore, significant

power efficiency can be achieved with minor (or acceptable, depending on application characteristics) loss of resilience. In

this work, targeting inherently resilient applications, we leverage the resilient nature of specific types of applications and

frequency-independent near-threshold voltage reduction, proposing a framework of V irtualization-based Power -efficiency 

( V-Power for short) to save the most power with minor/acceptable loss of output accuracy. We aim to explore the fact

that, theoretically and experimentally, a wide scope of (and extensively used) scientific applications running on future

exascale systems can benefit from power efficiency, if resilience is provided to some extent as the inherent application

characteristics. In summary, the contributions of this paper include: 

• We leverage inherent resilience of applications for considerable power savings with minor/acceptable loss of program

output quality, using frequency-independent near-threshold voltage reduction; 
• We develop an integrated virtualization-based framework named V-Power to analyze potential resilience of applications,

and achieve power efficiency for a runtime-dominant kernel/function of the application, if it is validated resilient by

nature; 
• Our approach is experimentally evaluated on a power-aware platform for a wide scope of scientific applications to save

up to 12.3% in power, with an error rate for acceptable program outputs. 

The remainder of the paper is organized as follows: Background knowledge is introduced in Section 2 . Details of the

proposed V-Power framework are presented in Section 3 . Experimental results are provided in Section 4 . Section 5 discusses

related work and Section 6 concludes. 

2. Background 

2.1. Inherently resilient applications 

Regardless of hardware relaxation techniques [22,23] , some applications are inherently resilient to errors, i.e., for

provided inputs, when errors in runs occur, they produce acceptable outputs with (partially) incorrect or inaccurate results.

For instance, pixel errors in an image or a video can exist to some extent without the perception from users (or with

user-acceptable quality degradation). For some approximate computing applications, a range of output values are considered

acceptable, since there is no unique golden output for a golden run. Due to precision requirements of some iterative

scientific applications, computation errors occurring in one iteration can get cancelled by truncated numbers during the

computation in later iterations [24] . This property of self-tolerance/self-healing to faults is referred to as inherent application

resilience , arising in some categories of scientific applications. Specifically, applications with such a property span from

domains of image/video processing, recognition, and data mining. Notably, the acceptance of program outputs is defined



L. Tan et al. / Parallel Computing 73 (2018) 3–15 5 

Table 1 

Quality metrics for applications and Kernels of different domains. 

Quality Metric Domain Representative [Benchmarks] Applications/Kernels 

Output/Runtime Difference General [PARSEC] blackscholes, swaptions, vips; [NPB] EP, CG, FT 

(between runs or with the golden run) [Lonestar] Barnes-Hut n-body simulation 

Numerical Error Linear Algebra [ScaLAPACK] Cholesky/LU/QR factorizations, matrix 

multiplication; [Misc] partial differential equations 

Pixel Error Image Processing [PARSEC] bodytrack, facesim, x264, raytrace 

(e.g., image error ratio PSNR/MSE) [MediaBench] jpg20 0 0/mpeg encoder and decoder 

Classification Accuracy Machine Learning [PARSEC] ferret, streamcluster; [Misc] k-means clustering 

neural networks, support vector machines 

Ranking Accuracy Searching [RankNet] web/text search; [Misc] supervised semantic 

indexing document search 

Decision Correctness Data Mining [MATLAB] fitctree, fitrtree; [Misc] barcode recognizer 

image binarization, decision trees 

Fig. 1. Voltage levels for empirical voltage reduction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

by specific quality metrics that highly depend on application characteristics. Table 1 summarizes various typical quality

metrics for applications/kernels of different domains. Note that not all listed are inherently resilient, provided specific

quality metrics. Intuitively, inherently resilient applications can run in the low-power mode for power saving purposes,

with resulting errors tolerated by the applications themselves. 

2.2. Near-threshold voltage reduction 

As introduced, undervolting is a voltage reduction technique regardless of frequency scaling for greater power savings.

Undervolting differs from traditional DVFS techniques in the sense that the frequency of hardware components is kept

the same during undervolting, with computation throughput maintained. Ideally, if the resulting errors can be tolerated

by inherent resilient applications, no performance impacts will be incurred together with the maximized power savings.

Using undervolting, supply voltage can be lowered as close as threshold voltage of the components, the lowest voltage level

that guarantees the minimum electronic activities in the circuit. Note that undervolting can be conducted together with

DVFS, i.e., as an appropriate frequency is scaled to by DVFS, instead of using the voltage paired with the selected frequency,

voltage can be further reduced as close as threshold voltage. In this work, we assume that DVFS techniques are employed

when necessary (e.g., race-to-halt at OS level [25] or library level [26] , and critical path aware slack reclamation at OS

level [15] or library level [27] ), and near-threshold voltage reduction is conducted on top of the selected frequency by DVFS

techniques, if employed. 

Nowadays, hardware vendors have launched cutting-edge nano-technology that enables processors to be supplied with a

significantly low voltage, e.g., using Intel’s Near-Threshold Voltage (NTV) design [11] , the 32 nm low-leakage Intel Claremont

processor can operate from 280 mV at 3 MHz and scale up to 1.2 V at 915 MHz, with the minimum power of 2 mW. Note

that this NTV technique requires low supply voltage accompanied by low operating frequency as well, different from our

frequency-independent near-threshold voltage reduction (referred to as FiNTV for short henceforth). Empirically, protected

by the OS, production processors are generally locked and will typically shut down or crash when near-threshold voltage

reduction without frequency reduction is performed. Experimentally, for a customized pre-production Intel Itanium II 9560

processor [12] , undervolting to near-threshold level has been validated to save power effectively at the cost of increased ECC

memory errors, as the first practical undervolting effort on real machines. Tan et al. [20] relaxed the hardware requirements

of undervolting to general production machines by emulated scaling, evaluated on an HPC cluster with production AMD

Opteron 2380 processors. Fig. 1 shows different voltage levels state-of-the-art voltage reduction techniques are capable of

scaling, where V h / V l , V ntv , V th refer to the maximum/minimum voltage (paired with the maximum/minimum frequency),

a near-threshold voltage, and the threshold voltage individually. General production processors can be scaled within the
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Fig. 2. Overview of the V-Power famework. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

voltage range [ V l , V h ], while for customized pre-production processors, they can be supplied with a near-threshold voltage

V ntv . Our goal is to enable production HPC systems to achieve the maximum power savings using FiNTV and application

inherent resilience, although empirically they cannot be supplied with V ntv without frequency reduction. 

Targeting general production HPC clusters, in this work we adopt a similar undervolting strategy as employed in [20] ,

and extend it to near-threshold voltage level with quantitative models. We elaborate our quantitative near-threshold voltage

reduction with fine-grained fault and power models used in V-Power in Section 3 . 

2.3. Virtualization-based fault injection 

As a technique creating the infrastructure-independent virtual execution environment, i.e., Virtual Machines (VM), 

virtualization enables software running on VM to be separated from the underlying hardware resources, which provides

improved scalability, autonomicity, and efficient utilization of hardware resources. Virtualization is capable of evaluating

different hardware and new architectures with minimal modification to a computing system or an application. For instance,

using virtualization, several guest OS can be run in parallel on a single CPU without interference. Fault injection within this

work is accomplished using a fault injector F-SEFI [28] based on the virtualization technique QEMU [29] , which supports

both CPU emulation for architectures like x86, PowerPC, ARM and Sparc, and full system emulation, using portable dynamic

instruction translation. Specifically, when an application is launched at the guest OS, instruction sets are translated and

delivered from the guest OS to the host OS, using virtualization. Soft errors are emulated by intercepting instructions and

corrupt register data during instruction translation. Using a binary function symbol table, faults can be injected into a

chosen instruction in a specific function of an application. 

3. V-Power: design and implementation 

In this section, we present design and implementation details of our power saving V-Power approach for inherent

resilient applications. Fig. 2 shows the V-Power framework, consisting of two functional components: offline application

inherent resilience analysis, and online voltage scheduling with fine-grained power and fault modeling. Specifically, we

utilize the program profilers gprof [30] and Intel RAPL interface [31] , and extend the fault injector F-SEFI [28] to implement

V-Power as an integrated system. 

The goal of V-Power is to leverage the resilience nature of specific applications for power efficiency, with little impacts

on program output quality, i.e., minor loss of resilience. As shown in Fig. 2 , the workflow of V-Power proceeds as follows:

Given a candidate application with a runtime dominant kernel/function (profiled using gprof for runtime information), we

utilize F-SEFI to inject faults to validate if the kernel/function is vulnerable or resilient to concerned error types (discussed

in Section 3.2 ), using application-specific quality metrics (discussed in Section 3.1 ). If the kernel/function is validated resilient

by the offline resilience analysis, we pass it to the online module of V-Power . Based on measured power data using RAPL

and established power models regarding frequency/voltage, we can estimate the power costs at near-threshold voltage V ntv ,

and we inject errors to emulate the faulty runs at V ntv . We demonstrate that the selected kernel/function is resilient and

power-efficient using our V-Power framework. 
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3.1. Application inherent resilience analysis 

We next discuss strategies of analyzing inherent resilience of applications. We investigate application inherent resilience

at function level for two primary reasons: (a) In general, an inherently resilient application consists of resilient functions

and non-resilient functions (we assume the studied application is comprised of functional units, e.g., functions). Our power

saving approach should be applied to the resilient functions within an application, and circumvent the non-resilient ones;

(b) large-scale scientific applications are usually by nature iterative, i.e., the primary operations (e.g., computation in terms

of floating-point calculation, and communication in terms of data movement) are conducted within a loop or multiple

nested loops, which can be the most time-consuming part of the application. If the loop-based function/kernel is identified

resilient, it is selected as an ideal candidate for our solution. Note that program runs are profiled using gprof dynamically,

but the critical application inherent resilience analysis is conducted offline based on program traces and outputs. 

As shown in the left part of Fig. 2 , firstly, we obtain the most time-consuming kernel/function during an HPC run from

the call graph of the run generated by gprof, with the provided inputs. This step is important, since saving power for a

runtime dominant kernel/function achieves more energy efficiency. Secondly, a separate run is performed while faults of

different instruction types are injected using our F-SEFI fault injector. Per application characteristics, a post-checking step is

done offline to verify if the outputs satisfy specific program quality metrics (see Table 1 ). If not, the selected kernel/function

is declared a vulnerable one, and we move on to verify the second most time-consuming kernel/function (not shown in

Fig. 2 ). Otherwise, the resilient and time-dominant kernel/function is considered to save power using near-threshold voltage

reduction strategies with fine-grained fault and power models, i.e., the modeling module Section 3.2 ) and the online voltage

scheduling module (Section 3.3) of V-Power . 
Discussion . Our approach needs to profile program runs to identify appropriate power saving candidates, which has

typical weaknesses of all profiling-based approaches. The applications evaluated may have qualified candidates but for some

inputs, the normal observation for other inputs may not manifest well in program runs. We select representative inputs

for profiling an application, but also make sure the selected inputs are not within a limited scope of all possible inputs

for the application. We use the same selected inputs when finding the time-dominant and resilient kernel/function in an

application, with fault injection to emulate the faulty runs at V ntv . 

3.2. Fault and power modeling 

Next we elaborate the characterization and formulation of failures and power consumption for the investigated HPC

systems. 

3.2.1. Fault characterization 

Faults incurred in a computing system can be categorized into hard errors and soft errors, where the soft errors are

of great concern nowadays in HPC, since they are transient and thus can contaminate HPC runs silently (i.e., difficult to

detect and correct), including memory bit-flips and logic circuit miscalculation [21] . On the other hand, hard errors refer to

permanent component-wise or system-wide failures, including node crashes from dysfunctional hardware and system abort

from accidental power outage [20] . Due to the severity of soft errors as HPC systems nowadays grow dramatically in size

and usage, we focus on soft errors in this work. 

Per error occurrence locations, soft errors can be triggered generally in memory (both SRAM and DRAM by bit-flips) [32] ,

computing units such as CPU/GPU/FPGA (radiation-induced logic circuit errors) [33] , and in disk (sector intermittent errors

from thermal asperity) [34] . We assume that all errors eventually propagate to the computational logic units, and thus

register-level fault injection by F-SEFI is sufficient to reflect errors in either instructions or data. On the other hand, per the

mechanism of detection and correction, soft errors can be categorized as Detected and Corrected Errors (DCE), Detected but

Uncorrectable Errors (DUE), and Silent Errors (SE) [35] . Any unmasked SE are referred to as Silent Data Corruption (SDC), i.e.,

incorrect program outputs. DCE generally occur in ECC-protected SRAM/DRAM, and examples of DUE include crashes and

hangs of program execution. Specifically, crashes refer to an exception raised during execution that causes its termination,

and hangs refer to the cases that the execution lasts for a significantly longer time than normal. There also exist benign

errors, i.e., the cases that the application finishes with a valid output. In this work, we consider crashes, hangs, SDC, and

benign errors occurring in HPC runs. 

3.2.2. Voltage-directed failure rate modeling 

Existing studies indicate failures of combinational logic circuits comply with a Poisson distribution, determined by both

operating frequency and supply voltage [36] . Our previous work summarized a handy formula of average failure rates in

terms of supply voltage only [20] , by substituting frequency with voltage (frequency has a non-linear positive correlation

with voltage [37] ) in the general equation stated in [38] : 

λ( f, V dd ) = λ( V dd ) = λ0 e 

d 

( 
f max −β

( 
V dd −2 V th + 

V 2 
th 

V dd 

) ) 

f max − f min 

(1)

Constants d and β are architecture-dependent, reflecting the sensitivity of failure rate variation with frequency/voltage

scaling. V and V are threshold voltage and supply voltage respectively. f max and f are the maximum frequency and
th dd min 
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the minimum frequency within the scope of DVFS individually. As mentioned in Section 2 , near-threshold voltage reduction

is disabled by the OS for production machines as hardware protection mechanism. Therefore real errors at near-threshold

voltage level cannot be observed experimentally, since our target is production machines used in real HPC clusters. 

Model validation . This failure model has been cross-checked by experimentally measured failure rates on a recent HPC

processor: Based on the observed ECC correctable errors reported in [12] for an Intel pre-production processor, Eq. (1) was

demonstrated to be accurate to model failure rates at different voltage levels [20] , and is thus considered applicable for

HPC architectures nowadays, and adopted in this work for failure modeling during near-threshold voltage reduction and

fault injection. As concluded in [20] , λ( f, V dd ) monotonically strictly decreases as V dd increases, for all valid V dd values.

Given that frequency has a positive correlation with voltage, we know that λ( f, V dd ) is a monotonically strictly decreasing

function of frequency as well. In Eq. (1) , if the constants f max and f min are different in another DVFS setting, λ( f, V dd ) changes

accordingly following the equation as the baseline changes, which is observably true since in a real setup, processors with

different DVFS settings have different failure rates empirically. 

3.2.3. Power metering in virtualization-based systems 

Although virtualization has advantages in efficiently utilizing various resources in a non-intrusive manner, power 

measurement for virtualization-based systems is a great challenge. Obviously, power meters cannot be physically attached

to VM for direct power measurement. Only the total power costs of the server where VM runs are measurable. Power

consumption of virtualized environment purely is difficult to obtain in hardware. Several effort s have studied potential

practical solutions of measuring VM power. VM power models were built to infer power costs from resource usage at run-

time, with instrumentation in hardware and hypervisors [39] . A middleware-based fine-grained monitoring approach was

proposed to collect process usage and thus infer power costs of applications without power meters [40] . Existing VM power

estimation solutions were evaluated on real platforms to be accurate with low runtime overhead. Experimental results in

[40] also show that power costs collected using Intel RAPL hardware counters follow the trend of real usage, with minor

overestimation. In order to focus on our power saving approach, modeling power costs of HPC runs in virtualization-based

systems is out of the scope of this work, and we adopt power costs reported by the RAPL counters. 

3.2.4. Measurement/estimation-based power modeling 

For an HPC system, the following power model is used to calculate the nodal power consumption [41] , assuming the

processor is DVFS-enabled: 

P = P processor 

dynamic 
+ P processor 

leakage 
+ P other 

leakage 

= AC fV 

2 
dd + I sub V dd + I ′ sub V 

′ 
dd (2) 

where A and C are the percentage of active gates and the total capacitive load in a CMOS-based processor respectively.

I sub / I 
′ 
sub 

and V dd / V 
′ 
dd 

are subthreshold leakage current and supply voltage of processors and all other nodal components,

individually. When voltage scaling techniques (DVFS and undervolting) are applied to processors, I ′ 
sub 

V ′ 
dd 

can be denoted

as a constant P c . With measured power data, the simplified power equation is employed to estimate the nodal power

costs at near-threshold voltage, as shown in Algorithm 1 ( V dd is denoted as V for short). P sav refers to the percentage of

Algorithm 1: Emulation of the power costs at NTV. 

Input : A candidate application app with its quality metric qm , frequency/voltage pairs used in DVFS: { f h / V h , f m 

/ V m 

, 

f l / V l } , near-threshold voltage V ntv , and calculated failure rate λntv at V ntv . 

Output : Power costs P ntv and failure data at V ntv . 

1 begin 

2 make the system idle, operating at nominal f/V 

3 for f/V ∈ { f h /V h , f m 

/V m 

, f l /V l } do 

4 scale to the selected f/V and run app 

5 measure power P = AC fV 2 + I sub V + P c 

6 solve AC, I sub , and P c , given P h , P m 

, and P l 
7 scale to f h /V h and run app 

8 calculate P ntv = AC f h V 
2 
ntv + I sub V ntv + P c 

9 P sa v ← 

P h −P ntv 
P h 

× 100% 

10 In ject F ault (app, λntv ) 

11 GetF ailureData (app, qm ) 

power savings achieved by near-threshold voltage reduction. Since undervolting to near-threshold voltage level is generally

disabled for production machines, we inject errors to emulate the faulty runs at the NTV low-power mode. Functions

InjectFault () and GetFailureData () in Algorithm 1 abstract fault injection and failure analysis operations, respectively. Faults
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are injected at the calculated failure rate of λntv (using Eq. (1) ) during HPC runs. We can obtain failure data after the

execution, provided application-specific quality metrics shown in Table 1 . 

Note that the output power P ntv is obtained using the measurement/estimation-based method: All power constants

used in Eq. (2) are solved from measured power data, while power consumption at the unscalable V ntv is calculated from

the same power equation with f h and V ntv in place. Leveraging measured data partly and fine-grained power formula, this

method is more accurate than purely estimation-based approaches, and is capable of emulating power costs at unscalable

voltage levels for production machines. 

3.3. Virtualization-based near-threshold voltage reduction 

Given the resilient and time-dominant kernel/function of an application identified by the offline module of V-Power ,
the virtualization techniques used in fault injection can also facilitate near-threshold voltage reduction for the candidate

kernel/function, by profiling program execution dynamically. When the candidate kernel/function is executed (located using

the pre-generated function symbol table extracted from the application binary), voltage reduction is performed until the end

of its execution, i.e., the application runs in the low-power model during the function starts and ends, with the expectation

that the most power can be saved (due to its time-dominance) at the cost of minor quality loss (due to its resilience). 

Next we present the details of selecting the near-threshold voltage. As shown in Fig. 1 , V ntv refers to a voltage level that

lies in between V l and V th , both of which can be found in processor specifications provided by vendors. It is critical to

pinpoint the potential lowest NTV level, since it directly determines the ultimate power savings. To this end, two require-

ments need to be considered in the selection: Firstly, as shown in Fig. 1 , production processors can be safely scaled within

the voltage range [ V l , V h ]. There exists a lowest safe core voltage below V l that does not crash the system. Experimentally,

we choose such a voltage at the lowest frequency f l , referred to as V sa fe _ min min . Secondly, given an application, there exists

a lowest voltage level under which the quality metric of the application can be satisfied. Scaling to any voltage levels

lower than it will incur unacceptable output quality degradation, i.e., more errors than the pre-defined threshold value

per application characteristics. This voltage is referred to as V qm _ min min . The optimal lowest near-threshold voltage is the

higher one of the two above voltage levels, i.e., max (V sa fe _ min min , V qm _ min min ) , such that both of the two requirements are

guaranteed. Algorithm 2 shows the selection process in pseudo code. 

Algorithm 2: Selection of the lowest NTV. 

Input : A candidate application app with its quality metric qm , the lowest frequency/voltage f l /V l , and threshold 

voltage V th . 

Output : The lowest near-threshold voltage V ntv . 

1 begin 

2 make the system idle, operating at nominal f/V 

3 scale to f l 
4 while system runs reliably && V th < V ≤ V l do 

5 undervolt to V and run app 

6 V sa fe _ min ← V 

7 scale to f h 
8 while qm is satisfied && V th < V ≤ V l do 

9 undervolt to V and run app 

10 V qm _ min ← V 

11 V ntv ← max (V sa fe _ min , V qm _ min ) 

4. Evaluation 

In this section, we present details of experimental evaluation on our V-Power approach for a wide scope of mainstream

inherently resilient scientific applications running on a power-aware production HPC server. Overall, the empirical study

aims to showcase that: (a) V-Power is capable of identifying inherently resilient runtime-dominant function/kernel of

the evaluated applications, and (b) with little loss of output quality, significant quantitative power savings for the selected

function/kernel can be achieved by V-Power , using online frequency-independent near-threshold voltage reduction on a

virtualization-based platform, with fault injection enabled to emulate faulty HPC runs in the low-power mode. 

4.1. Experimental setup 

Experiments were conducted on a wide scope of nine mainstream scientific applications to benchmark our ap-

proach, from domains of machine learning, image/video processing, and scientific computing, summarized in Table 3 . The
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Table 2 

Hardware configuration for all experiments. 

System size 40 logical cores 

Processor Intel Xeon E5-2660 (10-core) 

CPU Frequency 1.2 to 2.6 GHz incremented by 0.1 GHz 

CPU Voltage 1.05, 0.65, 0.49, 0.40 V 

( V h /V l /V sa fe _ min /V th ) 

Memory 128 GB RAM 

Cache 640 KB L1, 2560 KB L2, 25600 KB L3 

OS Ubuntu 14.10, 64-bit Linux kernel 3.16.0 

Power Meter Intel RAPL 

Table 3 

Benchmark details. From left to right: benchmark name, benchmark suite, benchmark description and test case used, problem domain, target function, 

execution time percentage of the function relative to the total, and type of soft error incurred and tainted instruction from fault injection. 

Benchmark Suite Description and Test Case Domain Function Runtime Error (Tainted Inst.) 

(in %) from Fault Injection 

ferret PARSEC Perform content-based similarity Machine Learning do_query 99.1% crash 

search in 34,973 images. (CMP) 

streamcluster PARSEC Perform an online clustering Machine Learning pkmedian 99.8% SDC and crash 

algorithm on 16,384 points. (FADD/FMUL/CMP) 

vips PARSEC Perform image transformation pipeline Image Processing im_LabQ2disp 99.2% crash 

on an image with 1600 × 1200 pixels. (FMUL/CMP) 

raytrace PARSEC Perform real-time raytracing of a Video Rendering renderFrame 78.4% crash 

Buddha statue with 1 million polygons. (FADD/FMUL/CMP) 

imgcmp MediaBench Calculate the mean squared error Image Processing msen 96.9% SDC and crash 

of two 1.21 MB PGM images. (FADD/CMP) 

jasper MediaBench Convert a 257.1 KB image from BMP Image Processing jpg_encode 92.9% SDC and crash 

format to compressed JPEG format. (CMP) 

h264dec MediaBench Decode a 537.4 KB compressed video Video Decoding decode_one_frame 97.7% SDC 

stream using the H.264 standard. (CMP) 

EP NPB Generate independent Gaussian random Probability Theory main 100.0% SDC, crash, and hang 

variates by Marsaglia polar method. and Statistics (FADD/FMUL/XOR/CMP) 

CG NPB Estimate eigenvalue of a sparse matrix Numerical Linear conj_grad 96.4% SDC, crash, and hang 

with conjugate gradient method. Algebra (FADD/FMUL/XOR/CMP) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

benchmarks were selected from PARSEC [42] , MediaBench [43] , and NPB [44] benchmark suites. Table 2 lists hardware

configuration of the experimental power-aware server with two Intel Xeon E5-2660 processors based on the Haswell

microarchitecture [45] . Power consumption of HPC runs on the server was collected by Intel RAPL hardware counters

[31] that reports in-band power costs of the total processor package and DRAM, which can be used to estimate the total 

system power costs during HPC runs (power savings reported henceforth are system-wide). Using RAPL and its API, it is

convenient and lightweight to emulate power consumed during HPC runs without physical power meters attached. Before

presenting experimental results, we detail the implementation of techniques used in our approach. 

4.2. Empirical implementation 

As discussed and shown in Fig. 1 , production machines used in HPC clusters are protected by the OS from voltage levels

lower than V l . Keeping the processor frequency constant, we manage to implement Frequency-independent Near-Threshold

Voltage reduction (FiNTV) below V l on the experimental Intel processors by directly modifying the core voltage Model-

Specific Register (MSR, specifically MSR_PERF_STATUS), defined in [31] . The high 16-bit (i.e., VID) of the 48 bit register value

determines the P-state core voltage, which can be calculated as VID/2 13 . The lowest near-threshold voltage was selected

using Algorithm 2 , given an application and its quality metric. We scaled to this selected voltage by altering the value of

the high 16-bit of the core voltage MSR. 

As stated, although power efficient, FiNTV on production processors incurs a growing number of failures from scaling to

voltage levels lower than V l . We calculated the failure rates at corresponding voltage levels using Eq. (1) , and injected errors

at the calculated failure rates using our fault injector F-SEFI to emulate faulty HPC runs at near-threshold voltage levels.

Note that in Eq. (1) , there is a reference failure rate λ0 at V h / f max , which can be eliminated by dividing an unknown failure

rate with a known one. We used the failure rates reported in [12] as known data as the baseline for our experimental

platform. Although different ISA is employed by the two evaluated architectures, both have considerable similarity in power

configuration [46] . Moreover, from [12] and [47] , we observed that failure rates of different cores on the same die differ

but only have slight variation. Thus we adopted the failure rates reported in [12] as an average value across cores, and

consider it is sufficient to reflect the trend under the circumstance of experimental hardware limitation. Table 4 lists the

calculated failure rates at voltage levels ranging from V to V ntv (we consider the documented highest voltage level 1.30 V
h 
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Table 4 

Calculated failure rates at different voltage levels (Unit: 

Voltage (V) and Failure Rate (errors/minute)). 

Core voltage Calculated failure rate 

1.05 1 . 33 × 10 −5 

0.95 1 . 62 × 10 −4 

0.85 1 . 77 × 10 −3 

0.75 1 . 70 × 10 −2 

0.65 0.14 

0.55 1.06 

0.49 2.79 

0.45 6.72 

Table 5 

Quality metrics with specific threshold values and lowest safe voltage levels for dif- 

ferent benchmarks (Unit: Voltage (V)). 

Benchmark Quality Metric w/ Lowest Safe Voltage 

Threshold Value V qm _ min V sa fe _ min 

ferret �runtime < 20% 0.45 

streamcluster �output < 10%; 0.51 

output or not 

vips output or not 0.47 

raytrace output or not 0.49 

imgcmp �MAE < 10%; 0.51 0.49 

output or not 

jasper �MAE < 10%; 0.49 

output or not 

h264dec �SNR < 10% 0.49 

EP numerically verified or not 0.51 

CG numerically verified or not 0.55 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

as corresponded to the Turbo frequency 3.30 GHz which is not used in our experiments). We can see that for voltage

levels higher than V l (including V l ), the rates is low so that no fault injection is needed given that a single run of each

application takes less than one minutes in our experiments. Specifically, we performed 30 0 0 runs with fault injection for

each benchmark. For near-threshold voltage levels that incur more than one error in an HPC run, e.g., 0.49 V and 0.45 V

shown in Table 4 , we injected multiple number of errors into each run per calculated failure rates. 

Faults were injected at register level for different types of instructions of applications running on guest OS. We consider

soft errors occurring in functional units of processors (e.g., ALU and FPU). We corrupted guest program instructions by

intercepting and contaminating values of registers during instruction translation at runtime. Crashes occur when a tainted

register value holds an address. SDC is incurred if only data corruption of registers is involved in fault injection. Rarely,

there exist some hangs in HPC runs, given mutually blocking shared resources. Per application characteristics, the last

column of Table 3 lists different types of instructions we corrupted for each benchmark, including FADD , FMUL , CMP , and

XOR instructions. 

Fault injection mechanism representativeness . In general, only the hardware (i.e., silicon) level fault injection method

can best represent all possible errors in the reality for a computing system. However, the expenses in time and money

on specially designed hardware are typically unaffordable. The benefits of using fault injection at hypervisor level are to

improve the cost-efficiency. Although our fault injection cannot cover all types of faults, it still should be considered as

a useful tool if it is much needed to emulate the errors in CPU logics/registers where the ECC is not applied. More fault

models can be implemented in our approach if we have the data and information to build the fault models. For example,

one of our previous work discussed the fault model of cache errors [48] . 

4.3. Results 

In this section, we present detailed experimental results for all benchmarks on evaluating resilience characterization

and power saving capabilities of our V-Power approach with elaborated failure and power data, given specific quality

metrics of the evaluated applications. In our experiments, for all applications, the most time-consuming function, i.e., the

target function, is resilient provided application-specific quality metrics. For evaluating the maximum benefits from our

approach, we did not include the cases that the most time-consuming function is not resilient and thus the second most

time-consuming function needs to be considered. 
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Fig. 3. Breakdown of types of errors injected. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3.1. Application inherent resilience with quality metrics at near-threshold voltage levels 

Table 5 elaborates quality metrics with application-specific threshold values for the evaluated applications. In general,

determining the type and range of quality metrics varies from application to application, which highly depends on the

following factors: (a) application-specific characteristics including application domains and algorithmic patterns, (b) output 

accuracy requirements that rely on both applications and users, (c) execution scenarios (e.g., a chosen quality metric can

be acceptable in one scenario but not in another), and (d) what trade-offs are needed (e.g., quality can be traded-off

against execution time and power costs). In our experiments, we intend to evaluate that given a specific quality metric

of applications, our approach is effective to achieve the power saving goals. The actual values of the selected quality

metrics should not affect the nature of our evaluation, but definitely will change the power savings achieved. We carefully

determine what a typical quality metric is for the evaluated benchmarks, based on the above factors discussed, and if they

can be evaluated or not in the experiments. 

We denote the difference between program outputs before and after fault injection as �. Generally, for image/video

processing applications, we adopt the threshold value of quality metric to be 10%, since standard output errors (e.g., (Peak)

Signal-to-Noise Ratio and Mean Absolute Error) less than 10% are considered acceptable in this domain [2] . For HPC runs

where crashes occur, a normal output cannot be produced, and thus the fact that if there exists a successful output is

selected as an additional threshold value. Specifically, for applications vips and raytrace , we did not observe output errors

but only crashes, but for applications imgcmp and jasper , we observed both. For numerical linear algebra kernels EP and CG ,

their own numerical verification modules conduct quality checking of program outputs. With the commonly shared system

level lowest safe voltage V sa fe _ min 0.49 V, Table 5 also lists the lowest safe voltage levels for various application-specific

quality metrics, ranging from 0.45 V to 0.55 V. For HPC runs with more than one type of injected errors (i.e., with more than

one quality metric and possibly more than one V qm _ min ), the higher value of V qm _ min is shown in the table to guarantee all

quality metric satisfied. We can see that applications with higher resilience (e.g., ferret and vips ) have a lower V qm _ min value.

As stated in Algorithm 2 , the higher one between V qm _ min and V sa fe _ min is selected as the optimal near-threshold voltage

level in our V-Power approach. Before showing power savings of our approach, we next present more failure analysis of

the emulated faulty HPC runs using fault injection. 

4.3.2. Types of faults injected breakdown 

Fig. 3 gives a detailed breakdown of different types of errors in our fault injection campaign, where H / L columns

represent fault injection at higher/lower failure rates from greater/smaller voltage reduction (as provided in Table 4 ),

individually. Specifically, the H columns refer to fault injection at V qm _ min , while the L columns correspond to fault injection

at a voltage level V ( V l < V < V qm _ min ). We can see that in general the evaluated applications are inherently resilient, except

for CG , which is vulnerable to hangs (10.8% on average) and SDC (15.0% on average). Although inherently resilient, HPC

runs with fault injection at lower failure rates suffer from less number of errors. Overall, the average failure rate of all

types of possible errors for all benchmarks is 9.1% for H and 6.3% for L (7.7% on average). Moreover, there exists another

interesting observation: The most resilient benchmarks (e.g., ferret and vips ) as shown in Fig. 3 have lower V qm _ min as shown

in Table 5 . However, the less resilient benchmarks (e.g., image/video processing applications raytrace, jasper , and h264dec ) do

not necessarily have higher V qm _ min . This is due to the fact that higher number of output errors for image/video processing

applications are generally acceptable with more relaxed quality metrics compared to other applications. The most common

soft errors occurring in the experiments are SDC and crashes, while hangs are much more less incurred in HPC runs. 

4.3.3. Power savings 

With application inherent resilience data discussed, Fig. 4 depicts the normalized power savings of our V-Power
approach for all benchmarks. Compared to baseline runs without V-Power , our approach is capable of saving power costs

of HPC runs by 12.3% on average, up to 15.9% ( ferret ), and at least 9.0% ( CG ), which comes from core voltage reduction
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Fig. 4. Power efficiency of the V-Power approach. 

Fig. 5. Application performance degradation of the V-Power approach. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

from the nominal V h / V l (0.65–1.05 V) to greatly reduced V ntv (0.49–0.55 V). The power savings achieved match well with

the selected lowest near-threshold voltage shown in Table 5 , since from the adopted power model in Eq. (1 ), we know

that power consumption is positively correlated with supply voltage. In V-Power , near-threshold voltage reduction is

performed independent of frequency scaling, i.e., FiNTV as stated earlier. Therefore, power costs of HPC runs monotonically

strictly decrease when FiNTV is conducted. Due to the constraints of doing FiNTV on production machines, our fine-grained

power model is leveraged to emulate power costs at the selected lowest near-threshold voltage using the measurement and

estimation combined method, as introduced in Algorithm 1 . 

4.3.4. V-Power system and application performance degradation 

As demonstrated, our V-Power approach has been evaluated effective and efficient to save power, provided inherently

resilient applications. With a lightweight modeling and online voltage scheduling module attached to a soft error fault

injector, the primary performance degradation of V-Power bringing to applications comes from fault injection activities,

which averages 29.7% and can be up to 33.8% ( vips ) as shown in Fig. 5 . This is due to the fact that injecting faults in our

experiments requires dynamic instruction-to-instruction translation, without any software bypass or hardware acceleration

to speed up instruction analysis and fault injection at register level. Moreover, at system level, the fundamental virtualiza-

tion techniques based on QEMU VM and its hypervisor employed as the basis of V-Power incur significant performance

overhead system-wide (e.g., up to 200%) [28,29] , due to the heavyweight processor and system emulation, i.e., instructions

executed on the host processors are mostly QEMU instructions for the emulation, rather than application instructions.

However, improving performance bottleneck of virtualization-based techniques used in our approach is out of the scope of

this work. We treat this part of effort s as potential future work. 

As elaborated in Section 4.2 , the voltage scaling technique used in our approach is fulfilled using FiNTV, by directly

modifying the core voltage model-specific register, in which the frequency of processors remains the same and thus it has

no performance penalty for HPC runs. Moreover, this FiNTV approach is conducted offline, not during HPC runs, and thus

it has no runtime overhead. In our experiments and previous studies [12,20] , the offline overhead of FiNTV is negligible

within the application performance loss shown in Fig. 5 . Although the overhead of fault injection will go away on a real

setup where errors actually occur and no fault injection is needed, the evaluation is also helpful to discuss: We propose our

approach V-Power as a prototype virtualization-based framework for saving the maximum power for inherently resilient

applications, and this framework could be reused/rewritten by researchers who are interested in similar research directions,

given that aggressive voltage scaling is practically not enabled for production processors nowadays. 
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5. Related work 

In general, resilience and power/energy efficiency are mutually constrained trading-off dimensions in HPC. It has 

been widely studied that there exists entangled interplay between the two dimensions if either is improved/degraded.

Existing efforts explore different strategies at various layers of abstraction to leverage inherent resilience of applications for

performance efficiency and power/energy savings, Examples include the use of inexact hardware [3,4] , voltage scaling [5,6] ,

load value approximation [7,8] , and task skipping [9,10] . Next we detail the effort s that f ocus on improving system-wide

power/energy efficiency, where power/energy savings are not completely and necessarily due to performance efficiency. 

Inexact hardware : Targeting image filtering and compression applications, Kulkarni et al. [3] proposed a multiplier

with a modified inaccurate 2 × 2 building block, which reduces the area by half and achieves up to 45.4% power savings

with an average error rate of 2.36%. They also demonstrated the strength of this circuit-centric approach for power-quality

trade-offs with a software-level approach, and enhanced their design for non error-resilient applications. Ganapathy et al.

[4] exploited tolerable imprecision of inherently resilient applications by developing a fault-mitigation scheme for unreliable

data memories. A bit-shuffling mechanism was employed to isolate errors into bit locations with lower significance, and

tolerate limited number of faults. Compared to ECC memory, the proposed technique saved up to 83% in read power, 77%

in read access time, and 89% in area for data mining applications. Our virtualization-based approach differs from these

hardware solutions, since our non-intrusive approach requires no modification to applications, OS, or hardware, running

alongside as a daemon process with no interference to other applications as well. Moreover, power savings from these

hardware approaches primarily come from area reduction, not from frequency/voltage scaling. 

Voltage scaling : Generally, frequency/voltage reduction of hardware components decreases their power/energy consump- 

tion, but increases failure rates of the components as a trade-off. A few studies investigated the trade-off while leveraging

the inherent resilience of applications. Chippa et al. [5] proposed a cross-layer scalable hardware design at different levels

of abstraction, i.e., circuit, architecture, and algorithm. Different scaling techniques including voltage scaling were utilized

for energy savings while maintaining an acceptable output quality. The implemented processor based on the proposed

approach was capable of saving energy up to 5x with negligible quality loss, and up to 50 × with moderate quality loss.

Rahimi et al. [6] devised an innovative architectural solution named approximate associative memristive memory that is

able to tolerate timing errors from undervolting for GPU multimedia applications. Experimental results on an AMD GPU

demonstrated 32% average energy savings, while delivering an acceptable output quality. Previous work [49] proposed a

combination of compilation and micro-architectural design that integrates a module of associative memristive memory 

with floating point units. The simulated hardware enabled 39% energy savings with enhanced resilience against timing

errors, compared to undervolting. Similarly leveraging application inherent resilience, our undervolting approach is however

applied to virtualization-based platforms, and is application/OS/architecture transparent. 

Interplay benchmarking and modeling : Bacha et al. [12] conducted the first undervolting work based on firmware on

real machines protected by ECC memory. ECC errors resulting from dynamic voltage reduction were tolerated by the ECC

mechanism. Using pre-production processors running CPU intensive workloads, voltage was scaled to V sa fe _ min level per core

individually, and power savings achieved ranged from 18% to 23% with negligible performance loss. Leveraging mainstream

resilience techniques, Tan et al. [20] proposed an emulated scaling method for undervolting production machines in HPC,

where increased number of soft and hard errors were tolerated by the resilience techniques. This approach was evaluated

to save up to 12.1% energy and save 9.1% more energy than an advanced DVFS solution. Subsequent work [50] discussed

the impacts of HPC parameters in energy efficiency and resilience at scale, and built theoretical energy-resilience models

to investigate the interplay, based on the Amdahl’s Law and the Karp–Flatt Metric. Results on two power-aware clusters

showed that the proposed models were accurate and effective to find the balanced HPC configuration for the optimal

scalable energy efficiency with resilience. Targeting virtualization-based environment, our work focuses on exploit inher-

ent resilience of applications for power efficiency without hardware/software fault tolerance techniques applied, where

near-threshold voltage reduction is employed online with quality metrics of applications satisfied. 

6. Conclusions 

System-wide resilience and power efficiency are two crucial and demanding requirements for current and future

supercomputers. Although trading off resilience for power efficiency has been extensively studied in HPC community, there

exists a lack of empirical systems that are capable of analyzing intrinsic nature of resilience of applications efficiently, and

leveraging the inherent application resilience for quantitative power savings to the maximum extent. Based on virtualization

and fault injection techniques, we propose and develop a power saving framework for inherently resilient applications, using

near-threshold voltage reduction independent of frequency scaling. With fine-grained fault and power models employed,

our systematic approach is evaluated on a power-aware production server to save power significantly with negligible loss

of output quality for a wide scope of mainstream scientific applications, provided application-specific quality metrics. 
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