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« Power and energy costs of high performance computing systems are a growing
severity nowadays — operating costs and system reliability

% AvgPwr of top 5 supercomputers (TOP500)—10.1MW
% 20MW power-wall by DOE for exascale (10'® FLOPS)
% Overheat problems (aging/failures) and cooling costs

« Dynamic Voltage and Frequency Scaling (DVFS)

% CMOQOS-based components(CPU/GPU/mem.) dominant

% Strategically switch processors to low-power states when the peak processor
performance is unnecessary
7/

% voltage/frequency | — power | — energy efficiency



Two Classic Energy Saving DVFS — &eitas UCR
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Basics of the employed techniques

< Power consumption of these components Pocf V2

% Supply voltage has a positive correlation with (not strictly proportional/linear to)
operating frequency

Limitations of Existing Solutions
% Most DVFS techniques are frequency-directed

% Undervolting: For a given frequency, hardware can be supplied w/ a voltage
lower than the original paired one

= Original part of the throughput can be preserved due to fixed frequency

= Uniformly applied to both slack and non-slack of HPC runs (using the same

DVFS techniques to find appropriate frequencies for each time interval, but
with further reduced voltage).
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> (Caused Increasing Failure Rates
% Both hard & soft errors may occur during undervolting

Energy savings may be offset. error detection/recovery
% Theoretical validation holds or not? Any conditions?

O/
2 X4

> Hardware Support Constraints

S

% Architectural solutions to support reliable undervolting
% Simulation-based: Intel’'s Wilkerson et al. [ISCA’08, ISCA’11]

S

% Real-machine: Bacha et al. [ISCA'13] — firmware/software + pre-prod.
multicore processor + only studied ECC mem. errors

% Large-scale HPC systems? — portability + scalability
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Detailed Objectives of this work

> Qur Goals

%

% Target. HPC systems consisting of a number of nodes connected by networks
based on msg-passing communication.

% Investigate the interplay between energy efficiency and performance loss due to
error detection and recovery at the increased failure rates from undervolting.

% Theoretically and empirically study if undervolting combined with mainstream
resilience techniques can save overall energy without significant performance
overhead.

% If undervolting is feasible to save additional energy on top of the state-of-the-art
frequency-directed DVFS solutions.
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« Key Contributions

* We observe that energy saving could be achieved using undervolting by
leveraging approporiate mainstream resilience techniques

» No requirements of pre-production machines and no modifications to the
hardware

* Modeling performance and energy under undervolting anylatically

« Up to 12.1% energy savings against baseline and 9.1% more energy saved than
a state-of-the-art DVFS technique (Adagio).
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Failure Rate Modeling

« Assumption

yIDS =
‘it

R
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» Failures of combinational logic circuits follow a Poisson distribution, determined
by frequency and voltage

A f.Vaa) = A f) = Ao eTmaz=Tmin

» Relationship between frequency and voltage

f=9WVaa,Vin) =

« By substitution, we get

3 (Vaa — Vin)?

Vaa

A fVaa) = AMVaa) = Ao e

V.
d(fmaz—B(Vaa—2Ven+vi))

2

fmal:_fmin

* Here, we manage to present the average failure rate as a function of supply

voltage only.
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Figure 2. Observed and Calculated Failure Rates as a Function of Supply
Voltage for a Pre-Production Intel Itanium II 9560 8-Core Processors (V},:
max volt. paired with max freq., V;: min voltage paired with min freq.,
Vsafe_min: min volt. for pre-production processors, Vi : threshold volt.).
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» Resilience Techniques

» Disk-Based Checkpoint/Restart (DBCR)
= Checkpoints saved in disk, high I/O overhead

» Diskless Checkpointing (DC)
= Checkpoints saved in memory, trade-off (mem. + generality)

* Triple Modular Redundancy (TMR)
= Detect and correct one erroneous run within three runs

« Algorithm-Based Fault Tolerance (ABFT)
= Leverage algorithmic characteristics to correct errors online
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« Examples (CR and ABFT only)

T C T C

failure

Ts = Nt Tc = (N-1)C R T C T

Figure 3. Checkpoint/Restart Execution Model for a Single Process.

i

Original Global Matrix Checksum-Protected Global Matrix

Figure 4. Algorithm-Based Fault Tolerance Model for Matrix Operations.
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» Checkpoint/Restart (CR) for General Applications

» Given a failure rate, there exists an optimal checkpoint interval that minimizes
the total CR overhead

« At nominal voltage, A(Vaa) is small (close to zero)

Topt:\/20(§+1?) for 7+ C < L

= At further reduced voltage, \(V,;) is raised significantly

2C 1
Topt_{ T—C forC<ﬁ
1 1
X for C' = 55

 Performance breakdown:

T,
T =Ts+(——1)C+o(r+C)n+ Rn

T
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> Algorithm-Based Fault Tolerance (ABFT) for Matrix Operations (Cholesky/LU/QR
factorization)

% In CR, checkpoints are periodically saved

s While in ABFT, checksums are periodically updated

= |nterval of updating checksums is fixed and not affected by the variation of
failure rates — more cost-efficient

% Performance breakdown (for example, ABFT-enabled dense matrix
factorizations--Cholesky factorization):

o uCyN® uCN? CpN.
Tabft— 2 ZL‘f+ \/ﬁ ty+ b tm+1La+11+1,

> Performance modeling for other resilience techniques is conceptually similar
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« With Undervolting and Resilience Techniques

Use CR as an example for model building
Study homogeneous HPC systems w/o accelerators
For a cluster of compute nodes, a nodal power model

P — PCPU + PCPU i Pother

dynamic leakage leakage

= ACV/deQd + Isubvdd + I;ubvd/d

Consider three power patterns for a node doing CR

P, = AC'thhQ + Teup Vi + Pe
Pm — AC,thSQQfe_min + ]subvsafe_min + Pc
]Dl — 14(‘".](1‘/2 + Isub‘/;afe_min + Pc

safe_min
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« With Undervolting and Resilience Techniques

Use CR as an example for model building
Study homogeneous HPC systems w/o accelerators
For a HPC run, we have three variants
= A baseline run with nominal frequency and voltage
= A run with undervolting in the absence of failures
= A run with undervolting in the presence of failures

Integrating three power patterns, energy cost models

,Ebase — PhTs
(EST =P,Ts+ PR(L -1)C
\EZZT = Pn(Ts+omn)+ P ((@—Hf)?‘l)(?—i—ﬁn)
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« Frequency-directed DVFS Approaches

» Processors equipped with a range of frequencies

« Predict and apply appropriate freq./volt. during slack
= Accurate workload prediction, frequency approximation, etc.
= Major Related work include Adagio and CPU-miser

« Can we further save energy beyond DVFS?
= Employ a state-of-the-art DVFS technique Adagio
= Continue undervolting further per selected appropriate F/V
= Also leverage resilience solutions to guarantee correctness, which costs
additional overhead

CPU demand

supply voltage

wasted
energy

conventional per-core voltage per-core voltage
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Energy Savings over Adagio (Cont.)

e Our Strategy

+ Use the frequency Adagio predicted for eliminating slack and further lower
the voltage paired with it

* We thus employ the following power patterns

fpzl;acgkw :AC'/men%‘*‘Isume‘f‘Pc
< Pgnaiec® =Py,

szf)GCk — AC,fm V;Qafe_min ‘+‘Isubv:9afe_min + P,
\Pz%)n—slack — Pm

e Theoretical enerav cavinns nver haceline riing

AE = Epgse — E,,
— (Ph _Pm)Ts S (Ph _qufJGCk)Tslack_

(qubm+Pl ((TST_ 4 +¢n) C —I—Rn))
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» Given Platform-dependent Parameters (c C, Cs, AC’ Isub, f,V, PC)

 Before Model Relaxation

3 ((\/2%6?—)\0 _C))
c1—Co (W—AC) —c3 (%C—I—R) A

Ts >

» After Model Relaxation (N-71 = N)

1 2C C1
c+2 (/= —o)-2
(V 20C' — \C ) C3 ( A ) C3)\
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Cluster

HPCL

System Size

64 Cores, 8 Compute Nodes

Processor

AMD Opteron 2380 (Quad-core)

CPU Frequency

0.8, 1.3, 1.8, 2.5 GHz

CPU Voltage

1.300, 1.100, 1.025, 0.850 V
(Vh/‘/l/vsafe_mz'n/vth)

Memory

8 GB RAM

Cache

128 KB L1, 512 KB L2, 6 MB L3

Network

| GB/s Ethernet

OS

CentOS 6.2, 64-bit Linux kernel 2.6.32

Power Meter

PowerPack

Resilience Technique

Failure Type

Disk-Based Checkpoint/Restart (DBCR)
Diskless Checkpointing (DC)

Hard Errors

Triple Modular Redundancy (TMR)
Algorithm-Based Fault Tolerance (ABFT)

Soft Errors
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Failure Rate Calculation

7/

X L/m/tat/on HPC production machines do not allow further voltage reduction
beyond Vi

= No noticeable errors was observed for the voltage rangeV: to Vh our

platform (computation and memory intensive workloads running for
weeks)

7/

% Estimate failure rates between Vi and Vsare_min since the testbed does not
allow further voltage reduction beyond

% Use the equation below to calculate the failure rates between V; and Viafe_min

= High accuracv shown in the previously illustrated example

e

\%
d(fwnaa:—B(Vdd_QVth_l_vfl%))

A(f ‘rdd) — A("rdd) — )\O e fmaz—Ffmin

20
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> Undervolting Production Processors

— Modify the northbridge/CPU FID and VID control reg.
= Register values are altered using Model Specific Register

— This approach needs careful detection of the upper and lower bounds of
supply voltage of the processor

= Hardware-damaging issues may arise

— Different from the undervolting approach in [ISCA’13]
= Software/firmware control
= Pre-production processor is required (commonly not accessible)
= Advanced ECC memory support is required

21
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« NB/CPU FID/VID control register format and formula

63:32, 24:23, 21:19 Reserved

32:25 Northbridge Voltage ID

22 Northbridge Divisor ID

18:16 P-state ID, Read-Write

15:9 Core Voltage ID, Read-Write

8:6 Core Divisor ID, Read-Write

5:0 Core Frequency ID, Read-
Write

= frequency = 100 MHz * (CPUFid + 10hex)/(2*CPUDid)

E.g.: 0x30002809 -> frequency = 100 * (9+16)/2"0 = 2.5 GHz

= voltage =1.550 V - 0.0125V * CPUVid

E.g.: 0x30002809 -> voltage = 1.550 - 0.0125 * 0010100h = 1.300 V
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« Error Injection

« Minimum voltage we can undervolt to is Vi

= No errors will be observed due to close-to-zero failure rates

« Based on the failure rates between VvV, and Vifemin , We inject errors to
emulate the erroneous scenarios

= Hard errors: manually kill an arbitrary MPI process
= Soft errors: modify values of matrix elements randomly

S CELTEEEETTEEEETEE Ep---nmmmmmmnnnnnes > A2
< E1 > X4 A2
L i — *

Vi Vi Vsafe min

23
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e NASA-concerned HPC Benchmarks
« MG, CG, and FT from the NPB benchmark suite

» DOE-concerned HPC Benchmarks
e LULESH
« AMG

* Widely-used Numerical Linear Algebra Libraries
« Matrix multiplication
» Cholesky factorization
« LU factorization
* QR factorization

24
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« Test Scenarios

« Checkpoint-kind resilience techniques (DBCR/DC)
= OneCkpt: Checkpoint/restart is only performed once

» OptCkpt@Vx: Checkpoint/restart is performed with the optimal
checkpoint interval at Vx

= OptCkpt@Vx + uv: OptCkpt@Vx + undervolting

» Non-checkpoint resilience techniques (TMR/ABFT)

= By nature, fault tolerant actions are performed at a fixed frequency, not
affected by failure rates

= Simply apply undervolting at different voltage levels

* Energy efficiency over Adagio
= Adagio: predicted frequency + nominal voltage
= Adagio + uv: predicted frequency + undervolting

25
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Experimental Results (DBCR vs. DC)
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Experimental Results (TMR vs. ABFT)
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> Undervolting can be beneficial to energy efficiency

— At the cost of increased failure rates (detection + recovery)

— Lightweight resilience techniques only incur minor
perf. loss on error detection/recovery — energy savings

— Enabling appropriate undevolting interfaces for common users might be an

option for future HPC systems to save energy, without redesigning the
hardware.

— Feasible to save energy beyond classic DVFS solutions
> 0Ongoing Directions

— Migrate undervolting to more types of hardware (GPU)
— Undervolting w/ fixed freq. VS. overclocking w/ fixed volt.

— |s the other way around possible? — Improving resilience or performance at the
cost of energy efficiency

| 29
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