
华东师范大学硕士学位论文                基于情态演算的 UML形式化验证与 OCL约束自动生成研究 

ABSTRACT 

 
From the point of view of the software life cycle in Software Engineering, software 

architecture is the core of the structure and behavior of software. Thus software 

architecture design is bound to be the core of the software design, and the basis for the 

subsequent code development as well. The significance of software architecture 

design is self-evident. As software architecture design itself is a kind of modeling 

activity, one problem is raised: how to verify the correctness of the standard modeling 

language of software architecture design, UML. In addition, the drawbacks of the 

traditional software verification methods were discussed, like less accuracy and 

non-automation. To verify the correctness of UML, the formal semantics is needed in 

advance, while as a graphic notation, UML hardly has formal semantics. And then one 

research method was finally provided: using formal methods to describe UML 

formally and evaluate it an equivalent formal semantics in a formal language, and 

then verify the UML model formally according to its semantics. To further present the 

semantics of UML precisely, providing UML some OCL constraints is one major 

method. Generally, OCL constraints need to be written manually, and also, the 

correctness and overhead on personnel are necessary to be considered. So 

automatically generating OCL constraints template for UML models is badly required, 

which may be referred by software designers. Eventually, the overall efficiency of 

Software Engineering could be improved. 

 

  UML is the de facto standard of modeling language for software design process. 

From 4 aspects of the historical development, sub-graph types, modeling tools and the 

UML in an XMI notation, UML was briefly introduced, and the two UML sub-graphs 

discussed in this paper: UML class diagram and state diagram were specified in 

details. Next, the basic concepts of formal methods and its main branches were 

introduced, and the current research home and abroad on the formalizing of UML was 

summarized. Finally, OCL, the UML standard sub-language, situation calculus, the 

formal language used, and its realization – Prolog, a logic programming language, 

were introduced. The feasibility of transformation from UML to situation calculus 

was further analysed. Hence the correctness of the solution was guaranteed 

theoretically. 

 



华东师范大学硕士学位论文                基于情态演算的 UML形式化验证与 OCL约束自动生成研究 

  Therefore, the situation calculus based formal description of UML was put forward. 

First, the meaning of choice of UML class diagram and state diagram as research 

objects was given. And UML class diagram and state diagram were formally 

described respectively. At first the formal semantic structures of the two sub-graphs 

were given, and then the mapping mechanism between the elements of two 

sub-graphs and mathematical logic, and situation calculus was shown. The 

transformation algorithms of two sub-graphs to mathematical logic statements and 

Prolog code were also proposed and shown in terms of pseudo code. And a definition 

of two basic error types in UML was stressed: domain-independent grammatical 

errors and domain-dependent semantic errors. Specific examples and automatically 

generated Prolog code of these errors are given as well. 

 

  Furthermore, we discussed how to automatically generate OCL constraints 

templates for UML models. First of all, the meaning of automatic generation of OCL 

constraints was emphasized, and then the application domain of the OCL constraints 

in this paper was shown, followed by an analysis of how to extract the OCL 

constraints target application object from UML models and an efficient algorithm. 

Eventually, example code given, the extraction algorithm was implemented by Perl. 

 

  As a complement of the theory shown as above and a proof of feasibility, details of 

the realizing the proposed algorithm of UML-situation calculus transformation and 

the OCL constraint template automatic generation, that is, a prototype tool, USCVSC 

was designed and implemented. Firstly, the system implementation framework and 

code framework of this prototype tool were established; secondly, the user interface of 

the prototype tool was illustrated, and a more detailed description was given to the 

four basic sub-functional interfaces. Finally, a statement was made that through this 

prototype tool, the clients could do the checking of syntax errors and the verification 

of semantic errors of UML model, as well as OCL constraints template automatical 

generatation. All the features were integrated in this prototype tool. 

 

  Finally, the use of the USCVSC prototype tool was highlighted. Taking a university 

education system and university application system, a real case for examples, we 

demonstrated basic functions of the prototype tool. First the characteristics of the 

examples were described, and then UML class diagram and state diagram of the 



华东师范大学硕士学位论文                基于情态演算的 UML形式化验证与 OCL约束自动生成研究 

examples were designed by UML modeling tool. At last the prototype tool, USCVSC 

is employed to verify the errors. As for the UML syntax error checking, it could be 

completed in USCVSC itself, while the UML semantic error verification required 

USCVSC and Prolog parser in combination. In the end, how to use USCVSC to 

automatically generate OCL constraint template for UML class diagram was 

demonstrated and some examples of OCL constraint statements were given. 

 

Based on situation calculus as a formal language, the UML model is formally 

verified and OCL constraint is automatically generated. Thus, the Multiple Initial 

State syntax error and the No Logical Operator in Guard syntax error, etc in UML 

model can be found, and UML model semantic errors such as the Requirements Not 

Complete error and the Requirements Logic error are verified as well. In this way, it is 

convenient for software designers to correct the original UML model design, avoiding 

unnecessary system overhead in the following phases of Software Engineering. 

Ultimately overall efficiency of the various stages in Software Engineering is 

enhanced and contributions are made for the automation of Software Engineering. 

 
KEY WORDS: UML; situation calculus; Prolog; OCL; formal verification; 
automatic generation 


