
Investigating the Interplay between
Energy Efficiency and Resilience
in High Performance Computing

Li Tan1, Shuaiwen Leon Song2, Panruo Wu1,
Zizhong Chen1, Rong Ge3, Darren J. Kerbyson2

29th IEEE International Parallel & Distributed Processing Symposium (IPDPS’15)
May 25-29, Hyderabad, INDIA

1

1University of California, Riverside
2Pacific Northwest National Laboratory (PNNL)

3Marquette University

• Power and energy costs of high performance computing systems are a growing
severity nowadays → operating costs and system reliability
❖ AvgPwr of top 5 supercomputers (TOP500)→10.1MW
❖ 20MW power-wall by DOE for exascale (1018 FLOPS)
❖ Overheat problems (aging/failures) and cooling costs

• Dynamic Voltage and Frequency Scaling (DVFS)
❖ CMOS-based components(CPU/GPU/mem.) dominant
❖ Strategically switch processors to low-power states when the peak processor

performance is unnecessary
❖ voltage/frequency ↓ → power ↓ → energy efficiency

Power and Energy Concerns in HPC

2

Two Classic Energy Saving DVFS
Solutions

3

❑ Critical Path Aware
Slack Reclamation

❑ Race-to-halt/idle

➢ Basics of the employed techniques

❖ Power consumption of these components
❖ Supply voltage has a positive correlation with (not strictly proportional/linear to)

operating frequency

➢ Limitations of Existing Solutions
❖ Most DVFS techniques are frequency-directed
❖ Undervolting: For a given frequency, hardware can be supplied w/ a voltage

lower than the original paired one
▪ Original part of the throughput can be preserved due to fixed frequency
▪ Uniformly applied to both slack and non-slack of HPC runs (using the same

DVFS techniques to find appropriate frequencies for each time interval, but
with further reduced voltage).

Beyond DVFS: Undervolting w/ Fixed
Frequency

4

➢ Caused Increasing Failure Rates
❖ Both hard & soft errors may occur during undervolting
❖ Energy savings may be offset: error detection/recovery
❖ Theoretical validation holds or not? Any conditions?

➢ Hardware Support Constraints
❖ Architectural solutions to support reliable undervolting

❖ Simulation-based: Intel’s Wilkerson et al. [ISCA’08, ISCA’11]
❖ Real-machine: Bacha et al. [ISCA’13] → firmware/software + pre-prod.

multicore processor + only studied ECC mem. errors
❖ Large-scale HPC systems? → portability + scalability

Challenges

5

➢ Our Goals

❖ Target: HPC systems consisting of a number of nodes connected by networks
based on msg-passing communication.

❖ Investigate the interplay between energy efficiency and performance loss due to
error detection and recovery at the increased failure rates from undervolting.

❖ Theoretically and empirically study if undervolting combined with mainstream
resilience techniques can save overall energy without significant performance
overhead.

❖ If undervolting is feasible to save additional energy on top of the state-of-the-art
frequency-directed DVFS solutions.

Detailed Objectives of this work

6

• Key Contributions
• We observe that energy saving could be achieved using undervolting by

leveraging approporiate mainstream resilience techniques
• No requirements of pre-production machines and no modifications to the

hardware
• Modeling performance and energy under undervolting anylatically
• Up to 12.1% energy savings against baseline and 9.1% more energy saved than

a state-of-the-art DVFS technique (Adagio).

Contributions

7

Failure Rate Modeling

8

• Assumption

• Failures of combinational logic circuits follow a Poisson distribution, determined
by frequency and voltage

• Relationship between frequency and voltage

• By substitution, we get

• Here, we manage to present the average failure rate as a function of supply
voltage only.

An Example

9

Main-stream Software-level Fault
Tolerance in HPC

10

• Resilience Techniques

• Disk-Based Checkpoint/Restart (DBCR)
▪ Checkpoints saved in disk, high I/O overhead

• Diskless Checkpointing (DC)
▪ Checkpoints saved in memory, trade-off (mem. + generality)

• Triple Modular Redundancy (TMR)
▪ Detect and correct one erroneous run within three runs

• Algorithm-Based Fault Tolerance (ABFT)
▪ Leverage algorithmic characteristics to correct errors online

Fault Tolerance in HPC (Cont.)

11

• Examples (CR and ABFT only)

Performance Modeling

12

• Checkpoint/Restart (CR) for General Applications

• Given a failure rate, there exists an optimal checkpoint interval that minimizes
the total CR overhead

▪ At nominal voltage, is small (close to zero)

▪ At further reduced voltage, is raised significantly

• Performance breakdown:

Performance Modeling (Cont.)

13

➢ Algorithm-Based Fault Tolerance (ABFT) for Matrix Operations (Cholesky/LU/QR
factorization)

❖ In CR, checkpoints are periodically saved

❖ While in ABFT, checksums are periodically updated
▪ Interval of updating checksums is fixed and not affected by the variation of

failure rates → more cost-efficient

❖ Performance breakdown (for example, ABFT-enabled dense matrix
factorizations--Cholesky factorization):

➢ Performance modeling for other resilience techniques is conceptually similar

Power Consumption Modeling

14

• With Undervolting and Resilience Techniques

• Use CR as an example for model building
• Study homogeneous HPC systems w/o accelerators
• For a cluster of compute nodes, a nodal power model

• Consider three power patterns for a node doing CR

Energy Consumption Modeling

15

• With Undervolting and Resilience Techniques

• Use CR as an example for model building
• Study homogeneous HPC systems w/o accelerators
• For a HPC run, we have three variants

▪ A baseline run with nominal frequency and voltage
▪ A run with undervolting in the absence of failures
▪ A run with undervolting in the presence of failures

• Integrating three power patterns, energy cost models

Energy Savings over State-of-the-art
(Adagio)

16

• Frequency-directed DVFS Approaches

• Processors equipped with a range of frequencies

• Predict and apply appropriate freq./volt. during slack
▪ Accurate workload prediction, frequency approximation, etc.
▪ Major Related work include Adagio and CPU-miser

• Can we further save energy beyond DVFS?
▪ Employ a state-of-the-art DVFS technique Adagio
▪ Continue undervolting further per selected appropriate F/V
▪ Also leverage resilience solutions to guarantee correctness, which costs

additional overhead

Energy Savings over Adagio (Cont.)

17

• Our Strategy

• Use the frequency Adagio predicted for eliminating slack and further lower
the voltage paired with it

• We thus employ the following power patterns

• Theoretical energy savings over baseline runs

Energy Saving Conditions over
Baseline

18

• Given Platform-dependent Parameters (c1, c2, c3, AC’, Isub, f, V, PC)

• Before Model Relaxation

• After Model Relaxation (N-1 ≈ N)

Experimental Setup

19

Implementation

20

➢ Failure Rate Calculation

❖ Limitation: HPC production machines do not allow further voltage reduction
beyond

▪ No noticeable errors was observed for the voltage range to Vh our
platform (computation and memory intensive workloads running for
weeks)

❖ Estimate failure rates between and since the testbed does not
allow further voltage reduction beyond

❖ Use the equation below to calculate the failure rates between and

▪ High accuracy shown in the previously illustrated example

Implementation (Cont.)

21

➢ Undervolting Production Processors

– Modify the northbridge/CPU FID and VID control reg.
▪ Register values are altered using Model Specific Register

– This approach needs careful detection of the upper and lower bounds of
supply voltage of the processor
▪ Hardware-damaging issues may arise

– Different from the undervolting approach in [ISCA’13]
▪ Software/firmware control
▪ Pre-production processor is required (commonly not accessible)
▪ Advanced ECC memory support is required

Implementation (Cont.)

22

• NB/CPU FID/VID control register format and formula

▪ frequency = 100 MHz * (CPUFid + 10hex)/(2^CPUDid)
E.g.: 0x30002809 -> frequency = 100 * (9+16)/2^0 = 2.5 GHz
▪ voltage = 1.550 V – 0.0125 V * CPUVid
E.g.: 0x30002809 -> voltage = 1.550 - 0.0125 * 0010100h = 1.300 V

Bits (64 bits in total) Description

63:32, 24:23, 21:19 Reserved

32:25 Northbridge Voltage ID

22 Northbridge Divisor ID

18:16 P-state ID, Read-Write

15:9 Core Voltage ID, Read-Write

8:6 Core Divisor ID, Read-Write

5:0 Core Frequency ID, Read-
Write

Implementation (Cont.)

23

• Error Injection

• Minimum voltage we can undervolt to is

▪ No errors will be observed due to close-to-zero failure rates

• Based on the failure rates between and , we inject errors to
emulate the erroneous scenarios

▪ Hard errors: manually kill an arbitrary MPI process
▪ Soft errors: modify values of matrix elements randomly

Benchmarks

24

• NASA-concerned HPC Benchmarks
• MG, CG, and FT from the NPB benchmark suite

• DOE-concerned HPC Benchmarks
• LULESH
• AMG

• Widely-used Numerical Linear Algebra Libraries
• Matrix multiplication
• Cholesky factorization
• LU factorization
• QR factorization

Evaluation

25

• Test Scenarios

• Checkpoint-kind resilience techniques (DBCR/DC)
▪ OneCkpt: Checkpoint/restart is only performed once
▪ OptCkpt@Vx: Checkpoint/restart is performed with the optimal

checkpoint interval at Vx
▪ OptCkpt@Vx + uv: OptCkpt@Vx + undervolting

• Non-checkpoint resilience techniques (TMR/ABFT)
▪ By nature, fault tolerant actions are performed at a fixed frequency, not

affected by failure rates
▪ Simply apply undervolting at different voltage levels

• Energy efficiency over Adagio
▪ Adagio: predicted frequency + nominal voltage
▪ Adagio + uv: predicted frequency + undervolting

Experimental Results (DBCR vs. DC)

26

7.5%

Experimental Results (TMR vs. ABFT)

27

12.1%

Experimental Results (Adagio +
Undervolting)

28

9.1%

Conclusions and Future Work

29

➢ Undervolting can be beneficial to energy efficiency

– At the cost of increased failure rates (detection + recovery)

– Lightweight resilience techniques only incur minor
 perf. loss on error detection/recovery → energy savings

– Enabling appropriate undevolting interfaces for common users might be an
 option for future HPC systems to save energy, without redesigning the
hardware.

– Feasible to save energy beyond classic DVFS solutions

➢ Ongoing Directions

– Migrate undervolting to more types of hardware (GPU)

– Undervolting w/ fixed freq. VS. overclocking w/ fixed volt.

– Is the other way around possible? → Improving resilience or performance at the
cost of energy efficiency

– Exploring the realm of NTV and STV for future HPC scenarios.

