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Power and energy consumption of high 
performance computing is a growing severity ��������

operating costs and system reliability.

Power Management via DVFS

Dynamic Voltage and Frequency Scaling (DVFS)

voltage/frequency ↓ �������� power ↓ �������� energy efficiency

Peak CPU performance is not necessary when slack 
exists: load imbalance, network latency, communica-
tion delay, memory and disk access stalls, etc.



Types of Workloads (A real app. is often hybridhybrid.)

Computation (compute intensivecompute intensive)

Communication (communication intensivecommunication intensive)

Memory accesses and disk accesses (data intensivedata intensive)

Power Management via DVFS (Cont.)

Memory accesses and disk accesses (data intensivedata intensive)

Energy Efficient DVFS Scheduling Strategies

Computation: Peak CPU perf. is always needed

Communication: Volt./Freq. ↓ during communication

peak Volt./Freq. during computation

Data Accesses: Non-intuitive/difficult and costly

Hard to separate out workloads + high DVFS overhead



Code Example



Energy Saving Block (ESB)

Motivated by the term basic block in the area of 
compilerscompilers.

DefinitionDefinition

A statement blockstatement block of one specific type of workload

Comp-ESB, Comm-ESB, Mem-ESB, and Disk-ESB

Runtime energy savings may be achieved by DVFS

Energy saving opportunities can be exploited 
between the boundary of different ESBs



Code Example (Cont.)
ESB boundary

ExplicitExplicit

BoundaryBoundary

ImplicitImplicit

BoundaryBoundary



1: while (case) {

2:     <

SetFreqSetFreq(Low)(Low);

3:     communication();

SetFreqSetFreq(High)(High);

4:     memory_access();

Basic DVFS Scheduling Strategy

Communication is not CPU-bound

Schedule the lowest V/F for comm.

Schedule the highest V/F for comp.

DisadvantagesDisadvantages

Basic Idea:

5:     disk_access();

6:     computation();

SetFreqSetFreq(Low)(Low);

7:     communication();

SetFreqSetFreq(High)(High);

8:     <

9: }

DisadvantagesDisadvantages

Only works at inter-ESB level while 
fails at intra-ESB level, i.e., cannot 
save energy for Mem-/Disk-ESBs

Number of CPU frequency switches 
can be considerably large �������� high 
DVFS overhead (time and energy)



SetFreqSetFreq(Low)(Low);

1: while (case) {

2:     <

3:     communication();

4:     memory_access();

5:     disk_access();

Aggressive DVFS Scheduling Strategy (AGGREE)

For a loop of ESBs with a small 
proportion of computation (Comm-
ESB, Mem-ESB, and Disk-ESB)

Aggressively V/F↓ for the whole loop 

Basic Idea:

6:     computation();

7:     communication();

8:     <

9: }

SetFreqSetFreq(High)(High);

Aggressively V/F↓ for the whole loop 
��������minor perf. ↓ + major energy ↓

The number of frequency switches ↓

DisadvantagesDisadvantages

Performance loss trade-off can be 
further moderated for higher energy-
performance efficiency



SetFreqSetFreq(Low)(Low);

1: while (case) {

2:     <

3:     communication();

SetFreqSetFreq(Medium1)(Medium1);

4:     memory_access();

Adaptively Aggressive DVFS Scheduling Strategy (A2E)

Moderate low-performance trade-off

Set an intermediate V/F adaptively

Based on the proportion of comp. 
time among the total execution time

Basic Idea:

SetFreqSetFreq(Medium2)(Medium2);

5:     disk_access();

SetFreqSetFreq(High)(High);

6:     computation();

SetFreqSetFreq(Low)(Low);

7:     communication();

8:     <

9: }

SetFreqSetFreq(High)(High);

time among the total execution time

Aggressively set the V/F once for 
Mem-ESB and Disk-ESB as a whole 

Advantages over the previous twoAdvantages over the previous two

Integrate the strengths of both

Achieve the optimal energy-
performance efficiency



Adaptively Aggressive DVFS Scheduling Algorithm

Example: (See the paper for algorithm details.)

Consider a data intensive application with 10 ESBs

The highest proportionproportion of computation timecomputation time is 20%

We empirically obtain in advance the comp. time %We empirically obtain in advance the comp. time %

There exist 4 gearsgears of CPU frequency for DVFS

f0, f1, f2, and f3 (assume f0 < f1 < f2 < f3)

Consequently, 4 subsub--rangesranges for adaptively 
aggressive DVFS scheduling by comp. proportioncomp. proportion

[0, 5%)      �������� f0;

[5%, 10%) �������� f1; [10%, 15%) �������� f2; [15%, 20%] �������� f3.



SetFreqSetFreq(Low)(Low);

1: while (caseA) {

2:     if (caseB) { P1

3:        <

SetFreqSetFreq(Low)(Low);

4:        communication();

Speculative DVFS Scheduling Strategy

Speculation is a compilercompiler technique 
for predicting instruction’s execution

Speculate the outcome of 
imbalanced branches

Basic Idea:

SetFreqSetFreq(High)(High);

5:        <

6:     }

7:     else { P2 (P2 << P1)

8:        <

SetFreqSetFreq(High)(High);

9:        computation();

10:        <

11:     }

12: }

SetFreqSetFreq(High)(High);

imbalanced branches

Set the lowest f for the whole loop

Set the highest f for computation 
inside the rarely taken branch as 
recovery for mismis--speculationspeculation

AdvantagesAdvantages

The number of frequency switches ↓

Performance is not traded off



Energy Efficient DVFS Scheduling Strategies

BasicBasic �������� can only handle Comm-ESB

AGGREEAGGREE �������� can handle Comm-ESB, Mem-ESB, 
and Disk-ESB

Implementation

A2EA2E �������� can handle Comm-ESB, Mem-ESB, and 
Disk-ESB, with moderated performance trade-off

SpeculationSpeculation �������� applied to both AGGREEAGGREE and A2EA2E

Applicable Applications

Data (memory and disk access) intensive 
applications with imbalanced branches



Benchmarks

Applied all strategies to 5 high performance data 
intensive benchmarks

Selected from NPB and ASC benchmark suites

Evaluation

Hardware Configuration

A power-aware cluster comprised of 8 computing 

nodes with two Quad-core 2.5 GHz AMD Opteron

2380 processors (FreqFreq: {0.8, 1.3, 1.8, 2.5} GHz: {0.8, 1.3, 1.8, 2.5} GHz)

Totalling 64 cores, energy measured by PowerPack

8 GB RAM per node, 64-bit Linux kernel 2.6.32



Performance Loss and Energy Savings



Energy Savings for Imbalanced Branches



Energy and Performance Efficiency Trade-off

EDPEDP: Energy Delay Product; ED2PED2P: Energy Delay-Squared Product

-- Two useful metrics to evaluate the balance betweenTwo useful metrics to evaluate the balance between

energy and performance efficiencyenergy and performance efficiency



Adaptively Aggressive Energy Saving for Data 
Intensive Applications (Mem. and Disk Access)

Novelty

Overcome the disadvantages of other approaches 

Conclusions

Overcome the disadvantages of other approaches 
to save energy for app. w/ mixed types of workloads

Achieve the optimal energy and performance 
efficiency by moderating performance loss trade-off

Save extra energy for imbalanced branches by spec.

Experimentally on average 32.6% energy savings 
with 6.2% performance loss for 5 real applications


