
Optimizing Energy Efficiency for Distributed Dense Matrix Factorizations via

Utilizing Algorithmic Characteristics

Li Tan and Zizhong Chen

University of California, Riverside

{ltan003, chen}@cs.ucr.edu

Abstract—The pressing demands of improving energy effi-
ciency for high performance scientific computing have moti-
vated a large body of software-controlled hardware solutions
that strategically switch hardware components to a low-power
state, when the peak performance of the components is not nec-
essary. Although OS level solutions can effectively save energy
in a black-box fashion, for applications with random/variable
execution patterns, slack prediction can be error-prone and
thus the optimal energy efficiency can be blundered away. We
propose to utilize algorithmic characteristics to predict slack
accurately and thus maximize potential energy savings.

Keywords-energy; critical path; algorithmic slack prediction.

I. INTRODUCTION

With the growing prevalence of distributed-memory ar-

chitectures, high performance scientific computing has been

widely employed on supercomputers around the world

ranked by the TOP500 list [1], Considering the crucial fact

that the costs of powering a supercomputer is rapidly in-

creasing nowadays due to expansion of its size and duration

in use, improving energy efficiency of high performance

scientific applications has been regarded as a pressing issue

to solve. The Green500 list [2], ranks the top 500 supercom-

puters worldwide by performance-power ratio in six-month

cycles. Consequently, root causes of high energy consump-

tion while achieving performance efficiency in parallelism

have been widely studied. With different focuses of studies,

holistic hardware and software approaches for reducing

energy costs of running high performance scientific appli-

cations have been extensively proposed. Software-controlled

hardware solutions such as DVFS-directed (Dynamic Volt-

age and Frequency Scaling) energy efficient scheduling are

deemed to be effective and lightweight.

DVFS is a runtime technique that is able to switch operat-

ing voltage and working frequency of a hardware component

(CPU, GPU, memory, etc.) to different scales (also known as

gears) per workload characteristics of applications to gain

energy savings dynamically. CPU and GPU are the most

widely applied hardware components for energy efficiency

via DVFS. Energy saving opportunities can be exploited by

reducing frequency and voltage of a specific component for

operations not bound by the component. For instance, energy

savings can be achieved if scaling down frequency/voltage

of CPU during large-message communication on distributed-

memory systems, since generally execution time of the

communication barely increases at a low-power state of

CPU, in contrast to that at a high-power state. According

to the energy equation E = P × T and the power rela-

tionship P ∝ fV 2, lowering frequency and voltage without

lengthening execution time can thus save energy effectively.

Running on distributed-memory architectures, high per-

formance applications can be organized and scheduled in the

unit of task, a set of operations that are functionally executed

as a whole. As typical task-parallel algorithms for scientific

computing, dense matrix factorizations in numerical linear

algebra such as LU factorization have been widely adopted

to solve systems of linear equations. Empirically, as standard

functionality, routines of dense matrix factorizations are

provided by various software libraries of numerical linear

algebra for distributed-memory multicore architectures such

as ScaLAPACK [3], DPLASMA [4], and MAGMA [5].

Therefore, saving energy for distributed dense matrix fac-

torizations contributes significantly to the greenness of high

performance scientific computing nowadays.

II. OVERALL COMPARISON: ENERGY SAVING METHODS

A. Critical Path and Slack Analysis

For task-parallel applications, slack generally refers to a

time period when one hardware component waits for another

due to imbalanced throughput and utilization. For instance,

CPU usually waits for data from memory/disk in executions

of memory/disk access intensive applications, since mem-

ory/disk access is performance bottleneck of the applications

in accordance with the memory hierarchy. Typical examples

of slack include load imbalance, network latency, commu-

nication delay, memory and disk access stalls, etc. Due to

pervasive inequity of hardware throughput/utilization, slack

becomes a significant source of achieving energy efficiency

in high performance computing. During one execution of a

task-parallel application, Critical Path (CP) is a particular

sequence of tasks that starts from the beginning task of the

execution until the ending task of it, where the total slack

amounts to zero. Energy saving opportunities can thus be

exploited for tasks not on the CP where slack can arise, in

particular slack among non-communication tasks.

B. Energy Saving via Race-to-halt

As the name suggests, race-to-halt is a DVFS-directed

energy saving strategy that enforces hardware components



(e.g., CPU and GPU) to race when workloads are ready for

processing, and to halt when no workloads are present and

thus the components are idle. In other words, race refers

to execute workloads at the highest frequency and voltage

of the components until the finish of the workloads, and

halt implies that frequency and voltage of the components

are switched to the lowest scale from the end of the last

workload to the start of the next one. This straightforward

approach can effectively save energy without performance

loss due to the following inferences: (a) The peak perfor-

mance of the components is guaranteed as in the original

execution without race-to-halt, and (b) the peak performance

is not necessary when no workloads are being executed.

Note that the race-to-halt strategy is CP-free such that no

CP detection is required before any energy saving operations

are performed. Thus it is lightweight and easy to implement.

C. Energy Saving via Slack Reclamation

Another critical strategy of saving energy is CP-based

slack reclamation. Per the definition of CP, it is implied that

any delay on tasks on the CP also delays the application as

a whole, while appropriately dilating tasks off the CP into

their slack individually without overflowing slack, does not

increase the total execution time of the application. Energy

savings can thus be achieved from scaling down frequency

and voltage for dilating tasks off the CP into their slack

without incurring performance loss. Since this approach is

on top of detecting CP and energy efficient DVFS scheduling

is determined among tasks on/off the CP, it is also referred

to as the CP-aware approach for slack reclamation.

III. OPTIMIZING ENERGY EFFICIENCY VIA UTILIZING

ALGORITHMIC CHARACTERISTICS

Although measurable, slack needs to be known in advance

of executing the task causing it for energy saving purposes,

since the extent of scaling frequency/voltage must be calcu-

lated before applying DVFS to eliminate the slack. A dy-

namic accurate slack prediction algorithm is thus desirable.

A. OS-level Slack Prediction

At OS level, slack prediction essentially depends on a

workload prediction mechanism: Execution characteristics in

the upcoming interval can be predicted using prior execution

information, e.g., execution traces in recent intervals. How-

ever, the workload prediction may not necessarily be reliable

and lightweight: (a) For applications with variable execution

patterns, such as dense matrix factorizations. Execution time

of one iteration of the core loop shrinks as the remaining

unfinished matrices become smaller. Dynamic prediction on

execution characteristics such as task runtime and workload

distribution can thus be inaccurate, leading to error-prone

slack estimation; (b) for applications with random execution

patterns, such as applications relying on random numbers

that could lead to variation of control flow at runtime, which

can be difficult to capture. Since the predictor needs to

determine reproducible execution patterns at the beginning

of one execution, it can be costly for obtaining an accurate

prediction in both cases. Given the fact that no energy

savings can be fulfilled until the prediction phase is finished,

considerable potential energy savings may be wasted for a

qualified but lengthy prediction as such at OS level.

B. Algorithmic Slack Prediction

We propose to utilize algorithmic characteristics of dis-

tributed dense matrix factorizations for predicting slack with

high accuracy, where execution history of only the first core

loop iteration is required. Consider LU factorization on a

global matrix of size N ×N with block size nb. Denote the

measured execution time of the first instance of the task

updating the trailing matrix N ′ × N ′ (computation time

complexity is O(N ′3)) as TU
0 , slack of the rest instances

of the task can be formalized as follows, where 0 ≤ i ≤ N
nb

:

TU
i+1

TU
i

=
O(N ′3

i+1)

O(N ′3
i )

=
(N − (i+ 2)×Nproc × nb)

3

(N − (i+ 1)×Nproc × nb)
3

slacki+1 = func(TU
i , TU

i+1, param list)
We can solve slack of the rest instances of one type of

tasks, given the execution time of the first iteration and com-

putation time complexity of the tasks determined by algorith-

mic characteristics of LU factorization. Note that func() is

a custom function that reflects relationship among tasks for

calculating slack based on application-specific knowledge.

The algorithmic slack prediction mechanism is reliable and

lightweight compared to OS level slack prediction due to: (a)

Using algorithmic information, we clearly know the type and

amount of future workloads ahead of execution, regardless of

random/variable execution patterns of the applications, and

(b) prediction overhead is minimized since no training of the

predictor based on prior execution information is necessary.

IV. CONCLUSIONS AND FUTURE DIRECTIONS

DVFS-directed solutions have been widely adopted to im-

prove energy efficiency for task-parallel applications. With

high generality, OS level solutions are considered effective.

We observe that for applications such as distributed dense

matrix factorizations, the optimal energy efficiency cannot

be achieved by OS level solutions due to inaccurate slack

prediction. Giving up partial generality, we propose to utilize

algorithmic characteristics for obtaining slack accurately and

thus saving more energy, with negligible performance loss.

We plan to extend our work for typical distributed dense

matrix factorizations including Cholesky/LU/QR factoriza-

tion, on emerging large-scale power-aware architectures.

REFERENCES

[1] TOP500 Supercomputer Lists. http://www.top500.org/.
[2] Green500 Supercomputer Lists. http://www.green500.org/.
[3] ScaLAPACK - Scalable Linear Algebra PACKage.

http://www.netlib.org/scalapack/.
[4] DPLASMA: Distributed Parallel Linear Algebra Software for

Multicore Architectures. http://icl.cs.utk.edu/dplasma/.
[5] MAGMA (Matrix Algebra on GPU and Multicore Architec-

tures). http://icl.cs.utk.edu/magma/.


