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Abstract—Energy efficiency and resilience are two crucial
challenges for High Performance Computing (HPC) systems
to reach exascale. While energy efficiency and resilience issues
have been extensively studied individually, little has been done
to understand the interplay between energy efficiency and
resilience for HPC systems. Decreasing the supply voltage
associated with a given operating frequency for processors
and other CMOS-based components can significantly reduce
power consumption. However, this often raises system failure
rates and consequently increases application execution time. In
this work, we present an energy saving undervolting approach
that leverages the mainstream resilience techniques to tolerate
the increased failures caused by undervolting. Our strategy
is directed by analytic models, which capture the impacts
of undervolting and the interplay between energy efficiency
and resilience. Experimental results on a power-aware cluster
demonstrate that our approach can save up to 12.1% energy
compared to the baseline, and conserve up to 9.1% more energy
than a state-of-the-art DVFS solution.
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I. INTRODUCTION

Energy efficiency is one of the crucial challenges that

must be addressed for High Performance Computing (HPC)

systems to achieve ExaFLOPS (1018 FLOPS). The average

power of the top five supercomputers worldwide has been

inevitably growing to 10.1 MW today according to the

latest TOP500 list [1], sufficient to power a city with a

population of 20,000 people [2]. The 20 MW power-wall, set

by the US Department of Energy [3] for exascale computers,

indicates the severity of how energy budget constrains the

performance improvement required by the ever-growing

computational complexity of HPC applications.

Lowering operating frequency and/or supply voltage of

hardware components, i.e., DVFS (Dynamic Voltage and

Frequency Scaling [4]), is one important approach to reduce

power and energy consumption of a computing system for

two primary reasons: First, CMOS-based components (e.g.,

CPU, GPU, and memory) are the dominant power consumers

in the system. Second, power costs of these components

are proportional to the product of operating frequency and

supply voltage squared (shown in Figure 1). In general,

supply voltage has a positive correlation with (not strictly

proportional/linear to) the operating frequency for DVFS-

Figure 1. Entangled Effects of Undervolting on Performance, Energy, and
Resilience for HPC Systems in General.

capable components [5], i.e., scaling up/down frequency

results in voltage raise/drop accordingly.

Nevertheless, existing DVFS techniques are essentially

frequency-directed and fail to fully exploit the potential

power reduction and energy savings. With DVFS, voltage

is only lowered to comply with the frequency reduction in

the presence of “slack” [6], i.e., idle time from hardware

components (typically processors) during an HPC run. For

a given frequency, cutting-edge hardware components can be

supplied with a voltage that is lower than the one paired with

the given frequency. The enabling technique, undervolting

[7] [8] [9] is independent of frequency scaling, i.e., lowering

only supply voltage of a chip without reducing its operating

frequency. Undervolting is advantageous in the sense that:

(a) It can keep the component frequency unchanged such

that the computation throughput is well maintained, and (b)

it can be uniformly applied to both “slack” and “non-slack”

phases of HPC runs for power reduction.

The challenge of employing undervolting as a general

power saving technique in HPC lies in efficiently addressing

the increasing failure rates caused by it. Both hard and

soft errors may occur if components undergo undervolting.

Several studies have investigated architectural solutions to

support reliable undervolting with simulation [7] [8]. The

study by Bacha et al. [9] presented an empirical undervolting

system on Intel Itanium II processors that resolves the

arising Error-Correcting Code (ECC) memory faults yet

improves the overall energy savings. While this work aims

to maximize the power reduction and energy savings, it

relies on pre-production processors that allow such thorough

exploration on the undervolting schemes, and also requires

additional hardware support for the ECC memory.

In this work, we investigate the interplay (shown in Figure



1) between energy efficiency and resilience for large-scale

HPC systems, and demonstrate theoretically and empiri-

cally that significant energy savings can be obtained using

a combination of undervolting and mainstream software-

level resilience techniques on today’s HPC systems, without

requiring hardware redesign. We aim to explore if the future

exascale systems are going towards the direction of low-

voltage embedded architectures in order to guarantee energy

efficiency, or they can rely on advanced software-level

techniques to achieve high system resilience and efficiency.

In summary, the contributions of this paper include:

• We propose an energy saving undervolting approach for

HPC systems by leveraging resilience techniques;

• Our technique does not require pre-production ma-

chines and makes no modification to the hardware;

• We formulate the impacts of undervolting on failure

rates and energy savings for mainstream resilience tech-

niques, and model the conditions for energy savings;

• Our approach is experimentally evaluated to save up

to 12.1% energy compared to the baseline runs of the

8 HPC benchmarks, and conserve up to 9.1% more

energy than a state-of-the-art frequency-directed energy

saving solution.

The remainder of the paper is organized as follows: Sec-

tion II discusses the related work. We theoretically model the

problem in Section III, and Section IV presents the details of

our experimental methodology. Results and their evaluation

are provided in Section V and Section VI concludes.

II. RELATED WORK

To the best of our knowledge, this work is the first of its

kind that models and discusses the interplay between energy

efficiency and resilience at scale. Most of the related efforts

have been conducted in the following areas:

REAL-TIME/EMBEDDED PROCESSORS AND SYSTEMS-

ON-CHIP: Extensive research has been performed to save

energy and preserve system reliability for real-time em-

bedded processors and systems-on-chip. Zhu et al. [10]

discussed the effects of energy management via frequency

and voltage scaling on system failure rates. This work is

later extended to reliability-aware energy saving scheduling

that allocates slack for multiple real-time tasks [11], and

a generalized Standby-Sparing technique for multiprocessor

real-time systems, considering both transient and permanent

faults [12]. These studies made some assumptions suitable

for real-time embedded systems, but not applicable to large-

scale HPC systems with complex hardware and various types

of faults. Pop et al. [13] explored heterogeneity in distributed

embedded systems and developed a logic programming

solution to identify a reliable scheduling scheme that saves

energy. This work ignored runtime process communication,

which is an important factor of performance and energy

efficiency for HPC systems and applications. The Razor

work [14] implemented a prototype 64-bit Alpha processor

design that combines circuit and architectural techniques for

low-cost speed path error detection/correction from operat-

ing at a lower supply voltage. With minor error recovery

overhead, substantial energy savings can be achieved while

guaranteeing correct operations of the processor. Our work

differs from Razor since we consider hard/soft errors in HPC

runs due to undervolting. Razor power/energy costs were

simulated at circuit level while our results were obtained

from real measurements in an HPC environment at clus-

ter level. Similar power-saving and resilient-against-error

hardware techniques have been proposed such as Intel’s

Near-Threshold Voltage (NTV) design [15] on a full x86

microprocessor.

MEMORY SYSTEMS: As ECC memory prevails, numerous

studies have explored energy efficient architectures and

error-detection techniques in memory systems. Wilkerson et

al. [7] proposed to trade off cache capacity for reliability to

enable low-voltage operations on L1 and L2 caches to reduce

power. Their subsequent work [8] investigated an energy

saving cache architecture using variable-strength ECC to

minimize latency and area overhead. Unlike our work that

is evaluated with real HPC systems and physical energy

measurements, they used average instructions per cycle and

voltage to estimate energy costs. Bacha et al. [9] employed

a firmware-based voltage scaling technique to save energy

for a pre-production multicore architecture, under increasing

fault rates that can be tolerated by ECC memory. Although

our work similarly scales down voltage with a fixed fre-

quency to save power, it is different in two aspects: Ours

targets general faults on common HPC production machines

at scale, while theirs specifically handles ECC errors on a

pre-production architecture. To balance performance, power,

and resilience, Li et al. [16] proposed an ECC memory

system that can adapt memory access granularity and several

ECC schemes to support applications with different memory

behaviors. Liu et al. [17] developed an application-level

technique for smartphones to reduce the refresh power in

DRAM at the cost of a modest increase in non-critical data

corruption, and empirically showed that such errors have few

impacts on the final outputs. None of the above approaches

analytically model the entangling effects of energy efficiency

and resilience at scale like ours.

III. PROBLEM DESCRIPTION AND MODELING

A. Failure Rate Modeling with Undervolting

Failures in a computing system can have multiple root

causes, including radiation from the cosmic rays and pack-

aging materials, frequency/voltage scaling, and temperature

fluctuation. There are two types of induced faults by nature:

soft errors and hard errors. The former are transient (e.g.,

memory bit-flips and logic circuit errors) while the latter

are usually permanent (e.g., node crashes from dysfunctional

hardware and system abort from power outage). Soft errors

are generally hard to detect (e.g., silent data corruption) since

applications are typically not interrupted by such errors,

while hard errors do not silently occur, causing outputs

inevitably partially or completely lost. Note that here we



use the terms failure, fault, and error interchangeably. In

this work, we aim to theoretically and empirically study if

undervolting with a fixed frequency (thus fixed throughput)

is able to reduce the overall energy consumption. We study

the interplay between the power reduction through under-

volting and application performance loss due to the required

fault detection and recovery at the raised failure rates from

undervolting. Moreover, we consider the overall failure rates

from both soft and hard errors, as the failure rates of either

type can increase due to undervolting.
Assume that the failures of combinational logic circuits

follow a Poisson distribution, and the average failure rate is

determined by the operating frequency and supply voltage

[18] [10]. We employ an existing exponential model of

average failure rate λ in terms of operating frequency f
[10] without normalizing supply voltage Vdd, where λ0 is

the average failure rate at the maximum frequency fmax and

voltage Vmax (fmin ≤ f ≤ fmax and Vmin ≤ Vdd ≤ Vmax):

λ(f, Vdd) = λ(f) = λ0 e
d(fmax−f)
fmax−fmin (1)

Exponent d is an architecture-dependent constant, reflect-

ing the sensitivity of failure rate variation with frequency

scaling. Previous work [19] modeled the relationship be-

tween operating frequency and supply voltage as follows:

f = ϕ(Vdd, Vth) = β
(Vdd − Vth)

2

Vdd
(2)

β is a hardware-related constant, and Vth is the threshold

voltage. Substituting Equation (2) into Equation (1) yields:

λ(f, Vdd) = λ(Vdd) = λ0 e
d(fmax−β(Vdd−2Vth+

V 2
th

Vdd
))

fmax−fmin (3)

Equation (3) indicates that the average failure rate is

a function of supply voltage Vdd only, provided that Vth

and other parameters are fixed. This condition holds true

when undervolting is studied in this work. Denote σ(Vdd) =
d(fmax−β(Vdd−2Vth+

V 2
th

Vdd
))

fmax−fmin
. We calculate the first derivative

of λ(f, Vdd) (Equation (3)) with respect to Vdd and identify

values of Vdd that make the first derivative zero as follows:

∂λ

∂Vdd
= λ0 eσ(Vdd)

−dβ(1− (Vth/Vdd)
2)

fmax − fmin
= 0 (4)

⇒ Vdd = ±Vth (5)

Therefore, for −Vth < Vdd < Vth, λ(f, Vdd) monotoni-

cally strictly increases as Vdd increases; for Vdd ≤ −Vth and

Vdd ≥ Vth, λ(f, Vdd) monotonically strictly decreases as Vdd

increases. Given that empirically Vdd ≥ Vth, we conclude

that λ(f, Vdd) is a monotonically strictly decreasing function

for all valid Vdd values. λ(f, Vdd) maximizes at Vdd = Vth.

EXAMPLE. Figure 2 shows the comparison between the

experimentally observed and theoretically calculated failure

rates with regard to supply voltage for a pre-production

processor, where the observed data is from [9] and the

Figure 2. Observed and Calculated Failure Rates λ as a Function of
Supply Voltage Vdd with a Fixed Frequency for a Pre-production Intel
Itanium II 9560 8-Core Processor (Note that the observed failures are ECC
memory correctable errors for one core. Vh: the maximum voltage paired
with the maximum frequency, Vl: the minimum voltage paired with the
minimum frequency, Vsafe min: the lowest safe voltage for one core of
the pre-production processor, and Vth: threshold voltage).

calculated data is via Equation (3). As shown in the figure,

the calculated values are very close to the observed ones,

which demonstrates that Equation (3) can be used to model

failure rate. Based on the voltage parameters from the vendor

[20], we denote several significant voltage levels in Figure

2, where Vh and Vl refer to the the maximum and minimum

supply voltages for a production processor. They also pair

with the maximum and minimum operating frequencies

respectively. In many cases, undervolting is disabled on

production processors by vendors based on the assumption

that there is no adequate fault tolerance support at the

software stack, and thus production processors often shut

down when their supply voltage is scaled below Vl. For some

pre-production processors [9], supply voltage can be further

scaled down to Vsafe min, which refers to the theoretical

lowest safe supply voltage under which the system can

operate without crashing. But even for these pre-production

processors, when Vdd is actually reduced below Vsafe min,

they will no longer operate reliably and shut down [9].

Note that although there are no observed faults in Figure

2 for the voltage range from 1.10 V to 1.00 V, the calculated

failure rates are not zero, ranging from 10−6 to 10−1. This

difference suggests that failures with a small probability do

not often occur in real runs. For the voltage range from

0.99 V to 0.96 V, the calculated failure rates match the

observation with acceptable statistical errors. The calculated

failure rates for voltage levels that are lower than Vsafe min

are not presented here due to the lack of observational data

for comparison. Unless some major circuit-level redesign

on the hardware for enabling NTV, we commonly consider

the voltage range between Vsafe min and Vth inoperable

in HPC even with sophisticated software-level fault tolerant

techniques. Thus, modeling this voltage range is out of the

scope of this work.



B. Performance Modeling under Resilience Techniques

Resilience techniques like Checkpoint/Restart (C/R) and

Algorithm-Based Fault Tolerance (ABFT) have been widely

employed in HPC environments for fault tolerance. State-of-

the-art C/R and ABFT techniques are lightweight [21] [22],

scalable [23] [22], and sound [24]. C/R is a general resilience

technique that is often used to handle hard errors (it can also

recover soft errors if errors can be successfully detected).

ABFT is more cost-efficient than C/R to detect and correct

soft errors. But it is not as general as C/R because it

leverages algorithmic knowledge of target programs and

thus only works for specific applications. Next we briefly

illustrate how they function, and present the formulated

performance models of both techniques.

Figure 3. Checkpoint/Restart Execution Model for a Single Process.

A checkpoint is a snapshot of a system state, i.e., a

copy of the contents of application process address space,

including all values in the stack, heap, global variables,

and registers. Classic C/R techniques save checkpoints to

disks [25], memory [21], and both disks and memory via

multi-level checkpointing [23]. Figure 3 shows how a typical

C/R scheme recovers a single-process failure, where we

denote checkpoint overhead as C, restart overhead as R,

and compute time between checkpoints as τ respectively.

An interrupting failure can arise at any given point of

an execution. C/R can capture the failure and restart the

application from the nearest saved checkpoint with the

interrupted compute period re-executed.
Next we present the issue of determining the optimal

checkpoint interval, i.e., τopt that can minimize the total

checkpoint and restart overhead, given a failure rate of λ.

This is significant since in the scenario of undervolting,

failure rates may vary dramatically as shown in Figure 2,

which could affect τopt considerably. Without considering

the impacts of undervolting, several efforts on estimating

τopt have been proposed. Young [26] approximated τopt =
√

2C
λ as a first-order derivation. Taking restart overhead

R into account, Daly [27] refined Young’s model into

τopt =
√

2C( 1λ +R) for τ +C ≪ 1
λ . Using a higher order

model, the case that checkpoint overhead C becomes large

compared to MTTF (Mean Time To Failure), 1
λ was further

discussed for a perturbation solution in [27]:

τopt =

{
√

2C
λ − C for C < 1

2λ
1
λ for C ≥ 1

2λ

(6)

Note that R has no contributions in Equation (6) . Since

Equation (6) includes the failure rate λ discussed in Equation

(3), it is suitable to be used to calculate τopt in the scenario

of undervolting.

Consider the basic time cost function of C/R modeled in

[27]: Tcr = Ts + Tc + Tw + Tr, where Ts refers to the

solve time of running an application with no interrupts from

failures. The total checkpoint overhead is denoted as Tc. Tw

is the amount of time spent on an interrupted compute period

before a failure occurs, and Tr is defined as the total time on

restarting from failures. Figure 3 shows the case of a single

failure, and how the time fractions are accumulated. Next

we generalize the time model to accommodate the case of

multiple failures in a run as follows:

Tcr = Nτ + (N − 1)C + φ(τ + C)n+Rn (7)

where N is the number of compute periods and n is the

number of failures within a run (N − 1 is because there is

no need for one more checkpoint if the last compute period is

completed). φ is the percentage of elapsed time in a segment

of compute when an interrupt occurs and the process restarts.

And we adopt a common assumption that interrupts never

occur during a restart. As a constant, Nτ can be denoted as

Ts and Equation (7) is reformed as:

Tcr = Ts + (
Ts

τ
− 1)C + φ(τ + C)n+Rn (8)

We adopt Equation (8) as the C/R time model henceforth.

In the absence of failures, this model is simplified with the

last two terms omitted. Next we introduce how ABFT works

and present its performance model formally.

Figure 4. Algorithm-Based Fault Tolerance Model for Matrix Operations.

Figure 4 shows how ABFT protects the matrix operations

from soft errors using the row-checksum mechanism. The

checksum blocks are periodically maintained in between

the original matrix elements by adding an extra column to

the process grid. The redundant checksum blocks contain

sums of local matrix elements in the same row, which

can be used for recovery if one original matrix element

within the protection of a checksum block is corrupted. In

C/R, checkpoints are periodically saved. Likewise, checksum

blocks are periodically updated, generally together with the

matrix operations. The difference is that the interval of

updating the checksum in ABFT is fixed, i.e., not affected

by the variation of failure rates, while in C/R, the optimal

checkpoint interval that minimizes C/R overhead highly

depends on failure rate λ.

Our previous work [22] has modeled ABFT overhead for

the dense matrix factorizations, including Cholesky, LU, and

QR factorizations. Here we present the overall performance



model for ABFT-enabled dense matrix factorizations, tak-

ing Cholesky factorization for example due to algorithmic

similarity.

Tabft =
µCfN

3

P
tf+

µCvN
2

√
P

tv+
CmN

nb
tm+Td+Tl+Tc (9)

where N represents the dimensions of the global matrix,

P is the total number of processes, and nb is the block

size for data distribution. µ = 1 + 4
nb is the factor of in-

troducing checksum rows/columns to the global matrix (the

actual factorized global matrix size is µN). Cholesky-specific

constants Cf = 1
3 , Cv = 2+ 1

2 logP, and Cm = 4+logP. tf
is the time required per FLoating-point OPeration (FLOP),

tv is the time required per data item communicated, and tm
is the time required per message prepared for transmission.

Error detection overhead is denoted as Td = N
2

P
tf , and error

localization overhead is denoted as Tl =
nbP
N3 tf . Since one

error correction operation only requires one FLOP, the error

correction overhead can be described as Tc = ntf . Similarly

as in the C/R performance model, the error-related overhead

is only valid in the presence of failures. Otherwise the last

three terms are omitted and the sum of the first three terms

represents the performance of running Cholesky with ABFT.

Due to the conceptual similarity and space limitation,

we only model the performance of these two resilience

techniques in this work.

C. Power and Energy Modeling under Resilience Tech-

niques and Undervolting

In this subsection, we present general power and energy

models under a combination of undervolting and resilience

techniques. We use C/R as an example for model con-

struction, which can also be applied to other resilience

techniques used in this work. Since undervolting will affect

the processor power most directly and the processor power

has the most potential to be conserved in an HPC system, we

assume all the power/energy savings come from processors.

Therefore, we focus on modeling processor-level energy.

Using the energy models, we can explore in theory what

factors will likely affect the overall energy savings through

undervolting.

First, we adopt the nodal power model in [28] [29] as

follows:

P = PCPU
dynamic + PCPU

leakage + P other
leakage

= AC ′fV 2
dd + IsubVdd + I ′subV

′
dd (10)

A and C ′ are the percentage of active gates and the

total capacitive load in a CMOS-based processor; Isub and

I ′sub are subthreshold leakage current of CPU and non-CPU

components, and Vdd and V ′
dd are their supply voltages.

We denote I ′subV
′
dd as a constant Pc since this term is

independent of undervolting. Previous work [30] indicates

that the power draw of a node during C/R is very close to its

idle mode. Therefore, by leveraging this power characteristic

for C/R phases and different levels of voltages in Figure 2,

we propose the following power formulae for a given node:











Ph = AC ′fhV
2
h + IsubVh + Pc

Pm = AC ′fhV
2
safe min + IsubVsafe min + Pc

Pl = AC ′flV
2
safe min + IsubVsafe min + Pc

(11)

In this Equation, both Ph and Pm use the highest fre-

quency, while Pl scales frequency to the minimum; both

Pm and Pl exploit Vsafe min to save energy. Here are the

scenarios where Ph, Pm, and Pl are mapped into: For the

baseline case, we employ Ph to all execution phases of

an HPC run. For the energy-optimized case, we apply un-

dervolting to different phases based on their characteristics

using Pm and Pl, in order to achieve the optimal energy sav-

ings through leveraging resilience techniques. Specifically,

without harming the overall performance, we apply Pl to

the frequency-insensitive phases including non-computation

(e.g., communication, memory and disk accesses) and C/R

phases, while Pm is applied in all the computation phases.

Using Equations (8) and (11), we can model the energy costs

of a baseline run (Ebase), a run with undervolting but in the

absence of failures (Eerr
uv ), and a run with undervolting in

the presence of failures (Euv) as:











Ebase = PhTs

Eerr
uv = PmTs + Pl(

Ts

τ − 1)C

Euv = Pm(Ts+φτn)+Pl

((

Ts−τ
τ +φn

)

C+Rn
)

(12)

For processor architectures equipped with a range of op-

erational frequencies, frequency-directed DVFS techniques

[4] [6] have been widely applied in HPC for energy saving

purposes. Commonly, they predict and apply appropriate fre-

quencies for different computational phases based on work-

load characteristics. Meanwhile, for the selected frequency

(or two frequencies in the case of split frequencies [6]) fm
(fl < fm < fh), a paired voltage Vm (Vl < Vm < Vh)

will also be applied accordingly. One important question

emerges: can we further save energy beyond these DVFS

techniques by continuing undervolting Vm? To answer this

question, we compare our approach with a state-of-the-art

DVFS technique named Adagio [6] as an example to demon-

strate the potential energy savings from undervolting beyond

DVFS. Basically, Adagio runs aside with HPC applications,

identifies computation and communication slack, and then

apply appropriately reduced frequencies accordingly to save

energy without sacrificing the overall performance. We will

use the frequencies predicted by Adagio for each phase but

further reduce Vm. Therefore, we have:



















P slack
Adagio =AC ′fmV 2

m+IsubVm+Pc

Pnon–slack
Adagio =Ph

P slack
uv =AC ′fmV 2

safe min+IsubVsafe min+Pc

Pnon–slack
uv =Pm

(13)

EAdagio = P slack
AdagioTslack ⊕ Pnon–slack

Adagio Ts (14)



Pslack and Pnon–slack denote the average power during

the slack and non-slack phases respectively; Tslack is the

slack duration due to task dependencies and generally over-

laps with Ts across processes [28] (thus we use ⊕ instead of

+). Assume there exists a percentage η (0 < η < 1) of the

total slack that overlaps with the computation. Therefore we

define ⊕ by explicitly summing up different energy costs:

P1Tslack ⊕ P2Ts =

P1Tslack(1− η) + PhybridTslackη + P2Ts (15)

where P1 and P2 denote the nodal power during the slack

and computation respectively, and Phybrid (P1 < Phybrid <
P2) is the average nodal power when slack overlaps the

computation. Using Equations (12), (13), (14), and (15), we

can model the energy consumption E′
uv

1 which integrates

(⊎) the advantages of both DVFS techniques (Adagio) and

the undervolting beyond DVFS, in the presence of slack:

E′
uv = EAdagio ⊎ Euv = P slack

uv Tslack ⊕ Euv (16)

Potential energy savings through appropriate undervolting

over a baseline run and an Adagio-enabled run can then be

calculated as follows:

∆E1 = Ebase − E′
uv

= (Ph−Pm)Ts⊕(Ph−P slack
uv )Tslack−

(

Pmφτn+Pl

((

Ts − τ

τ
+φn

)

C+Rn

))

(17)

∆E2 = EAdagio − E′
uv

= (Ph−Pm)Ts⊕(P slack
Adagio−P slack

uv )Tslack−
(

Pmφτn+Pl

((

Ts − τ

τ
+φn

)

C+Rn

))

(18)

DISCUSSION. From Equations (17) and (18), we can ob-

serve that the potential energy savings from undervolting

is essentially the difference between two terms: Energy

savings gained from undervolting (denoted as E+) and

energy overhead from fault detection and recovery due to

the increasing errors caused by reduced voltage (denoted as

E−). In other words, the trade-off between the power savings

through undervolting and performance overhead for coping

with the higher failure rates determines if and how much

energy can be saved overall. In E+, two factors are sig-

nificant: Vsafe min and Tslack. They impact the maximum

energy savings and generally depend on chip technology and

application characteristics. In E−, three factors are essential:

n, C, and R, where n, the number of failures in a run,

is affected by undervolting directly. C and R rely on the

resilience techniques being employed. Some state-of-the-art

resilience techniques (e.g., ABFT) have relatively low values

1Since here we treat all cores uniformly during undervolting, i.e., all cores undervolt
simultaneously to the same supply voltage, we do not have number of cores as a
parameter in our model. But it can be modeled for more complex scenarios.

of C and R [24], which can be beneficial to more energy

savings.

Here we showcase how to use the above models to explore

the energy saving capability of undervolting. We apply the

parameters from our real system setup shown in Table I into

Equation (17). In order to investigate the relationship among

C, R, λ, and the overall energy savings, we let Equation (17)

> 0 and solve the inequation with appropriate assumptions.

Using the HPC setup in Table I, we have fh = 2.5, fl =
0.8 (we assume fm = 1.8 for Adagio), Vh = 1.3, Vl =
1.1, and Vsafe min = 1.025. We solve AC ′ = 20, Isub =
5, and Pc = 107, estimate φ = 1

2 , and adopt n = λTs,

τopt =
1
λ (Equation (6)) using the methodology in Section

IV. For simplicity, we assume slack does not overlap any

computation and Tslack = 0.2Ts. So ⊕ in Equation (17)

> 0 becomes +. First we consider the case of C ≥ 1
2λ .

According to Equation (6), let τ = τopt and now we have:

33.34375 Ts + 9.6105 Ts − 164.65625× 1

2
Ts−

128.935

((

λTs−1+
1

2
λTs

)

C+RλTs

)

> 0 (19)

It is clear that the sum of the first three terms is negative

and the fourth term is positive. Thus in this case no energy

savings can be achieved using undervolting. The conclusion

continues to stand even if we let Tslack = Ts to increase

the second term. It is due to the high failure rate that causes

the third term overlarge. Next we consider the other case

(τopt =
√

2C
λ − C) in Equation (6). Thus the inequation

becomes:

33.34375 Ts+9.6105 Ts−164.65625× 1

2
(
√
2λC−λC)Ts−

128.935

((

λTs√
2λC−λC

−1+
1

2
λTs

)

C+RλTs

)

> 0 (20)

⇒ Ts >
c3C

c3
(

λC
√

2λC−λC
+ 1

2λC+Rλ
)

−c1+c2(
√
2λC−λC)

(21)

where c1 = 42.95425, c2 = 82.328125, and c3 = 128.935
If the above condition (21) is satisfied, energy savings can

be achieved. The condition of Ts can be also reformed into

an inequation of C or R in terms of Ts and λ, without losing

generality. Using Equation (3), we can also substitute λ with

an expression of Vdd. Recall that it needs to meet C < 1
2λ

to yield the case τopt =
√

2C
λ − C.

MODEL RELAXATION. We notice that the relationship

among C, R, and λ can be obtained without Ts, if the

C/R performance model (see Equation (7)) is relaxed. In

the scenario of undervolting, τopt is comparatively small and

thus the number of checkpoints N = Ts

τopt
is large, due to

the high failure rates λ. Therefore, we consider N − 1 ≈ N
in Equation (7), and the term −1 in Inequation (20) can be

ingored, by which Ts in the inequation can be eliminated.

Consequently, Inequation (20) can be relaxed into:



Table I
HARDWARE CONFIGURATION FOR ALL EXPERIMENTS.

Cluster HPCL

System Size 64 Cores, 8 Compute Nodes

Processor AMD Opteron 2380 (Quad-core)

CPU Frequency 0.8, 1.3, 1.8, 2.5 GHz

CPU Voltage
1.300, 1.100, 1.025, 0.850 V
(Vh/Vl/Vsafe min/Vth)

Memory 8 GB RAM

Cache 128 KB L1, 512 KB L2, 6 MB L3

Network 1 GB/s Ethernet

OS CentOS 6.2, 64-bit Linux kernel 2.6.32

Power Meter PowerPack

33.34375+9.6105−164.65625× 1

2
(
√
2λC−λC)−

128.935

((

λ√
2λC−λC

+
1

2
λ

)

C+Rλ

)

> 0 (22)

⇒ R<
c1
c3λ

−c2
c3

(

√

2C

λ
−C

)

−
(

1√
2λC−λC

+
1

2

)

C (23)

In the relaxed performance and energy models, energy

savings can be fulfilled as long as the above relationship

(23) holds. Again it is required that C < 1
2λ in order to

yield τopt =
√

2C
λ −C, likewise in the non-relaxed models.

IV. EXPERIMENTAL METHODOLOGY

A. Experimental Setup and Benchmarks

Table I lists the hardware configuration of the power-

aware cluster used for all experiments. Although the size

of the cluster is comparatively small, it is sufficient for the

proof of concept of our techniques. For power/energy mea-

surement, PowerPack [31], a framework for profiling and

analysis of power/energy consumption of HPC systems, was

deployed on a separate meter node to collect power/energy

profiling data of the hardware components (e.g. CPUs and

Memory) on this cluster. This data was recorded in a log

file on the meter node and used for post-processing.

Table II shows several mainstream resilience techniques

and their applicable failures. Benchmarks used in this paper

are selected from NPB [32] benchmark suite, LULESH [33],

AMG [34], and our fault tolerant ScaLAPACK [22]. In the

next section, we will show the performance and energy

results of running these applications under various resilience

techniques and demonstrate if energy savings can actually be

obtained using a combination of undervolting and resilience

techniques on a conventional HPC system.

B. Failure Rate Calculation

Recall that the limitation of applying undervolting in HPC

is that production machines used in the HPC environment

do not allow further voltage reduction beyond the point of

Vl, shown in Figure 2. To estimate failure rates between Vl

and Vsafe min, we use Equation (3) to calculate the failure

rates used in our experiments. As demonstrated in Figure

Table II
EMPIRICAL RESILIENCE TECHNIQUES AND APPLICABLE FAILURES.

Resilience Technique Recovery Model Failure Type

Disk-Based Checkpoint/Restart (DBCR)
Backward Hard Errors

Diskless Checkpointing (DC)

Triple Modular Redundancy (TMR) Retry
Soft Errors

Algorithm-Based Fault Tolerance (ABFT) Local/Global

2, our calculated data matches well with the observed data

from [9]. Thus the calculated failure rates are appropriate

for empirical evaluation, although no real failures can be

observed beyond Vl on our platform.

C. Undervolting Production Processors

Unlike the undervolting approach used in [9] through

software/firmware control on a pre-production processor,

we conduct undervolting by directly modifying the north-

bridge/CPU FID and VID control register [35], where FID

and VID refer to frequency and voltage ID numbers respec-

tively. The register values can be altered using the Model

Specific Register (MSR) interface [36]. This process needs

careful detection of the upper and lower bounds of pro-

cessors’ supply voltage. Otherwise overheat and hardware-

damaging issues may arise.

D. Error Injection and Energy Cost Estimation

As previously discussed in Section III-A, production ma-

chines commonly disable the further voltage reduction below

Vl. Thus, we need to emulate the errors that may appear

for the voltage range between Vl and Vsafe min, based on

the failure rates calculated by Equation (3). For instance,

for emulating hard errors occurring at Vsafe min, our fault

injector injects errors by arbitrarily killing parallel processes.

For emulating soft errors, our injector randomly modifies

(e.g. bit-flips) the values of matrix elements likewise as in

[22]. Although, due to the hardware constraints, energy costs

cannot be experimentally measured when undervolting to

Vsafe min, we apply the following emulated scaling method

to estimate the energy costs at Vsafe min.

Figure 5. Estimating Energy Costs with Undervolting at Vsafe min for
Production Processors via Emulated Scaling.

Figure 5 demonstrates this emulated scaling mechanism,

where E1 and E2 refer to the energy costs at Vl and

Vsafe min respectively. λ1 and λ2 are the calculated failure

rates at the two voltage levels via Equation (3). For estimat-

ing the energy cost E2 at Vsafe min, we inject the errors

at the rate of λ2 at Vl instead of using the failure rate λ1.

Moreover, in Equation (11), replacing Vsafe min with Vl, we

can solve AC ′, Isub, and Pc by measuring the system power



consumption at Vl by applying Ph, Pm, and Pl to different

phases (see Section III-C). Finally, with AC ′, Isub, and Pc,

we can calculate the values of Ph, Pm, and Pl at Vsafe min

using Equation (11), and apply these values into Equation

(12) to calculate the energy costs at Vsafe min.

V. EXPERIMENTAL RESULTS

In this section, we present comprehensive evaluation on

performance and energy efficiency of several HPC applica-

tions with undervolting and various resilience techniques.

We experimentally show under what circumstances energy

savings using this combinational technique can be achieved.

The benchmarks under test include NPB MG (MG), NPB

CG (CG), NPB FT (FT), matrix multiplication (MatMul),

Cholesky factorization (Chol), LU factorization (LU), QR

factorization (QR), LULESH, and AMG. All the experi-

ments are conducted on our 8-node (64 cores) power-aware

cluster shown in Table I. All the cases are under the ideal

scenario that once an error occurs it will be detected.

Figure 6 shows the normalized execution time and energy

costs of various benchmarks running under undervolting and

four different resilience techniques. Figure 7 demonstrates

the comparison of the normalized performance and energy

efficiency of Adagio, a state-of-the-art DVFS technique for

HPC, and our undervolting approach based on Adagio with

ABFT. The test scenarios of the two figures are explained as

follows: For C/R based resilience techniques (e.g. disk-based

and diskless C/R), OneCkpt means checkpoint/restart is only

performed once; OptCkpt@Vx refers to checkpoint/restart is

performed with the optimal checkpoint interval at Vx; and

OptCkpt@Vx+uv is to integrate the impacts of undervolting

into OptCkpt@Vx to see time and energy changes. The

nature of the Triple Modular Redundancy (TMR) and ABFT

determines that the frequency of performing fault-tolerance

actions is not affected by failure rates. Therefore, we simply

apply undervolting to them during program execution. For

the comparison against Adagio, we first run applications

with Adagio, and then with Adagio and our combinational

techniques together.

We use the Berkeley Lab Checkpoint/Restart (BLCR)

version 0.8.5 [25] as the implementation for the Disk-

Based C/R, and our own implementation of fault tolerant

ScaLAPACK [22] for ABFT. We also implemented an

advanced version of TMR and Diskless C/R for the selected

benchmarks.

In this section, we do not include the case studies that

have a mix of hard and soft errors, although it is a more

realistic scenario of undervolting. The reason is that the per-

formance and energy impacts of hard and soft error detection

and recovery are accumulative, based on a straightforward

hypothesis that at any point of execution only one type

of failure (either a hard error or a soft error) may occur

for a given process. Thus the current single-type-of-error

evaluation is sufficient to reflect the trend of the impacts

(see Figure 6).

A. Disk-Based Checkpoint/Restart (DBCR)

As discussed earlier, DBCR needs to save checkpoints

into local disks, which can cause high I/O overhead. The first

two subgraphs in Figure 6 show that for some benchmarks

(MatMul, Chol, LU, QR, and AMG) single checkpoint

overhead is as high as the original execution time without

C/R. For matrix benchmarks, DBCR will save the large

global matrix with double-precision matrix elements as well

as other necessary C/R content, which explains the excessive

C/R overhead. Using the scaling technique presented in

Section IV-D, the failure rate at Vsafe min is around 10−1

while the one at Vl is of the order of magnitude of 10−3.

Based on the relationship between the checkpoint overhead

and failure rates shown in Equation (6), the optimal numbers

of checkpoints at these two voltages differ. Due to the high

C/R overhead and a larger number of checkpoints required,

undervolting to Vsafe min using DBCR cannot save energy

at all. With less checkpoints required, undervolting to Vl still

does not save energy for DBCR.

B. Diskless Checkpointing (DC)

As a backward recovery technique, compared to DBCR,

DC saves checkpoints in memory at the cost of memory

overhead, which is much more lightweight in terms of

C/R overhead due to low I/O requirement. From the third

and fourth subgraphs in Figure 6, we can observe that the

C/R overhead significantly drops by an average of 44.8%

for undervolting to Vl. Consequently, energy savings are

obtained by an average of 8.0% and 7.0% from undervolting

to Vsafe min and Vl respectively. Note that the energy

savings from undervolting to the two voltages are similar,

since the extra power saving from undervolting to a lower

voltage level is offset by the higher C/R overhead (e.g.

more checkpoints are required). This also indicates that the

overhead from a resilience technique greatly impacts the

potential energy saving from undervolting.

C. Triple Modular Redundancy (TMR)

As another effective retry-based resilience technique,

Triple Modular Redundancy (TMR) is able to detect and

correct error once in three runs, assuming there exists only

one error arising within the three runs. Instead of using

the naı̈ve version of TMR that runs an application three

times, we implemented a cost-efficient TMR that performs

triple computation and then saves the results for the recovery

purposes, while reducing the communication to only once

to lessen overhead. This requires the assumption that we

have a reliable network link for communication. Subgraphs

in Figure 6 shows that we can successfully reduce TMR

overhead except for LULESH, for which we had to run

three times to ensure resilience. Although similar to DBCR,

bearing the high overhead from the resilience technique,

undervolting the system to both voltage levels by leveraging

TMR generally cannot save energy. This once again demon-

strates that the resilience techniques with lower overhead

will benefit energy savings from undervolting.
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Figure 6. Performance and Energy Efficiency of Several HPC Runs with Different Mainstream Resilience Techniques on a Power-aware Cluster.
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Figure 7. Performance and Energy Efficiency of the HPC Runs with an Energy Saving Solution Adagio and a Lightweight Resilience Technique ABFT.

D. Algorithm-Based Fault Tolerance (ABFT)

We also evaluate the performance counterpart of TMR

that handles soft errors, based on local/global recovery using

arithmetic checksums for matrix elements, i.e., ABFT. Well

known for its low overhead compared to other fault tolerant

techniques, ABFT is thus an ideal candidate to pair with

undervolting for energy savings for some applications where

ABFT can be applied. As shown in the last two subgraphs of

Figure 6, without undervolting, ABFT only adds less than

6.8% overhead on average to the original runs. Similarly

as in the cases of the other three resilience techniques,

undervolting only incurs negligible overhead (around 1%)

in ABFT. Therefore, the combined usage of ABFT and

undervolting only causes minor overhead (on average 8.0%

for undervolting to Vsafe min and 7.8% for undervolting

to Vl). Another advantage of using ABFT is that ABFT is

essentially based on the checksum algorithms. Checksum

blocks periodically update with matrix operations and do

not require to update more frequently when the failure rates

increase, which means the overhead of ABFT is constant

regardless of the failure rates. Consequently, the energy

savings using ABFT and undervolting can be up to 12.1%

compared to the original runs in our experiments. One

disadvantage for using ABFT is that it is only applicable

to certain applications such as matrix operations, which is

not general enough to cover the entire spectrum of HPC

applications.

E. Energy Savings over Adagio

As discussed in Section III-C, we aim to see if further

reducing voltages for the selected frequencies of various

phases by Adagio will save more energy overall. Figure 7

confirms that we are able to further save energy on top

of Adagio through undervolting by effectively leveraging

lightweight resilience techniques. In this experiment, we

adopt the most lightweight resilience technique evaluated

above, i.e., ABFT, to maximize the potential energy savings

from undervolting. Undervolting was conducted on top of

Adagio without modifying the runtime frequency-selecting

decisions issued by Adagio, so the energy savings from

Adagio are retained. Here we only present the data of

undervolting to Vsafe min because we already know from

Section V-D that undervolting to Vsafe min gains the most

energy savings for the case of ABFT. On average, combining

undervolting and Adagio can further save 9.1% more energy

than just Adagio, with less than 8.5% extra performance loss.

Note that the majority of the performance loss is from ABFT

itself for guaranteeing resilience.

VI. CONCLUSIONS

Future large-scale HPC systems require both high energy

efficiency and resilience to achieve ExaFLOPS computa-

tional power and beyond. While undervolting processors

with a given frequency could decrease the power consump-

tion of an HPC system, it often increases failure rates of

the system as well, hence, increases application’s execution

time. Therefore, it is uncertain that applying undervolting to

processors is a viable energy saving technique for production

HPC systems. In this paper, we investigate the interplay

between energy efficiency and resilience at scale. We build

analytical models to study the impacts of undervolting on

both application’s execution time and energy costs. By

leveraging software-level cost-efficient resilience techniques,

we found that undervolting can be used as a very effective

energy saving technique for the HPC field.
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