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• Power and energy costs of high performance computing  systems are a growing 
severity nowadays → operating costs and system reliability
❖ AvgPwr of top 5 supercomputers (TOP500)→10.1MW
❖ 20MW power-wall by DOE for exascale (1018 FLOPS)
❖ Overheat problems (aging/failures) and cooling costs

• Dynamic Voltage and Frequency Scaling (DVFS)
❖ CMOS-based components(CPU/GPU/mem.) dominant
❖ Strategically switch processors to low-power states when the peak processor 

performance is unnecessary
❖ voltage/frequency ↓ → power ↓ → energy efficiency
 

Power and Energy Concerns in HPC
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Two Classic Energy Saving DVFS 
Solutions
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❑ Critical Path Aware 
Slack Reclamation

❑ Race-to-halt/idle



➢ Basics of the employed techniques

❖ Power consumption of these components
❖ Supply voltage has a positive correlation with (not strictly proportional/linear to) 

operating frequency

➢ Limitations of Existing Solutions
❖ Most DVFS techniques are frequency-directed
❖ Undervolting: For a given frequency, hardware can be supplied w/ a voltage 

lower than the original paired one
▪ Original part of the throughput can be preserved due to fixed frequency
▪ Uniformly applied to both slack and non-slack of HPC runs (using the same 

DVFS techniques to find appropriate frequencies for each time interval, but 
with further reduced voltage).  

 

Beyond DVFS: Undervolting w/ Fixed 
Frequency
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➢ Caused Increasing Failure Rates
❖ Both hard & soft errors may occur during undervolting
❖ Energy savings may be offset: error detection/recovery
❖ Theoretical validation holds or not? Any conditions?

➢ Hardware Support Constraints
❖ Architectural solutions to support reliable undervolting

❖ Simulation-based: Intel’s Wilkerson et al. [ISCA’08, ISCA’11]
❖ Real-machine: Bacha et al. [ISCA’13] → firmware/software + pre-prod. 

multicore processor + only studied ECC mem. errors
❖ Large-scale HPC systems? → portability + scalability

Challenges 
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➢ Our Goals

❖ Target: HPC systems consisting of a number of nodes connected by networks 
based on msg-passing communication.

❖ Investigate the interplay between energy efficiency and performance loss due to 
error detection and recovery at the increased failure rates from undervolting.

❖ Theoretically and empirically study if undervolting combined with mainstream 
resilience techniques can save overall energy without significant performance 
overhead.

❖ If undervolting is feasible to save additional energy on top of the state-of-the-art 
frequency-directed DVFS solutions.

Detailed Objectives of this work
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• Key Contributions
• We observe that energy saving could be achieved using undervolting by 

leveraging approporiate mainstream resilience techniques
• No requirements of pre-production machines and no modifications to the 

hardware
• Modeling performance and energy under undervolting anylatically
• Up to 12.1% energy savings against baseline and 9.1% more energy saved than 

a state-of-the-art DVFS technique (Adagio).

Contributions
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Failure Rate Modeling
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• Assumption

• Failures of combinational logic circuits follow a Poisson distribution, determined 
by frequency and voltage

• Relationship between frequency and voltage

• By substitution, we get

• Here, we manage to present the average failure rate as a function of supply 
voltage only.



An Example
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Main-stream Software-level Fault 
Tolerance in HPC
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• Resilience Techniques

• Disk-Based Checkpoint/Restart (DBCR)
▪ Checkpoints saved in disk, high I/O overhead

• Diskless Checkpointing (DC)
▪ Checkpoints saved in memory, trade-off (mem. + generality)

• Triple Modular Redundancy (TMR)
▪ Detect and correct one erroneous run within three runs

• Algorithm-Based Fault Tolerance (ABFT)
▪ Leverage algorithmic characteristics to correct errors online



Fault Tolerance in HPC (Cont.)
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• Examples (CR and ABFT only)



Performance Modeling
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• Checkpoint/Restart (CR) for General Applications

• Given a failure rate, there exists an optimal checkpoint interval that minimizes 
the total CR overhead

▪ At nominal voltage,               is small (close to zero)

▪ At further reduced voltage,                is raised significantly

• Performance breakdown:



Performance Modeling (Cont.)
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➢ Algorithm-Based Fault Tolerance (ABFT) for Matrix Operations (Cholesky/LU/QR 
factorization)

❖ In CR, checkpoints are periodically saved

❖ While in ABFT, checksums are periodically updated
▪ Interval of updating checksums is fixed and not affected by the variation of 

failure rates → more cost-efficient

❖ Performance breakdown (for example, ABFT-enabled dense matrix 
factorizations--Cholesky factorization):

➢ Performance modeling for other resilience techniques is conceptually similar



Power Consumption Modeling
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• With Undervolting and Resilience Techniques

• Use CR as an example for model building
• Study homogeneous HPC systems w/o accelerators 
• For a cluster of compute nodes, a nodal power model

• Consider three power patterns for a node doing CR



Energy Consumption Modeling
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• With Undervolting and Resilience Techniques

• Use CR as an example for model building
• Study homogeneous HPC systems w/o accelerators 
• For a HPC run, we have three variants

▪ A baseline run with nominal frequency and voltage
▪ A run with undervolting in the absence of failures
▪ A run with undervolting in the presence of failures

• Integrating three power patterns, energy cost models



Energy Savings over State-of-the-art 
(Adagio)
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• Frequency-directed DVFS Approaches

• Processors equipped with a range of frequencies

• Predict and apply appropriate freq./volt. during slack
▪ Accurate workload prediction, frequency approximation, etc.
▪ Major Related work include Adagio and CPU-miser

• Can we further save energy beyond DVFS?
▪ Employ a state-of-the-art DVFS technique Adagio 
▪ Continue undervolting further per selected appropriate F/V
▪ Also leverage resilience solutions to guarantee correctness, which costs 

additional overhead



Energy Savings over Adagio (Cont.)
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• Our Strategy

• Use the frequency Adagio predicted for eliminating slack and further lower 
the voltage paired with it

• We thus employ the following power patterns

• Theoretical energy savings over baseline runs



Energy Saving Conditions over 
Baseline
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• Given Platform-dependent Parameters  (c1, c2, c3, AC’, Isub, f, V, PC)

• Before Model Relaxation

• After Model Relaxation (N-1 ≈ N)



Experimental Setup
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Implementation
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➢ Failure Rate Calculation

❖ Limitation: HPC production machines do not allow further voltage reduction 
beyond

▪ No noticeable errors was observed for the voltage range     to Vh our 
platform (computation and memory intensive workloads running for 
weeks) 

❖ Estimate failure rates between       and                since the testbed does not 
allow further voltage reduction beyond 

❖ Use the equation below to calculate the failure rates between     and 

▪ High accuracy shown in the previously illustrated example



Implementation (Cont.)
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➢ Undervolting Production Processors

– Modify the northbridge/CPU FID and VID control reg.
▪ Register values are altered using Model Specific Register

– This approach needs careful detection of the upper and lower bounds of 
supply voltage of the processor
▪ Hardware-damaging issues may arise

– Different from the undervolting approach in [ISCA’13]
▪ Software/firmware control
▪ Pre-production processor is required (commonly not accessible)
▪ Advanced ECC memory support is required



Implementation (Cont.)
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• NB/CPU FID/VID control register format and formula

▪ frequency = 100 MHz * (CPUFid + 10hex)/(2^CPUDid)
E.g.: 0x30002809 -> frequency = 100 * (9+16)/2^0 = 2.5 GHz
▪ voltage = 1.550 V – 0.0125 V * CPUVid
E.g.: 0x30002809 -> voltage = 1.550 - 0.0125 * 0010100h = 1.300 V

Bits (64 bits in total) Description

63:32, 24:23, 21:19 Reserved

32:25 Northbridge Voltage ID

22 Northbridge Divisor ID

18:16 P-state ID, Read-Write

15:9 Core Voltage ID, Read-Write

8:6 Core Divisor ID, Read-Write

5:0 Core Frequency ID, Read-
Write



Implementation (Cont.)
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• Error Injection

• Minimum voltage we can undervolt to is

▪ No errors will be observed due to close-to-zero failure rates

• Based on the failure rates between        and                 , we inject errors to 
emulate the erroneous scenarios

▪ Hard errors: manually kill an arbitrary MPI process
▪ Soft errors: modify values of matrix elements randomly



Benchmarks
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• NASA-concerned HPC Benchmarks
• MG, CG, and FT from the NPB benchmark suite

• DOE-concerned HPC Benchmarks
• LULESH
• AMG

• Widely-used Numerical Linear Algebra Libraries
• Matrix multiplication
• Cholesky factorization
• LU factorization
• QR factorization



Evaluation
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• Test Scenarios

• Checkpoint-kind resilience techniques (DBCR/DC)
▪ OneCkpt: Checkpoint/restart is only performed once
▪ OptCkpt@Vx: Checkpoint/restart is performed with the optimal 

checkpoint interval at Vx
▪ OptCkpt@Vx + uv: OptCkpt@Vx + undervolting

• Non-checkpoint resilience techniques (TMR/ABFT)
▪ By nature, fault tolerant actions are performed at a fixed frequency, not 

affected by failure rates
▪ Simply apply undervolting at different voltage levels

• Energy efficiency over Adagio
▪ Adagio: predicted frequency + nominal voltage
▪ Adagio + uv: predicted frequency + undervolting



Experimental Results (DBCR vs. DC)
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7.5%



Experimental Results (TMR vs. ABFT)
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12.1%



Experimental Results (Adagio + 
Undervolting)

28

9.1%



Conclusions and Future Work
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➢ Undervolting can be beneficial to energy efficiency

– At the cost of increased failure rates (detection + recovery)

– Lightweight resilience techniques only incur minor
    perf. loss on error detection/recovery → energy savings

– Enabling appropriate undevolting interfaces for common users might be an
    option for future HPC systems to save energy, without redesigning the 
hardware. 

– Feasible to save energy beyond classic DVFS solutions

➢ Ongoing Directions

– Migrate undervolting to more types of hardware (GPU)

– Undervolting w/ fixed freq. VS. overclocking w/ fixed volt.

– Is the other way around possible? → Improving resilience or performance at the 
cost of energy efficiency

– Exploring the realm of NTV and STV for future HPC scenarios. 


