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Extreme scale supercomputers available before the end of this decade are expected to have
100 million to 1 billion computing cores. The power and energy efficiency issue has
become one of the primary concerns of extreme scale high performance scientific comput-
ing. This paper surveys the research on saving power and energy for numerical linear alge-
bra algorithms in high performance scientific computing on supercomputers around the
world. We first stress the significance of numerical linear algebra algorithms in high per-
formance scientific computing nowadays, followed by a background introduction on
widely used numerical linear algebra algorithms and software libraries and benchmarks.
We summarize commonly deployed power management techniques for reducing power
and energy consumption in high performance computing systems by presenting power
and energy models and two fundamental types of power management techniques: static
and dynamic. Further, we review the research on saving power and energy for high perfor-
mance numerical linear algebra algorithms from four aspects: profiling, trading off perfor-
mance, static saving, and dynamic saving, and summarize state-of-the-art techniques for
achieving power and energy efficiency in each category individually. Finally, we discuss
potential directions of future work and summarize the paper.
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1. Introduction

In this era of pervasive high performance computing, supercomputers are of ever-growing computation capability and
network bandwidth. Given the rapidly climbing power bills, achieving power and energy efficiency of supercomputers
has become a prime concern and also been considered as a challenging issue. As a fundamental integrant of high perfor-
mance computing, numerical linear algebra algorithms including Cholesky, LU, and QR factorizations, serve as backbone
for most scientific algorithms. Generally numerical linear algebra algorithms have been widely employed for solving a sys-
tem of linear equations in high performance scientific applications running on supercomputers around the world, ranked by
the TOP500 list [1]. To name a few, for the purpose of benchmarking, HPL [2] is a portable high performance software pack-
age that solves a dense linear system via LU factorization on distributed-memory architectures; NPB [3] is a set of bench-
marks for evaluating performance of supercomputers, where highly parallel implementations of numerical linear algebra
algorithms such as conjugate gradient method and LU factorization are included. For the purpose of scientific computing,
ScaLAPACK [4] and DPLASMA [5] are two extensively used high performance and scalable numerical linear algebra software
libraries for distributed-memory multicore systems, where routines of Cholesky, LU, and QR factorizations are provided as
standard functionality. Moreover, with regard to software products, MATLAB [6] is a commercialized computing software
developed by MathWorks for performing numerical calculations, where matrix factorizations are implemented in terms
of easy-to-use user commands. MKL [7] is a commercialized software library developed by Intel for optimized linear algebra
routines for scientific computing, including highly tuned routines of matrix factorizations, sparse solvers, and fast Fourier
transforms. The open source libraries include ATLAS [8], HPL [2], etc, which are extensively used for solving and benchmark-
ing. Numerical linear algebra algorithms are also generally adopted in many other areas of high performance scientific com-
puting, including computer graphics, quantum mechanics, game theory, and economics.

With the growing severity of power and energy consumption on high performance computing systems nowadays in
terms of operating costs and system reliability [9,10], in particular given the fact that power supply for large-scale data cen-
ters and clusters are usually limited within a power cap, reducing power and energy costs has been deemed as a critical issue
in high performance computing. The Green500 list [11], ranks the top 500 supercomputers around the world by energy effi-
ciency in a six-month cycle, which indicates the trend that supercomputers with a high ratio of performance-power (FLOPS
per Watt) are favored nowadays. Motivated by the pressing and ever-growing demands of power and energy issues nowa-
days, people have proposed numerous solutions to maximize the use of the deployed power capacity of data centers [12,13].
As general purpose fundamental operations required for solving a system of linear equations, numerical linear algebra algo-
rithms are extensively adopted in a large body of high performance scientific applications for different purposes as presented
above. Consequently attempts of decreasing power and energy costs of running numerical linear algebra algorithms is ben-
eficial to lowering energy consumption of executions of the applications that employ these algorithms ultimately.

Various holistic hardware and software solutions have been proposed for mitigating power and energy costs of running
such applications on supercomputers around the world, and substantial power and energy savings have been achieved for
different types of architectures. In this paper, we survey common power management strategies for high performance com-
puting systems, with a focus on state-of-the-art techniques for achieving power and energy efficiency of high performance
scientific applications where numerical linear algebra algorithms are widely employed.

The remainder of the paper is organized as follows. Section 2 introduces high performance numerical linear algebra and
related software libraries and benchmarks. We present commonly used power management strategies for saving power and
energy for high performance computing systems in general in Section 3, and provide details of state-of-the-art techniques for
power and energy efficient numerical linear algebra in Section 4. Section 5 summarizes the paper.
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2. Background: high performance numerical linear algebra

Next we provide a brief overview on widely employed numerical linear algebra algorithms, and present relevant high per-
formance open source software libraries and benchmarks that provide routines of these algorithms.

2.1. Major dense numerical linear algebra algorithms

In dense numerical linear algebra, when solving a system of linear equations Ax ¼ b, we generally first factorize the
matrix A into a product of matrices of certain patterns, and then x can be easily solved from the factorized matrices via for-
ward substitution and back substitution (sometimes the inverse of a matrix is computed). Different matrix factorizations are
suitable for specific problem classes. Next we introduce three major matrix factorization algorithms Cholesky, LU, and QR
factorizations [14] that are widely employed in extensive areas of high performance scientific computing, individually.

2.1.1. Cholesky factorization
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Given the system of linear equations Ax ¼ b, Cholesky factorization can be applied if A is a symmetric positive definite
matrix (consequently A is a square N � N matrix). The goal of Cholesky factorization is to factorize A into the form LLT where
L is lower triangular and LT is the transpose of L, and thus solve x from LLT x ¼ b via forward substitution and back substitu-
tion. Eq. (1) illustrates a 3 � 3 blocked Cholesky factorization in matrix representation, where a block denotes a submatrix
partitioned from the global matrix A using a specific block size. The computation time complexity of Cholesky factorization
on an N � N global matrix A is O 1

3 N3
� �

.

2.1.2. LU factorization
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Instead of decomposing the global matrix A into the product of a lower triangular matrix L and its transpose LT , LU fac-
torization factorizes M � N matrix A into a product of an M � N unit lower triangular matrix L (diagonal elements are all 1s,
i.e., Lii = 1, where 0 6 i 6min(M;N) and an N � N upper triangular matrix U, and thus the system of linear equations is trans-
formed into LUx ¼ b, where x can be easily solved similarly as in the case of Cholesky factorization. The differences between
LU factorization and Cholesky factorization are as follows: (a) LU factorization applies to the case that A is any general M � N
matrix; (b) besides the change of system form from LLT to LU, LU factorization sometimes introduces a permutation matrix P
to ensure numerical stability and leads to the ultimate form of the system PLUx ¼ b. Eq. (2) shows the matrix representation
of a 3 � 3 blocked LU factorization with the product matrix omitted due to the similarity as Cholesky factorization. The com-
putation time complexity of LU factorization on an N � N global matrix A is Oð23 N3Þ.

For performance purposes, matrix factorizations can be implemented for parallel execution on distributed-memory archi-
tectures as follows: (a) Partition a global matrix into a cluster of computing nodes as a process grid using load balancing
techniques; (b) perform local diagonal matrix factorizations in each computing node individually and communicate factor-
ized local matrices to the other computing nodes for panel matrix solving and trailing matrix updating, as shown in Fig. 1, a
stepwise LU factorization without pivoting. A well-designed partitioning and highly-efficient parallel algorithms of compu-
tation and communication substantially determine performance and energy efficiency of distributed matrix factorization
algorithms.
Fig. 1. Stepwise illustration of LU factorization without pivoting.
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2.1.3. QR factorization
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As LU factorization, QR factorization also applies to a general M � N global matrix A, factorizing it into a product of an
M �M orthogonal matrix Q and an M � N upper triangular matrix R, and thus the system of linear equations becomes
QRx ¼ b, where x can be easily solved similarly. Compared to LU factorization without pivoting, QR factorization without
any pivoting (e.g., the modified Gram-Schmidt algorithm) is numerically more stable. Eq. (3) shows the matrix representa-
tion of a 3 � 3 blocked QR factorization with the product matrix omitted due to the space limitation, where Q � Q T ¼ I and I
is an M �M unit matrix with ones on the diagonal and zeros elsewhere. The computation time complexity of QR factoriza-
tion on an N � N global matrix A is O 4

3 N3
� �

.

2.2. Algorithmic characteristics of Cholesky, LU, and QR factorizations

Although targeting different problem classes of linear algebra equation systems, Cholesky, LU, and QR factorizations hold
similar algorithmic characteristics that can be utilized by various power and energy efficient techniques. As shown in Fig. 1,
all algorithms can be characterized into three primary steps: Factorizing diagonal matrices, solving panel matrices, and
updating trailing matrices. In the blocked versions of all algorithms, solving panel matrices and updating trailing matrices
amount to the most of the execution time, where in general solving is memory-bound while updating is CPU-bound [14].
The boundness feature can thus be leveraged for devising specific power and energy saving strategies to save energy accord-
ingly, without significant performance impact.

2.3. Major sparse numerical linear algebra algorithms

Different from dense linear algebra, sparse linear algebra operates on sparse matrices, i.e., in the linear equation system
Ax ¼ b, matrix elements of A are primarily zeros. The fraction of zero elements in a sparse matrix is referred to as the sparsity.
It can thus be taken advantage of for achieving computation and memory efficiency using compressed data structures, where
only the non-zero values and their indices are stored. The sparsity of the coefficient matrix A determines one fundamental
difference between the two types of linear algebra that dense linear algebra is in general compute-bound, while sparse linear
algebra is usually memory-bound. With regarding to power and energy efficiency, this key difference in workload charac-
teristics can be leveraged when designing power and energy saving techniques for the two types of linear algebra, with dif-
ferent focuses individually.

2.3.1. Direct methods
We can still use matrix factorization algorithms above to solve a sparse linear equation system, within a finite and fixed

number of steps. However, factorizing sparse matrices can generate enormous fill-in, i.e., matrix elements that change from
an initial zero to a non-zero value during the execution of the factorization algorithm. Consequently, the introduction of such
fill-in results in high computational costs and memory footprint, which degrades the performance of direct methods greatly.
In some matrix factorization algorithm such as Cholesky factorization, fill-in can be minimized using ordering methods like
permutation B ¼ PAPT .

2.3.2. Iterative methods
In contrast to direct methods, iterative methods are usually preferred in solving sparse linear equation systems to reduce

the fill-in. Typical iterative methods include conjugate gradient method, generalized minimal residual method, and bicon-
jugate gradient method, which utilize fast computation of sparse matrix–vector multiplication dominating the distinct iter-
ation steps.

2.4. High performance open source software libraries and benchmarks of numerical linear algebra algorithms

The presence of various high performance open source software libraries and benchmarks of numerical linear algebra
algorithms enables the use of hardware and software based power and energy efficient techniques in high performance sci-
entific computing nowadays. We next introduce several major numerical linear algebra software libraries and benchmarks of
our concern.

2.4.1. ATLAS
ATLAS [8] is a software library of linear algebra kernels that automatically tunes performance according to configuration

of the hardware where it is deployed. Specifically, ATLAS produces a BLAS [15] library that has been highly optimized for the
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platform where ATLAS is installed. The goal of ATLAS is to provide portable and optimal performance of linear algebra rou-
tines across arbitrary cache-based architectures. Supported operations of ATLAS include a complete BLAS APIs and a subset of
LAPACK [16] APIs.

2.4.2. HPL and NPB
Both HPL [2] and NPB [3] are highly parallel benchmarks targeting performance evaluation of supercomputers where

numerical linear algebra algorithms are extensively applied. As introduced in Section 1, HPL is a portable and scalable imple-
mentation of dense linear system solver on distributed-memory computing systems. The algorithm employed by HPL is
essentially a highly optimized right-looking variant of the LU factorization algorithm with row partial pivoting featuring
multiple look-ahead depths. The global matrix elements are distributed into a two-dimensional P � Q process grid via the
block cyclic data partitioning scheme (also known as, 2-D block cyclic data distribution) to guarantee good load balance
and scalability.

As a collection of parallel and distributed algorithmic scientific methods, numerical linear algebra algorithms such as cal-
culating eigenvalues and eigenvectors, fast Fourier transforming, solving systems of linear equations and partial differential
equations are involved in 8 out of 11 benchmarks included in the latest NPB. NPB benchmarks are parallelized using MPI,
OpenMP, and High Performance Fortran with additional optimizations, and feature genericness, architecture neutrality,
and scalability. Specifically, performance efficiency of these benchmarks is highly dependent on optimizations based on
hardware, OS, and compilers. Therefore, NPB has been deemed a viable solution of benchmarking performance of modern
computing architectures.

2.4.3. ScaLAPACK and DPLASMA
ScaLAPACK [4] and DPLASMA [5] are two leading implementations of high performance numerical linear algebra algo-

rithms for distributed-memory multicore systems. Both libraries feature 2-D block cyclic data distribution, block-partitioned
algorithms, and high scalability/portability. DPLASMA is also devised for distributed heterogeneous systems with multiple
sockets of multicore processors and accelerators such as NVIDIA Tesla GPU, AMD FirePro GPU, and Intel Xeon Phi coproces-
sor. The compatible interface of numerical linear algebra routines is provided by both implementations. Empirically com-
pared to ScaLAPACK, DPLASMA is able to achieve higher performance (GFLOPS and weak scalability) and energy efficiency
on large-scale distributed-memory architectures.

2.4.4. MUMPS and PETSc
MUMPS [17] is a massively parallel sparse direct solver for large linear systems with symmetric positive definite matrices

and general matrices. It features parallel factorizing/solving phases, and is implemented atop ScaLAPACK. Moreover, it
employs dynamic distributed scheduling to accommodate numerical fill-in and multi-user environment. PETSc [18] is a scal-
able and parallel sparse iterative solver for scientific applications modeled by partial differential equations. It focuses around
Krylov subspace methods and allow easy and lightweight switching between several linear system solvers, with supports of
distributed-memory, shared-memory, and heterogeneous CPU-GPU architectures, as well as any hybrid architectures. More-
over, it allows advanced users to have detailed control over the solution process.

3. Power management for high performance computing systems

The goal of power management during executions of high performance applications is to reduce power and energy con-
sumption of the computing system limited within a power cap, with negligible performance loss [9]. In general, saving
energy can be achieved by either reducing the average power consumed, or the execution time of the applications. In this
paper, we primarily present power and energy saving techniques with constrained performance impact that are beneficial
to decreasing both power and energy costs. A great number of hardware and software based power and energy saving solu-
tions have been proposed for different components of the system. First of all, we model the power and energy costs of a high
performance computing system, and next introduce commonly deployed power management techniques for reducing power
and energy consumption of specific components in such systems.

3.1. Power and energy models

In general, power and energy consumption of a computing system where high performance applications are running can
be formally modeled using the notation listed in Table 1. Within a given time interval (t1; t2) when a high performance appli-
cation runs, the total energy consumption Esys of a distributed-memory computing system consisting of multiple computing
nodes can be formulated as below, where we denote the execution time as T ¼ t2 � t1 and the nodal average power con-
sumption as Pnode:
Esys ¼
X#nodes

1

Enode ¼
X#nodes

1

Z t2

t1

Pnodedt ¼
X#nodes

1

Pnode � T ð4Þ



Table 1
Notation in power and energy consumption formalization.

Esys The total energy consumption of the whole cluster
Enode The total energy consumption of all components in a node
Pnode The total power consumption of all components in a node
PCPU The total power consumption of CPU in any states
PCPU d CPU dynamic power consumption in the busy state
PCPU s CPU static/leakage power consumption in any states
PGPU The total power consumption of GPU in any states
Pmem The total power consumption of memory in any states
Pother Power consumption of components other than CPU/GPU/memory
Pcap Actual available maximal value of system power consumption
A Percentage of active gates in the CMOS-based chip
C The total capacitive load in the CMOS-based chip
f Current CPU working frequency
V Current CPU supply voltage
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Assuming each node in the computing system has the same hardware configuration and local energy efficiency results in
global energy efficiency according to Eq. (4), we only consider nodal energy consumption (disregarding network devices con-
necting computing nodes and public network) and generally further break down nodal power consumption as (assume that
GPU is present in the system):
Pnode ¼ PCPU þ PGPU þ Pmem þ Pother ð5Þ

PCPU ¼ PCPU d þ PCPU s; where PCPU d ¼ ACfV2 ð6Þ
In Eq. (5), we categorize the nodal power consumption by power consumption of CPU, GPU, memory, and other compo-
nents, where power consumption of other components such as network, motherboard, disk, and fans amount to a small pro-
portion of the total system power [19], and employing DVFS on these components is limited at the time of writing. In Eq. (6),
by substituting PCPU d, we obtain the ultimate CPU power consumption formula with scalable parameters f and V (we discuss
techniques that scale f and V in Sections 4 and 5) as:
PCPU ¼ ACfV2 þ PCPU s ð7Þ
GPU power model [20] and memory power model [21] are similar to CPU power model: All of CPU, GPU, and memory
power models consist of static power and dynamic power of the component, so GPU and memory power models are not
elaborated for simplicity. Moreover, despite the difference on difficulty of implementation, employing DVFS on CPU, GPU,
and memory essentially conforms to the same mechanism. Thus we only focus on CPU DVFS to show how to save power
and energy using DVFS in this paper.

Regardless of types of workloads in the application, PCPU s and Pother are not affected by CPU frequency and voltage and
empirically do not vary much during executions of the application, and thus can be regarded as constants for simplicity
(PCPU s þ Pother can be denoted as Pc). Consider a GPU compute intensive or memory intensive application. In this case, the
peak CPU performance is not necessary due to the GPU-/memory-boundness. In other words, the nodal power consumption
greatly depends on f and V, since PCPU can be scaled down by reducing CPU frequency and voltage without incurring signif-
icant performance loss per the application characteristics. Following the constraints of Eqs. (4)–(7), we can optimize power
costs of the computing system during executions of a high performance application, and eventually save energy by leverag-
ing different power management techniques, including the ones that scale down f and V when necessary per application
characteristics. With the constraint that performance of the application should be barely compromised, the ultimate goal
of achieving power and energy efficiency in high performance computing can be formalized in general as follows:
minimize Esys ¼
X#nodes

1

Pnode � T

subject to Psys 6 Pcap

where Psys ¼
X#nodes

1

Pnode

ð8Þ
Empirically, due to limitations of power budget (often for large-scale data centers), available power supply for a comput-
ing system is normally restricted by a cap smaller than the theoretical peak value restricted by the hardware. Specifically, a
system power cap is a definitive limit of power consumption the system can actually obtain and usually does not exceed, and
the cap has no effect on performance until the system reaches its power consumption limit. The relationship between actual
system power consumption and system power cap is reflected in Eq. (8). Generally, the goal is to minimize Pnode and thus Psys

under the limitation of Pcap with as little performance degradation as possible. In other words, we need to minimize the
trade-off between execution time and average power in terms of energy-performance efficiency quantitative metrics such



L. Tan et al. / Parallel Computing 40 (2014) 559–573 565
as Energy-Delay Product (EDP), and consequently the optimal system energy efficiency can be fulfilled. We next present
details of commonly employed power management techniques for achieving power and energy efficiency onsupercomputers
nowadays.

3.2. Classic power management techniques

Generally, existing power management techniques for achieving power and energy efficiency in high performance com-
puting systems can be categorized into two types, determined by the stage where the techniques are performed: Static and
dynamic. Both types of techniques aim to reduce power and energy consumption of scientific applications running on high
performance computing systems with negligible performance degradation. We present the details of the two types of power
management techniques as below.

3.2.1. Static power management
Static power management techniques are launched prior to running an application. Typical static power management

techniques include employing low power hardware components and enabling hyper-threading for logical cores ahead of
the application runs.

(1) Low Power Components (LPC)
Recent research indicates for different workload intensive high performance applications (e.g., CPU-bound, network-
bound, memory-bound, and disk-bound), power and energy consumption on CPU dominate system power and energy
costs (35%�48%), and the second most power-/energy-consuming hardware component is memory (16%�27%)
[9,22,19], more specifically, DRAM. Consequently, leveraging LPC such as low power CPU and memory can improve
power and energy efficiency of the systems effectively.

(2) Hyper-Threading (HT)
As an implementation of simultaneous multithreading [23], the HT technique launched by Intel [24] helps to utilize
more hardware resources by allowing two threads to run on each physical core. Empirically, for communication inten-
sive applications, the HT technology is able to save energy effectively, since for such applications, the HT technique
enables that two threads on one physical core can achieve similar performance as one thread each on two physical
cores. Consequently, performance efficiency from using the HT technique results in energy efficiency.

3.2.2. Dynamic power management
In contrast to the static techniques, dynamic power management techniques are performed on the fly when an applica-

tion runs. In general, dynamic techniques include all strategies that perform runtime monitoring and scheduling of system
status and resources for power and energy efficiency. There exist two common dynamic power management mechanisms:
Dynamic speed scaling and dynamic resource sleeping.

(1) Dynamic Speed Scaling (DSS)
As is implied by the name, the DSS technique exploits software and hardware based power-scalable components to
dynamically adjust power consumption of computing systems. Dynamic Voltage and Frequency Scaling (DVFS), a pop-
ular example of the DSS technique, is able to dynamically modify the performance of a power-scalable component by
altering its operating voltage and working frequency, which also adjusts power and energy costs of the component,
given the fact that energy consumption equals product of average power consumption and execution time, and the
assumption that dynamic power consumption P by a CMOS-based processor is proportional to product of frequency
f and square of supply voltage V, i.e., P / fV2 [25,26]. Typical components where the DVFS techniques have been
applied include CPU, GPU, and memory. As discussed above, CPU and memory are the two most power and energy
consuming components among all hardware components of a computing system. Moreover, power and energy costs
on GPU also take a great proportion of the total power and energy costs of a heterogeneous computing system. Now-
adays, various easy-to-use DVFS APIs/tools have been industrialized and even incorporated into the Linux kernel, such
as CPUFreq kernel infrastructure [27] for CPU, and NVIDIA Management Library (NVML) [28] and NVIDIA System Man-
agement Interface (nvidia-smi) [29] for NVIDIA GPU. Therefore, employing DVFS is deemed to be an effective dynamic
approach to achieve power and energy efficiency for high performance computing nowadays.
Generally, DVFS can be employed to reduce frequency and voltage of power-scalable components such as CPU, GPU,
and memory, when current running operations are not CPU-bound, GPU-bound, or memory-bound respectively. Spe-
cifically, frequency and voltage of the components are lowered down when the peak performance of the components
is not necessary for achieving the optimal performance of an application, while are kept at the highest scale otherwise.
Power and energy savings can thus be achieved due to lower average frequency and voltage during executions of the
application with negligible performance loss. Note that on many architectures such as GPU, the core frequency and the
memory frequency are coupled and have to be switched simultaneously as a combination [28].
Due to the difference between memory accesses and CPU/GPU computation, memory DVFS is rather difficult empir-
ically compared to CPU/GPU DVFS [21]. Cho et al. [30] observed that memory is generally non-supply-voltage-scalable,
but its energy consumption is variable to its clock frequency. They derived the energy-optimal memory frequency as a
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function of the number of CPU clock cycles, the number of memory clock cycles, and the number of memory accesses,
and energy efficiency was achieved by different frequency assignment schemes. Two nearly concurrent efforts fulfilled
memory DVFS from different aspects [31,21]. MemScale [31] applied two low-power modes: voltage and frequency
scaling to the memory controller and only frequency scaling to the memory channels and DRAM devices, and guided
by an OS policy that determines which mode to choose. The experimental evaluation is based on simulations due to
hardware limitations. The approach proposed in [21] was however evaluated on a real hardware platform, where
memory voltage and frequency were scaled via observing memory bandwidth utilization, with minimized perfor-
mance loss. Specifically, frequency scaling was fulfilled by emulating memory frequency with altered timing settings,
and voltage was scaled together with frequency proportionally.
Adaptive Voltage Scaling (AVS) is another runtime technique that monitors performance variability of the chip
together with system characterization to influence voltage and frequency on the fly in a closed-loop configuration. Dif-
ferent from DVFS that is utilized in open-loop systems where frequency-voltage pairs are stored in a look-up table
with built-in margin to cover temperature and process variations, AVS is employed to automatically adjust supply
voltage to the minimum necessary level to meet performance requirements, usually for FPGA and VLSI systems. Dif-
ferent parameters are involved when selecting between the closed-loop and open-loop configurations for voltage
scaling.

(2) Dynamic Resource Sleeping (DRS)
DRS dynamically hibernates components from the active running state C0 into power-saving states for power and
energy efficiency, and wakes them up on demand. Possible power-saving states include the active idle state I, different
levels of sleep states denoted as C1;C2; . . . ;Cn, and the power-off state O. Generally, all sleep states consume less power
than the active idle state. Power consumption of different sleep states depends on the level of sleeping, i.e., the deeper
the component sleeps, the less power is dissipated, but the more time is needed for waking it up [32]. The power-off
state consumes zero power. Note that different components may have different power states, and state transition also
incurs time and energy costs inevitably.

4. Power and energy efficient high performance numerical linear algebra

Numerical linear algebra algorithms are widely applied in high performance scientific computing. Next we summarize
different types of power management techniques for saving power and energy, with a focus on numerical linear algebra
algorithms. We first present some efforts on power and energy profiling for such applications, which serves as the corner-
stone of achieving power and energy efficiency for them, followed by a detailed review of the state-of-the-art techniques for
saving power and energy of high performance numerical linear algebra algorithms from three different perspectives: trading
off performance, static saving, and dynamic saving.

4.1. Power and energy profiling for high performance numerical linear algebra

Power and energy measurement are of primary concerns for high performance computing systems nowadays and have
been widely studied [33,19,34], since it guides hardware and software based techniques for mitigating the operating costs
and system reliability issues of modern high performance computing architectures. There exists a large body of work con-
ducted on power and energy measurement using power sensors and meters equipped on different components of a system
[19,35–43], and these efforts are essentially towards power and energy measurement in general, not for high performance
numerical linear algebra in particular.

Several efforts have leveraged a handful of hardware counters supported by new microprocessor designs and directly
used for power and energy measurement. Bui et al. [33] proposed to use on-chip counters to model power consumption
of parallel scientific applications modeled by partial differential equations running on multicore and multiprocessor systems.
Specifically, the power of different components of a processor is computed by exploiting the published thermal design power
and the idle power, and being weighted via the access rates for different cache levels and core logic, where the access rates
can be determined using the on-chip counters. The authors also presented a component-based framework for automated
performance and power measurement and analysis. The work however suffers from two disadvantages: (a) The LU factor-
ization performed by the multigrid solution method is sequential at coarse grid level, resulting in a severe scalability issue,
and (b) the power consumption reported is only for processors of a node. Other significant power consuming components
such as memory, disk, and motherboard are not studied. Hardware counter-based solutions were also explored by Demmel
et al. [34], where on-chip energy counters provided by Intel’s Running Average Power Limit (RAPL) interfaces [44] were lev-
eraged for profiling energy costs of dense and sparse linear algebra routines for various problem sizes and core frequencies.
Since 2011, Intel Sandy Bridge and later microarchitecture for CPU have emerged with on-chip counters allowing software
based measurement for CPU and memory energy (specifically, DRAM) through the RAPL interfaces. The easy-to-use capabil-
ity of collecting energy data via RAPL is however limited by two factors: (a) The energy data is of socket scope, and individual
core energy profiling is current not supported, and (b) the ability of setting power limits for individual core is not available
for use.

Dongarra et al. [45] studied energy consumption measurement using two component-based energy monitoring frame-
works PowerPack and Intel RAPL for high performance dense linear algebra libraries LAPACK [16] and PLASMA [46], respec-
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tively. Power profiling of block and tile algorithms of LU factorization were reported using the two power and energy mea-
surement frameworks for comparison purposes. The close match between physical power measurement using PowerPack
and RAPL observed in the experimental results indicates that RAPL offers a viable alternative to physical power meters
for the tested algorithms. In addition to employing on-chip energy counters as an alternative of physical power sensors
and meters, given the fact that there exist no clear OS interfaces for accurately exposing resource power consumption to
user-level runtimes, Kestor et al. [47] devised an interface between OS and user runtime to measure accurate per-core power
costs via a proxy power sensor based on a regression analysis of core activities. Instead of obtaining power information from
a real power sensor, the proposed interface allows user-level software based power measurement. A power profiling runtime
library was implemented for analyzing NPB benchmarks and the analysis shows the feasibility of the proxy power sensor
technique for comprehensively understanding the power characteristics of high performance scientific applications.

A considerable amount of work has been conducted to analytically predict power and energy consumption via prior
knowledge on power usage data. Cabrera et al. [48] presented an analytical model for predicting power consumption for
HPL, where architectural and algorithmic parameters associated for power and energy models were obtained from real
power consumption data, and these parameters can be utilized to estimate HPL power and energy costs across a range of
architectures effectively with reasonable errors. This work however suffers from two drawbacks: (a) At larger problem sizes,
disk swapping becomes a factor to affect power and energy costs a lot, but the current approach does not take this into
account; (b) at smaller problem sizes, execution time of HPL can be even smaller than the minimal sample time interval
of the power meter used for obtaining necessary power data, which causes considerable errors between the measured
and predicted data. Subramaniam et al. [49] proposed to utilize multi-variable regression analysis to model performance
and energy efficiency of HPL. The coefficients of the multi-variable regression techniques have a close relationship with
the 18 parameters used for HPL performance tuning, and can be determined by the least square method. The statistical
regression model was able to predict the HPL configuration (i.e., the most efficient HPL parameters) for achieving the max-
imal energy efficiency with high accuracy. The disadvantage of this work is that the power values were extrapolated from a
single node of a cluster and the overhead between nodes were not taken into consideration. Tiwari et al. [50] demonstrated
that artificial neural networks can be employed to predict the component level power draw and energy usage of HPC kernels
such as matrix multiplication and LU factorization, where a subset of measured power data were used as a training input to
an artificial neural network, and predictions were made for power draw rate and energy consumption of different system
components with acceptable absolute error rate. One problem of this approach is that the training data was gathered from
a multicore architecture with specific hardware configurations, which means the model needs to be rebuilt for a cluster of
nodes with different architectures, and the model does not necessarily scale well on a distributed-memory architecture with
more processors.

Two typical research efforts have been contributed to comparing power and energy efficiency of state-of-the-art imple-
mentations of high performance numerical linear algebra algorithms on multicore and distributed-memory systems. For
shared-memory multicore architectures, Ltaief et al. [51] conducted experiments on power profiling the commonly used
routines of numerical linear algebra algorithms in LAPACK and PLASMA for identifying different phases of computation
and thus isolating bottlenecks for energy efficiency. Experimental results show that PLASMA using fine-grained task-parallel
tile algorithms is superior to LAPACK using fork-join block algorithms, in terms of both performance and energy efficiency.
For distributed-memory multicore architectures, Bosilca et al. [52] entended the power profiling to high performance
numerical linear algebra libraries such as ScaLAPACK and DPLASMA, and in particular presented performance and power
data for Cholesky and QR factorizations. Reported data shows that DPLASMA using fine-grained task parallelism with
dynamic distributed scheduling and tiled data layout is more performance and power efficient compared to ScaLAPACK
using multithreaded block algorithms and 2-D block cyclic data distribution, on a power-aware cluster with 2592 cores.

4.2. Optimizing power and performance efficiency trade-off for high performance numerical linear algebra

Performance and power/energy are generally two critical, correlated, while mutually constrained factors in high perfor-
mance computing, indicated by the formula E ¼ P � T where P is the average power consumption during runs of high per-
formance applications. The fulfillment of energy efficiency in some cases is at the cost of performance degradation within a
reasonable range. For instance, as presented in Section 3.2.1, employing low power components may achieve better perfor-
mance-energy ratio in terms of minor performance loss and major energy efficiency, due to constraints that hardware is
reaching its physical limits empirically [53,54].

There also has been extensive software based work conducted on trading increased execution time for energy savings.
Tan et al. [55] proposed a DVFS scheduling strategy to achieve energy efficiency for data intensive applications. The approach
aggressively applies DVFS to mixed types of workloads holistically, and adaptively sets an appropriate CPU frequency to the
hybrid workloads according to the percentage of CPU-bound computation within the total execution time. Additional energy
savings is fulfilled via speculation to mitigate DVFS overhead for imbalanced branches. Significant energy savings were
achieved at the cost of minor performance loss experimentally towards several memory and disk access intensive bench-
marks with imbalanced branches compared to another two energy saving solutions on a power-aware 64-core cluster. Sub-
sequent work [56] studied the effect of performance gain in distributed matrix multiplication on energy efficiency via a high
performance pipeline broadcast as the communication scheme. Benner et al. [57,58] investigated the performance and
power/energy trade-off for two low power architectures, compared to a general purpose multicore processor. Experimental
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results indicate that for dense linear algebra operations where matrix–matrix multiplication is widely employed, the race-
to-halt strategy (i.e., execute the application at the highest available CPU frequency during computation and switch to the
lowest available CPU frequency during other tasks) tends to attain both high throughput and high performance-per-watt
ratio on general purpose architectures, while a hybrid architecture that combines low power architectures and GPU can offer
competitive performance with higher energy efficiency.

From a system point of view, performance and power/energy trade-off has been thoroughly studied. Song et al. [59] built
a system-level iso-energy-efficiency model to analyze, evaluate, and predict energy-performance of data intensive applica-
tions running on large scale power-aware clusters where various execution patterns were exploited. Effects of machine and
application dependent characteristics (e.g., processor count, CPU power/frequency, workload size, and network bandwidth)
to balance energy use and performance were studied extensively. The model was experimentally evaluated on two power-
aware clusters with different scales, and the total system energy costs can be predicted within negligible errors for applica-
tions with different execution patterns. Subsequent work [60] extended the iso-energy-efficiency model to determine appro-
priate parameters for performance and power/energy scaling of numerical linear algebra applications running on scalable
systems, and proposed correlation functions to quantitatively explain effects of parameters involved in maintaining perfor-
mance and power/energy efficiency as system size scales. Barreda et al. [61] and Aliaga et al. [62] provided a detailed exper-
imental analysis on the balance between power consumption and computational performance for LU factorization, Cholesky
factorization, reduction to tridiagonal form, and sparse linear system solvers. Ge et al. [9] studied three types of distributed
performance-directed DVFS scheduling strategies for achieving performance-constrained energy efficiency in scalable
power-aware HPC clusters, and showed empirically that the proposed techniques consistently achieve energy efficiency with
little impact on execution time. They also discussed automatically selection of distributed DVFS scheduling meeting users’
requests via the metric of energy-delay products.

Numerous work has been conducted from the perspective of hardware. Pedram et al. [63,54] introduced a custom mic-
roarchitecture design for a Linear Algebra Core (LAC), in particular for matrix computations, and extended the LAC design
with a fine-tuning general memory hierarchy model to evaluate trade-offs in performance and energy efficiency in terms
of energy per operation. The prototype linear algebra processor empirically shows the implementation of matrix multipli-
cation can achieve high performance while consuming less energy compared to the cutting-edge commercial architectures.
The proposed design is however not generalized to handle more matrix operations other than matrix multiplication due to
lack of demonstrated applicability experimentally. Jang et al. [64] profiled state-of-the-art FPGA designs to identify energy
hot spots where most of energy dissipation is attributed, and developed new algorithms and architectures concerning trade-
offs among available hardware parameters. The impact of system-wide energy dissipation, area, and latency is represented
by optimization functions. Extensive low-level simulations were conducted and the proposed designs was demonstrated to
improve energy efficiency of FPGA without any increase in the area-latency product. In terms of comprehensive metrics such
as energy-area-time, the shown designs also outperform the state-of-the-art techniques considerably. Prasanna et al. [65–
67] presented two block based parallel designs for LU factorization on FPGA using a linear array architecture, which can min-
imize the usage of long interconnects for higher throughput and thus lead to lower energy dissipation. Choi et al. [68,69]
evaluated both performance and energy efficiency of FPGAs, embedded processors, and DSPs in matrix multiplication, and
the experimental results show that FPGAs can perform matrix multiplication with much lower latency while also consuming
much less power than the other two devices. The disadvantage of this work is that it only considers single signal processing
application, i.e., matrix multiplication, instead of various types of applications to show the genericness of FPGAs in high per-
formance energy efficient scientific computing. Garcia et al. [70] proposed instruction-/task-level optimizations and an
energy-aware tiling to reduce static and dynamic energy for LU factorizations on many-core architectures, without sacrific-
ing scalability or performance.

4.3. Static Power and Energy Saving for High Performance Numerical Linear Algebra

One straightforward strategy of saving power and energy for high performance scientific applications is to deploy Low
Power Components (LPC) in the computing systems. Essentially as a hardware solution, this strategy mitigates power and
energy consumption regardless of application characteristics, and thus should save power and energy for any applications
running on the computing systems where LPC modules are deployed.

Various LPC modules are employed in high performance architectures for power and energy efficiency nowadays. IBM
Blue Gene/L, Blue Gene/P, and Blue Gene/Q [53] are the most well-known and used to be the most power efficient supercom-
puters around the world according to the June 2012 Green500 list [11]. IBM Blue Gene systems are characteristic by two
primary features of power and energy efficiency: (a) Trading performance for low power and energy consumption, i.e., by
exploiting relatively low power CPU and other LPCs, the systems are able to achieve better performance-energy ratio, and
(b) leveraging the system-on-a-chip design, which saves power and energy due to low power supply to fewer number of
chips since the design aggregates more components to be embedded on one chip.

The latest three versions of the Green500 list unveil the top spots of the most power efficient supercomputers have been
taken over by heterogeneous high performance computing systems that combine classic computational processors with
graphics processors or coprocessors. In other words, the architectures consisting of a combination of CPU with GPU such
as NVIDIA Tesla K20 or coprocessors such as Intel Xeon Phi prevail in power and energy efficiency [11]. Eurora and Aurora
[71], the currently top two most power and energy efficient supercomputers all over the world, are heterogeneous systems
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based on NVIDIA Kepler K20 GPU accelerators, which improves performance-power ratio (MFLOPS/W) by 40%, compared to
the previous greenest supercomputer around the world, IBM Blue Gene/Q. Experimental results show that the combination
of CPU, GPU, and other types of accelerators can balance the trade-offs between performance and energy and yield the best
performance-power ratio, since strengths of different processors are exploited in executing high performance applications
nowadays with different types of workloads.

There exists a large body of work on leveraging LPC for performance and power efficient data-driven operations. Caulfield
et al. [72] presented a low power architecture for data intensive applications that combines lower power processors, flash
memory, and data-centric programming systems to achieve both performance and power efficiency. Andersen et al. [73]
introduced a new low power architecture for data-intensive computing that couples low power embedded CPUs to local
flash storage, and balances computation and I/O to provide power efficient parallel data accesses. Szalay et al. [74] proposed
a novel architecture consisting of a large number of energy efficient CPUs with solid state disks to increase sequential read I/
O throughput while keeping power consumption constant. Beckmann et al. [75] exploited a low power processor, solid state
disks together with energy efficient sorting algorithms to improve data access performance per energy unit using well-estab-
lished sorting benchmarks. A general conclusion is drawn from the above work that a balance between low power costs and
performance efficiency should be carefully maintained to optimize the performance-power ratio for data intensive applica-
tions. Potential efforts could be made to extend the proposed solutions to energy efficient computing in general in addition
to data-centric applications via utilizing more low power components.

With regard to multicore architectures, employing simultaneous multithreading is able to improve both performance and
energy efficiency for high performance applications due to thorough utilization of additional instruction-level parallelism
from multiple threads [23]. Intel’s implementation of simultaneous multithreading, namely Hyper-Threading (HT) Technol-
ogy [24], allows two threads to run on each physical core as two virtual/logical cores to improve parallelism of computation,
taking advantage of superscalar architectures. Demmel et al. [34] experimentally observed the HT Technology can save
energy for communication intensive applications (e.g., the dgemv() routine from numerical linear algebra libraries), while
can incur extra energy costs for applications where computation dominates (e.g., the dgemm() routine from numerical linear
algebra libraries), since applying the HT Technology in compute intensive applications results in threads on the same core
competing for computation power [76] and thus performance degradation, while in the case of communication intensive
applications, the shared core can be utilized thoroughly via the HT technology. Fig. 2 shows performance and energy effi-
ciency of the dgemv() routine from Intel MKL 10.3.
4.4. Dynamic power and energy saving for high performance numerical linear algebra

At the OS, library, or application level, power and energy savings can be achieved with negligible performance loss for
high performance numerical linear algebra algorithms. Next we summarize the state-of-the-art dynamic techniques for
power/energy efficient numerical linear algebra. Ge et al. [9] categorized three types of distributed DVFS scheduling strat-
egies that are viable for conserving energy while maintaining performance: a) Using a daemon process as system-driven
external control, (b) scheduling from the command-line as user-driven external control, and (c) scheduling within the appli-
cation via power-aware component APIs as user-driven internal control, where strategy (b) is essentially a static approach
since the user sets CPU frequency for each node prior to executing the application. We focus on strategies (a) and (c) in the
later review.

The primary difference between strategy (a) and strategy (c) lies in the genericness. Since strategy (a) utilizes a standby
process that is essentially a daemon independent on the processes manipulated by the application itself, similar to the black-
box testing in software engineering, strategy (a) applies to a general application regardless of prior knowledge of internal
structures of the application. Strategy (c) exploits the algorithmic characteristics of the application and typically requires
modification of the source code of libraries the application extensively invokes, and thus understanding of algorithmic
details of the application is necessary. Previous review involves several efforts on strategy (a) [9,77]. Zhu et al. [78] proposed
a consolidation scheme of scientific workflow tasks for energy and resource cost optimization, and developed a power-aware
consolidation framework named pSciMapper consisting of online consolidation and offline analysis components. The pri-
mary drawback of this approach is the considerable slowdown around 15% for the application, which is unacceptable for
Fig. 2. Effectiveness of hyper-threading on performance and energy efficiency [34].



Table 2
Summary of power/energy efficient techniques for high performance numerical linear algebra algorithms.

Ref. Category Technique Power/Energy savings Applicable targets

[55] Trading-
off

Aggressive and adaptive DVFS scheduling on mixed types of
workloads with speculation

32.6% avg. energy # w/6.2% avg. perf. # Data intensive scientific applications on clusters

[56] Trading-
off

Improving communication perf. for energy efficiency as a whole 7.5% avg. perf. " w/6.5% avg. energy # Matrix multiplication on distributed-mem. sys.

[57]/[58] Trading-
off

Analyzing perf./energy balance on heterogeneous systems w/low
power architectures

Heterogeneous systems tend to offer higher perf./
energy ratio

Matrix inversion via Gauss–Jordan elim. on
multicore architectures

[59]/[60] Trading-
off

Analyzing execution patterns to predict energy costs and balance
perf./energy ratio

Within 5% avg. error of total system energy
consumption prediction

Data intensive scientific app. on scalable clusters

[63]/[54] Trading-
off

Devising a microarchitecture for linear algebra routines w/fine-tuned
memory hierarchy

600 GFLOPS w/25 W and 50� energy efficient than
cutting-edge CPU

Matrix multiplication on the prototype linear
algebra processor

[64] Trading-
off

Identifying energy hot spots for optimizing perf./energy 40% avg. perf./energy " w/o area-time product " Matrix multiplication in VHDL on FPGA

[65]/[66]/
[67]

Trading-
off

Block based designing via a linear array architecture for high
throughput/low energy

35% avg. energy # w/50% avg. perf. " LU factorization in VHDL on FPGA

[68]/[69] Trading-
off

Evaluating perf. and energy efficiency of FPGA, embedded processors,
and DSP

FPGA multiplies matrices w/lower latency and lower
energy than others

Matrix multiplication on FPGA, embedded
processors, and DSP

[70] Trading-
off

Designing a power-aware tiling to # static and dynamic energy 3.28� avg. power/perf. ratio " using 156 threads LU factorization on many-core architectures

[53] Static Exploiting low power components and aggregating more components
on one chip

BlueGene/L scales up to 65536 dual-core nodes &
360 TFLOPS perk perf.

Generic purposes

[72] Static Integrating low power processors, flash memory, and data-centric
programming systems

1.5� perf. " and 2.5� perf. per Watt " than disk-
based clusters

Data intensive scientific applications on clusters

[73] Static Coupling lower power embedded CPU to flash storage, and balancing
computation & I/O

350 queries per Joule & two orders of magnitude "
than disk-based sys.

Data intensive scientific applications on clusters

[74] Static Combining low power CPU w/solid state disk to increase I/O
throughput and reduce power

I/O throughput " one order of magnitude/5� w/
power/cost constant

Data intensive scientific applications on clusters

[75] Static Employing low power processor solid state disk & efficient algo. 5.1� perf./energy ratio (records per Joule) " Data intensive scientific app. on multicore sys.
[34] Static Utilizing simultaneous multithreading (Hyper-Threading) up to 29.5% energy # w/up to 1.9% perf. " Commun. intensive sci. app. on multicore sys.
[77] Dynamic Utilizing power-aware mapping to meet deadline while reducing

power by DVFS on CPU + GPU
w/Deadline met, more than 20% energy # Time sensitive scientific app. on heterogeneous

systems w/CPU + GPU
[78] Dynamic Use power-aware consolidation via a distance metric and resource

correlation analysis
up to 56% energy # w/less than 15% perf. # Scientific applications on distributed virtualized

architectures
[79]/[80] Dynamic Leveraging Monte-Carlo simulation to adaptively balance workload

based on hardware status
44� perf. " and 19.6� energy # w/27% perf./energy
ratio " overall

Financial applications on clusters w/FPGA, CPU, and
GPU

[81]/[82]/
[83]

Dynamic Reducing frequency for tasks off the critical path to lower power w/o
performance loss

up to 2.5% perf. # w/up to 5% energy # on shared-
memory systems

Cholesky, LU, and QR factorizations on simulated
multicore processors

[84] Dynamic Analyzing Linux DVFS governors on energy saving modes Different governors impact perf. & energy balance Three matrix routines on distributed-mem. sys.
[85] Dynamic Utilize algorithmic characteristics of linear algebra operations to

predict slack accurately
33.8% avg. energy # w/3.9% avg. perf. # Maximize potential energy savings via algorithmic

slack prediction
[86] Dynamic Adaptively trading more comp. & comm. w/mem. for DVFS # 7.5% extra avg. energy # than a classic strategy Matrix multiplication on distributed-mem. sys.
[87]/[88] Dynamic Scaling frequency for tasks not located on the critical path 15% avg. energy # w/o observable perf. loss Sparse matrix app. on distributed-mem. sys.
[89] Dynamic Comparing energy saving impact of DVFS on GPU + CPU GPU frequency " leads to perf. " w/small energy " Matrix multiplication on hetero. CPU + GPU
[90] Dynamic Eliminating polling when core is idle or running up to 9% energy # w/up to 4% perf. # Cholesky and LU factorizations on CPU + GPU
[91]/[92] Dynamic Setting system to a low consuming state when GPU runs up to 25.8% energy # w/noticeable comp. perf. # Iterative linear solvers on hetero. CPU + GPU
[20] Dynamic Predicting at runtime the opt. num. of active cores for higher perf./

energy ratio
up to 22.09% energy # on GPU w/9.18% avg. error Matrix kernel operations on GPU architectures

[93]/[94]/
[95]

Dynamic Monitoring runtime performance variability to scale power using
adaptive voltage scaling

up to 85% energy # w/nominal voltage operation at
the same frequency

Fast Fourier transform on FPGA architectures
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high performance computing nowadays. Luk et al. [79,80] proposed a novel Monte-Carlo simulation framework that sup-
ports multiple types of hardware accelerators (FPGA and GPU) and provides scheduling interfaces to adaptively perform load
balancing for performance and energy efficiency. Energy savings achieved is from performance gain obtained from the col-
laborative simulation framework, but not from an energy saving strategy itself.

One effective and widely studied approach that can be implemented in terms of both strategies (a) and (c) is the Critical
Path (CP) approach, where energy saving opportunities can be exploited by appropriately reducing operating frequency of
computation components to dilate tasks off the CP into their slack and thus achieving lower average power consumption
without incurring performance loss. Based on the CP approach, several algorithms such as Slack Reduction algorithm and
Race-to-Idle algorithm [81–83] have been proposed to save energy for dense linear algebra algorithms on shared-memory
multicore processors. One great disadvantage is their work is either based on simulation (including the DVFS techniques)
or only work for single multicore machine. Subsequent work [84] analyzed the impact of different energy saving modes
via Linux governors on dense linear algebra kernels in a distributed-memory architecture, but no algorithmic strategies
via energy efficient DVFS scheduling within the application were proposed. Tan et al. [85] proposed to utilize algorithmic
characteristics of distributed dense matrix factorizations for obtaining slack accurately and thus saving more energy, with
negligible performance loss and trading off partial generality. Subsequent work [86] presented an adaptive memory-aware
strategy for improving energy efficiency of distributed matrix multiplication by trading more computation and communica-
tion at a time with memory cost for less DVFS switches. Chen et al. [87,88] proposed a DVFS energy reduction scheme for tree
based parallel sparse applications that exploits load imbalance across parallel processors and applies DVFS to processors off
the critical path without sacrificing performance of the application. However, their approach was based on simulation atop
theoretical assumption and no empirical studies were conducted for real-world applications running on real machines.

Considerable amount of dynamic power/energy efficient approaches have been devised for heterogeneous systems that
comprised of multiple types of computing components. Liu et al. [77] proposed several power-aware mapping techniques for
a CPU-GPU heterogeneous system that reduced power and energy consumption by applying DVFS on both CPU and GPU, and
timing requirements of applications were met. More than 20% power and energy savings were achieved towards several
matrix workloads. Ge et al. [89] experimentally studied the impacts of DVFS on performance and energy efficiency for
GPU computing. Compared to CPU computing, they observed that for compute intensive high performance matrix workloads
running on GPU, performance and power consumption are approximately proportional to GPU frequency, and thus increas-
ing GPU frequency may lead to better performance and energy efficiency. Alonso et al. [90] investigated the trade-off
between execution time and energy costs of task-parallel Cholesky and LU factorizations on a hybrid CPU-GPU platform.
Anzt et al. [91,92] performed analysis of energy consumption on GPU-accelerated iterative linear solvers to demonstrate
energy savings can be fulfilled without harming performance on CPU-GPU architectures by setting the host system to a
low power state for the time that GPU is executing via DVFS. Hong et al. [20] discussed the fact that due to high number
of parallel processors, power consumption of GPU architectures has increased significantly. They proposed an integrated
power and performance model to predict the optimal number of processors for a given application running on GPU, based
on the intuition that using more cores is not necessary for applications that reach the peak memory bandwidth. Unlike other
prediction models that utilize various static information, the proposed runtime prediction model takes advantage of the out-
comes of prediction on performance and power costs and determine the optimal number of cores for the highest perfor-
mance-power ratio. Potential future work may target other bottlenecks such as network bandwidth and disk access stalls.

Other efforts of saving power/energy dynamically have been conducted on FPGA [93–95] and VLSI [96,97] via Adaptive
Voltage Scaling (AVS). Although results on scientific kernels such as Fast Fourier transform, fast motion estimation and con-
volution demonstrate that AVS serves as a great alternative of DVFS, where the device uses a number of pre-calculated valid
working points like FPGA, there exist few studies dedicated on algorithmic power/energy efficient numerical linear algebra
kernels on FPGA. The common algorithmic characteristics of numerical linear algebra routines may provide opportunities to
utilize AVS for energy saving purposes on embedded systems like FPGA as a potential research direction.

5. Summary

High performance scientific computing nowadays requires extensive use of numerical linear algebra algorithms for solving
systems of linear equations that models target problems formally and precisely. Decreasing power and energy consumption
for numerical linear algebra algorithms is greatly beneficial to the overall power and energy efficiency of high performance
scientific applications running on supercomputers around the world. Given the empirical trend that energy costs on comput-
ing components such as CPU and GPU dominate system energy consumption, employing techniques that appropriately assign
voltage and frequency such as DVFS from the OS, library, or application level, according to system utilization status and algo-
rithmic details of applications, can be a promising approach for performance and energy optimization to mitigate the power
constraints of supercomputers nowadays. Table 2 summarizes state-of-the-art techniques for above purposes.

In this paper, we survey recent work conducted on power and energy efficient techniques for numerical linear algebra
algorithms that serves as the cornerstone of achieving low power and energy consumption for high performance scientific
computing nowadays. Power management for high performance computing systems is generic to all types of applications
and thus need to be adopted as a cornerstone in fulfilling power and energy efficiency for high performance scientific appli-
cations. There exist a large body of research efforts on power and energy optimization via profiling, trading off performance,
static saving, and dynamic saving respectively.
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Regarding reducing power and energy costs for numerical linear algebra algorithms in particular, leveraging algorithmic
details of these algorithms to devise dedicated power and energy saving strategies is potential to achieve extra optimization
at the cost of partial loss of generality, since the effectiveness of algorithmic power and energy efficient approaches relies
heavily on prior knowledge on internal structures of the application (e.g., algorithms and data structures). Applying such
algorithm-based solutions at the library level would mitigate the disadvantage of partial loss of generality, due to extensive
employment of these numerical linear algebra algorithms as software libraries. Moreover, runtime overhead of OS level solu-
tions would also be eliminated by applying static analysis based on application-specific knowledge of these algorithms.
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