AZ2E: Adaptively Aggressive Energy
Efficient DVFS Scheduling for Data
Intensive Applications

Li Tan', Zizhong Chen?, Ziliang Zong?,
Rong Ge?, and Dong Li#

1 University of California, Riverside
2Texas State University-San Marcos
3Marquez‘te University
4Oak Ridge National Laboratory

R IPCCC'13, San Diego, California, USA
UNIVERSITY OF CALIFORNIA, RIVERSIDE Dec- 6, 2013

UNIVERSITY OF CALIFORNIA
UNIVERSITY OF CALIFORNIA, RIVERSIDE U c RIVE RSI D E

Power Management via DVFS

> Power and energy consumption of high
performance computing is a growing severity -
operating costs and system reliability.

» Dynamic Voltage and Frequency Scaling (DVFS)

voltage/frequency | - power | = energy efficiency

Peak CPU performance is not necessary when slack
exists: load imbalance, network latency, communica-
tion delay, memory and disk access stalls, etc.

UNIVERSITY OF CALIFORNIA
UNIVERSITY OF CALIFORNIA, RIVERSIDE U c RIVE RSI D E

Power Management via DVFS (Cont.)
> Types of Workloads (A real app. is often hybrid.)

Computation (compute intensive)
Communication (communication intensive)
Memory accesses and disk accesses (data intensive)

> Energy Efficient DVFS Scheduling Strategies
Computation: Peak CPU perf. is always needed
Communication: Volt./Freq. | during communication

peak Volt./Freq. during computation

Data Accesses: Non-intuitive/difficult and costly
» Hard to separate out workloads + high DVFS overhead

HIVERSITY OF CALIl

UNIVERSITY OF CALIFORNIA, RIVERSIDE U C R iv E RS i ﬁE

Code Example

while (caseR) {

buffer = (char+)malloc (num+sizecf (char));

/+ MPI communication routine call I «/
MPI_Bcast (&buffer, count, type, root, comm);
/* Independent computation code =/
computation () ;

/+ MPI communication routine call II =/

MPI _Alltoall (&sb, sc, st, &rb, rc, rt, comm);

.

Fig. 3. Typical Kernel Pattern of Communication Intensive Code.

O W 00 -]y U W N

o

while (caseR) {

1
2 ..
3: /* Memory accesses mixed with computation =x/
4; valueA = arrayA[baseA+offset];
5: arrayB[baseB] += valueB;

6 arrayC|[baseC++] = arrayB[baseB++]+valueC;

:

8

/+ Disk accesses mixed with computation =/

9: buffer = (char*)malloc (numxsizeof (char));
10: fread(buffer, size, count, read file stream);
11: fwrite (buffer, size, count, write file stream);
12: e
13: }

Fig. 4. Typical Kernel Pattern of Memory and Disk Access Intensive Code.

UNIVERSITY OF CALIFORNIA
UNIVERSITY OF CALIFORNIA, RIVERSIDE U c RIVE RSI D E

Energy Saving Block (ESB)

> Motivated by the term basic block in the area of
compilers.

» Definition

A statement block of one specific type of workload
Comp-ESB, Comm-ESB, Mem-ESB, and Disk-ESB
Runtime energy savings may be achieved by DVFS

> Energy saving opportunities can be exploited
between the boundary of different ESBs

HIVERSITY OF CALIl

UNIVERSITY OF CALIFORNIA, RIVERSIDE U C R iv E RS I ﬁE

Code Example (Cont.)

—————— ESB boundary

1: while (caseR) {
2 ..
_ 3t _kuffer = (chars)mallec(numssizeof (char)li_ _ _ _
4: /+ MPI communication routine call I «/
_ 5i _MPL Bcast (sbuffer, count, type, root,_comm); _ _ L
6: /* Independent computation code =/ EXPIICIt
B e Boundary
8: /+ MPI communication routine call ITI =/
9: MPI _Alltoall (&sb, sc, st, &rb, rc, rt, comm);
e e e
11: }

= 35 T [*xTMEmMoOry aCcEssgs—mrrred w1 computacrionl */ T
4: valueA = arrayfl ;
5: arrayB][-
6: arrayC(arra B+valueC; o
7. L. ! ! Implicit
T BT T [+ DISK accésses mixéd with computation x/° T T Boundary
9: ymalloc (num*sizeof (char));
10: size, count, read file stream);
11: size, count, write file stream);
12: e
13: }

Fig. 4. Typical Kernel Pattern of Memory and Disk Access Intensive Code.

UNIVERSITY OF CALIFORNIA, RIVERSIDE U c RiViEETRngTﬁHE
Basic DVFS Scheduling Strategy

1: while (case) { BaSiC Idea:
2. ...
SetFreq(Low): > Communication is not CPU-bound
3. communication(); Schedule the lowest V/F for comm.
SetFreq(High);

4: memory_access(); Schedule the highest V/F for comp.
5: disk_access() » Disadvantages

> ;ZTF‘;:?L'ZCS Only works at inter-ESB level while
| fails at intra-ESB level, i.e., cannot

7. communication();

SetFreq(High) save energy for Mem-/Disk-ESBs
8 .. Number of CPU frequency switches
9:} can be considerably large = high

DVFS overhead (time and energy)

UNIVERSITY OF CALIFORNIA
UNIVERSITY OF CALIFORNIA, RIVERSIDE U c RIVE RSI D E

Aggressive DVFS Scheduling Strategy (AGGREE)

1 Si{ffe(q(LOV)V){; Basic Idea:
.wnlle (Case
2 ... > For aloop of ESBs with a small
3: communication(); proportion of computation (Comm-
‘5‘: ;ﬁeFOW—aC‘z‘;SSO; ESB, Mem-ESB, and Disk-ESB)
. ISK aCCesSss\), .
6. computation() Aggressively V/F| for the whole loop
7- communication(): - minor perf. | + major energy |
8 .. The number of frequency switches |
9:} .
SetFraq(High) » Disadvantages

Performance loss trade-off can be
further moderated for higher energy-
performance efficiency

UNIVERSITY OF CALIFORNIA
UNIVERSITY OF CALIFORNIA, RIVERSIDE U c RIVE RSI D E

Adaptively Aggressive DVFS Scheduling Strategy (A2E)

SetFreq(Low); Basic Idea:
1: while (case) {
2 > Moderate low-performance trade-off
3. communication(); Set an intermediate V/F adaptively
SetFreq(Medium1); .
4 memory access() Based on the proportion of comp.
SetFreq(Medium2): time among the total execution time
5. disk_access() Aggressively set the V/F once for
SetFreq(High); Mem-ESB and Disk-ESB as a whole

6: computation();

setFreqLow). > Advantages over the previous two
7: communication(); Integrate the strengths of both
8 Achieve the optimal energy-

9:} =
SetFrog(Highi performance efficiency

UNIVERSITY OF CALIFORNIA
UNIVERSITY OF CALIFORNIA, RIVERSIDE U c RIVE RSI D E

Adaptively Aggressive DVFS Scheduling Algorithm

Example: (See the paper for algorithm details.)
Consider a data intensive application with 10 ESBs
» The highest proportion of computation time is 20%
We empirically obtain in advance the comp. time %
» There exist 4 gears of CPU frequency for DVFS
fo, T4, Ty, @and f; (assume fy < f, <f, <f;)

» Consequently, 4 sub-ranges for adaptively
aggressive DVFS scheduling by comp. proportion

[5%, 10%) > f.: [10%, 15%) > f,: [15%, 20%] > f,.

UNIVERSITY OF CALIFORNIA
UNIVERSITY OF CALIFORNIA, RIVERSIDE U c RIVE RSI D E

Speculative DVFS Scheduling Strategy

SetFreq(Low); BaSiC Idea.
1: while (caseA) { _ ' _) _
2. if(caseB){P, > oSpeculation is a compiler technique
3 for predicting instruction’s execution
SetFreq(Low);
. Cfm:ui(icz:i " Speculate the outcome of
SetFreq(High) imbalanced branches

Set the lowest f for the whole loop

Set the highest f for computation
iInside the rarely taken branch as
SetFreq(High): recovery for mis-speculation

9: computation(); » Advantages

10: .
"oy The number of frequency switches |

12:) Performance is not traded off
SetFreq(High);

}
else { P, (P, << P,)

UCRIVERSIDE

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Implementation

> Energy Efficient DVFS Scheduling Strategies

Basic - can only handle Comm-ESB
AGGREE - can handle Comm-ESB, Mem-ESB,
and Disk-ESB

A2E - can handle Comm-ESB, Mem-ESB, and
Disk-ESB, with moderated performance trade-off

Speculation - applied to both AGGREE and A2E

> Applicable Applications

Data (memory and disk access) intensive
applications with imbalanced branches

UNIVERSITY OF CALIFORNIA
UNIVERSITY OF CALIFORNIA, RIVERSIDE U c RIVE RSI D E

Evaluation

» Benchmarks

Applied all strategies to 5 high performance data
iIntensive benchmarks

Selected from NPB and ASC benchmark suites

» Hardware Configuration

A power-aware cluster comprised of 8 computing
nodes with two Quad-core 2.5 GHz AMD Opteron
2380 processors (Freq: {0.8, 1.3, 1.8, 2.5} GHz)

» Totalling 64 cores, energy measured by PowerPack
8 GB RAM per node, 64-bit Linux kernel 2.6.32

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Time (second)

Time (second)

15
10

12
10

[O R -« I]

DT (Class B) from MPB Benchmark Suite

I Time =ll=Energy

BER

Origing AGGRE, Dy, 2EDVF3

CPU Frequency Scheduling Strategy
SPhot (Track 4000 Particles) from ASC Benchmark Suite

Basic pyeg

N Time =lll=Energy

1TH

Origing AGGrRee |,
CPU Frequency Scheduling Strategy

Basjc Dlrg 2EDVF§

40000
35000
30000
25000
20000
15000
10000
5000
0

12000
10000
2000
6000
4000
2000
a

Energy (Joule)
Time (second)

Energy (Joule)
Time (second)

25

20

15

10

50

40

30

20

10

RIVERSIDE
Performance Loss and Energy Savings

MG (Class C) from NPB Benchmark Suite

25000
EETime =fl=Fnergy
20000
15000
10000
5000
T T T 0
Origing Basjc Dus AGGReg p, A2EDygg
CPU Freguency Scheduling Strategy
MPIBZIP2 [Cumpress a 0.77GBfile) from bzip2 Benchmark
50000
EETime =fl=Fnergy
40000
- 30000
20000
10000
[}
D”«?fna.r Bagj. DV,F GGREE o 2EEVF§

CPU Frequency Scheduling Strategy

cp_MPI (Copy a 54.4MB file) from Linux Kernel

30

EEETime =—ll=Energy

30000

fed
[= R

25000

20000

15000

Time {second)
[]
o

10000

Energy (Joule)

[IV |

5000

Drigfn af

Basic 1, Vrs

AGGREE .EFW:

0

A2e D

CPU Frequency Scheduling Strategy

Energy (loule)

Energy (Joule)

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Energy Savings for Imbalanced Branches

DT (Class B) from NPB Benchmark Suite

T ——

35 Ime NETEY | 35000
E‘ 30 - 30000 g
g 25 - 25000 i
820 - 20000 %
g 15 - 15000 £
= 10 - 10000 §

5 - 5000
0 . -0

Originay AGGHEE w;:EGHEE W ;;4;_- Ewyg

CPU Frequency Scheduling Strategy

HIVERSITY OF CALIFOR

UNIVERSITY OF CALIFORNIA, RIVERSIDE U c RiVE RS IIDHE

Energy and Performance Efficiency Trade-off

[Basic DVFS Scheduling

[Basic DVFS Scheduling
[0 AGGREE DVFS Scheduling [0 AGGREE DVFS Scheduling
B A2E DVFS Scheduling

B A2E DVFS Scheduling

Normalized EDP
Normalized ED2P

EDP: Energy Delay Product; ED2P: Energy Delay-Squared Product
- Two useful metrics to evaluate the balance between

energy and performance efficiency

UNIVERSITY OF CALIFORNIA
UNIVERSITY OF CALIFORNIA, RIVERSIDE U c RIVE RSI D E

Conclusions

> Adaptively Aggressive Energy Saving for Data
Intensive Applications (Mem. and Disk Access)

Novelty

Overcome the disadvantages of other approaches
to save energy for app. w/ mixed types of workloads

Achieve the optimal energy and performance
efficiency by moderating performance loss trade-off

Save extra energy for imbalanced branches by spec.

Experimentally on average 32.6% energy savings
with 6.2% performance loss for 5 real applications

