
Optimizing Energy Efficiency for Distributed
Dense Matrix Factorizations via Utilizing

Algorithmic Characteristics

Li Tan and Zizhong Chen, UC Riverside

Goal: Achieve the optimal energy efficiency for linear
algebra operations by using algorithmic characteristics

 Pressing demand of improving energy efficiency for
high performance scientific computing
o Scientific apps widely applied on supercomputers
o Costs of powering supercomputers are increasing

 Strategic DVFS energy efficient scheduling
o Switch ↓ hardware power if peak perf. not needed
o CPU, GPU, memory → Handy APIs for DVFS

 Numerical linear algebra algorithms: LU, QR, Chol.
o Dense Linear Algebra vs. Sparse Linear Algebra
o Homogeneous Systems vs. Heterogeneous Sys.

 Critical Path (CP) and Slack Analysis
o Slack: a period when a hardware waits for another
o Slack Examples: load imbalance, network latency,
communication delay, memory and disk access stall
o Critical Path: a particular sequence of tasks where
the total slack amounts to zero in task-parallel apps.

 CP-free Race-to-halt
o Enforce hardware to run at the highest F/V when
workloads are ready and at the lowest F/V otherwise

 CP-aware Slack Reclamation
o Tasks on the CP: Run at highest F/V (peak perf.)
o Tasks off the CP: Run at appropriately scaled F/V

 Detailed Comparison
o Race-to-halt
 Easy to implement
 Hardware independent
 Save additional energy
due to load imbalance

o CP-aware
 Require CP detection
 Hardware dependent
 Generally the optimal

o Hardware Utilizat. Polling
 OS level monitoring
 Coarse-grained
 Runtime overhead

Summary

Background: Energy Saving Strategies Overall Comparison: Existing Approaches Algorithmic Energy Saving Strategy

Preliminary Results: Power Savings

 Utilize Algorithmic Characteristics of Target Applications
o Dense Cholesky, LU, and QR matrix factorizations
o Algorithmic Task Dependency Set (TDS) analysis
o Algorithmic online slack prediction

 OS Level Approaches
o Work aside app. at runtime
o Make online decisions
o No need of app-specific knowledge
o General, no source modification

 Library Level Approaches
o Customize energy saving decisions
o Utilize app-specific knowledge
o Library source modif. & recompilation
o Optimize potential energy savings

 Evaluated Power Saving Capability of Six Approaches
o Distributed Chol. factorization with 16 x 16 process grid
o OS level solutions failed to achieve the optimal savings
o Race-to-halt can be comparable to CP-aware solutions

 Online Slack Prediction
o Online training of prediction
model using execution info. in
the same execution
o Dynamic training overhead
o Unexploited energy savings
during training and prediction
o Accurate prediction requires
sufficient training: overhead↑

 Offline Slack Prediction
o Profile logged execut. history
statically: no runtime overhead
o Impractical for running large-
scale app. in HPC: too costly

Operating Layer Prediction Mechanism

 Homogeneous Systems
o Slack arises among different
processes through loop iterations

 Heterogeneous Systems
o Slack arises between CPU and
accelerators (e.g., GPU)
o Similar techniques to HomoSys
o Sleep state scheduling for
unused/idle CPU cores

Architecture

	幻灯片编号 1

