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Power Management via DVFS

> Power and energy consumption of high
performance computing is a growing severity -
operating costs and system reliability.

» Dynamic Voltage and Frequency Scaling (DVFS)

voltage/frequency | - power | = energy efficiency

Peak CPU performance is not necessary when slack
exists: load imbalance, network latency, communica-
tion delay, memory and disk access stalls, etc.
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Power Management via DVFS (Cont.)
> Types of Workloads (A real app. is often hybrid.)

Computation (compute intensive)
Communication (communication intensive)
Memory accesses and disk accesses (data intensive)

> Energy Efficient DVFS Scheduling Strategies
Computation: Peak CPU perf. is always needed
Communication: Volt./Freq. | during communication

peak Volt./Freq. during computation

Data Accesses: Non-intuitive/difficult and costly
» Hard to separate out workloads + high DVFS overhead
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Code Example

while (caseR) {

buffer = (char+)malloc (num+sizecf (char));

/+ MPI communication routine call I «/
MPI_Bcast (&buffer, count, type, root, comm);
/* Independent computation code =/
computation () ;

/+ MPI communication routine call II =/

MPI _Alltoall (&sb, sc, st, &rb, rc, rt, comm);

.

Fig. 3. Typical Kernel Pattern of Communication Intensive Code.
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while (caseR) {

1
2 ..
3: /* Memory accesses mixed with computation =x/
4; valueA = arrayA[baseA+offset];
5: arrayB[baseB] += valueB;

6 arrayC|[baseC++] = arrayB[baseB++]+valueC;

:

8

/+ Disk accesses mixed with computation =/

9: buffer = (char*)malloc (numxsizeof (char));
10: fread(buffer, size, count, read file stream);
11: fwrite (buffer, size, count, write file stream);
12: e
13: }

Fig. 4. Typical Kernel Pattern of Memory and Disk Access Intensive Code.
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Energy Saving Block (ESB)

> Motivated by the term basic block in the area of
compilers.

» Definition

A statement block of one specific type of workload
Comp-ESB, Comm-ESB, Mem-ESB, and Disk-ESB
Runtime energy savings may be achieved by DVFS

> Energy saving opportunities can be exploited
between the boundary of different ESBs
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Code Example (Cont.)

—————— ESB boundary

1: while (caseR) {
2 ..
_ 3t _kuffer = (chars)mallec(numssizeof (char)li_ _ _ _
4: /+ MPI communication routine call I «/
_ 5i _MPL Bcast (sbuffer, count, type, root,_comm); _ _ L
6: /* Independent computation code =/ EXPIICIt
B e Boundary
8: /+ MPI communication routine call ITI =/
9: MPI _Alltoall (&sb, sc, st, &rb, rc, rt, comm);
e e e
11: }

= 35 T [*xTMEmMoOry aCcEssgs—mrrred w1 computacrionl */ T
4: valueA = arrayfl ;
5: arrayB][ -
6: arrayC( arra B+valueC; o
7. L. ! ! Implicit
T BT T [+ DISK accésses mixéd with computation x/° T T Boundary
9: ymalloc (num*sizeof (char));
10: size, count, read file stream);
11: size, count, write file stream);
12: e
13: }

Fig. 4. Typical Kernel Pattern of Memory and Disk Access Intensive Code.
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Basic DVFS Scheduling Strategy

1: while (case) { BaSiC Idea:
2. ...
SetFreq(Low): > Communication is not CPU-bound
3. communication(); Schedule the lowest V/F for comm.
SetFreq(High);

4: memory_access(); Schedule the highest V/F for comp.
5:  disk_access() » Disadvantages

> ;ZTF‘;:?L'ZCS Only works at inter-ESB level while
| fails at intra-ESB level, i.e., cannot

7. communication();

SetFreq(High) save energy for Mem-/Disk-ESBs
8 .. Number of CPU frequency switches
9:} can be considerably large = high

DVFS overhead (time and energy)
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Aggressive DVFS Scheduling Strategy (AGGREE)

1 Si{ffe(q(LOV)V){; Basic Idea:
.wnlle (Case
2 ... > For aloop of ESBs with a small
3:  communication(); proportion of computation (Comm-
‘5‘: ;ﬁeFOW—aC‘z‘;SSO; ESB, Mem-ESB, and Disk-ESB)
. ISK aCCesSss\ ), .
6. computation() Aggressively V/F| for the whole loop
7- communication(): - minor perf. | + major energy |
8 .. The number of frequency switches |
9:} .
SetFraq(High) » Disadvantages

Performance loss trade-off can be
further moderated for higher energy-
performance efficiency
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Adaptively Aggressive DVFS Scheduling Strategy (A2E)

SetFreq(Low); Basic Idea:
1: while (case) {
2 > Moderate low-performance trade-off
3. communication(); Set an intermediate V/F adaptively
SetFreq(Medium1); .
4 memory access() Based on the proportion of comp.
SetFreq(Medium2): time among the total execution time
5. disk_access() Aggressively set the V/F once for
SetFreq(High); Mem-ESB and Disk-ESB as a whole

6: computation();

setFreqLow). > Advantages over the previous two
7:  communication(); Integrate the strengths of both
8 Achieve the optimal energy-

9:} =
SetFrog(Highi performance efficiency
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Adaptively Aggressive DVFS Scheduling Algorithm

Example: (See the paper for algorithm details.)
Consider a data intensive application with 10 ESBs
» The highest proportion of computation time is 20%
We empirically obtain in advance the comp. time %
» There exist 4 gears of CPU frequency for DVFS
fo, T4, Ty, @and f; (assume fy < f, <f, <f;)

» Consequently, 4 sub-ranges for adaptively
aggressive DVFS scheduling by comp. proportion

[5%, 10%) > f.: [10%, 15%) > f,: [15%, 20%] > f,.
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Speculative DVFS Scheduling Strategy

SetFreq(Low); BaSiC Idea.
1: while (caseA) { _ ' _ ) _
2. if(caseB){P, > oSpeculation is a compiler technique
3 for predicting instruction’s execution
SetFreq(Low);
. Cfm:ui(icz:i " Speculate the outcome of
SetFreq(High) imbalanced branches

Set the lowest f for the whole loop

Set the highest f for computation
iInside the rarely taken branch as
SetFreq(High): recovery for mis-speculation

9:  computation(); » Advantages

10: .
"oy The number of frequency switches |

12:) Performance is not traded off
SetFreq(High);

}
else { P, (P, << P,)
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Implementation

> Energy Efficient DVFS Scheduling Strategies

Basic - can only handle Comm-ESB
AGGREE - can handle Comm-ESB, Mem-ESB,
and Disk-ESB

A2E - can handle Comm-ESB, Mem-ESB, and
Disk-ESB, with moderated performance trade-off

Speculation - applied to both AGGREE and A2E

> Applicable Applications

Data (memory and disk access) intensive
applications with imbalanced branches
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Evaluation

» Benchmarks

Applied all strategies to 5 high performance data
iIntensive benchmarks

Selected from NPB and ASC benchmark suites

» Hardware Configuration

A power-aware cluster comprised of 8 computing
nodes with two Quad-core 2.5 GHz AMD Opteron
2380 processors (Freq: {0.8, 1.3, 1.8, 2.5} GHz)

» Totalling 64 cores, energy measured by PowerPack
8 GB RAM per node, 64-bit Linux kernel 2.6.32
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Energy Savings for Imbalanced Branches
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Energy and Performance Efficiency Trade-off

[ Basic DVFS Scheduling

[ Basic DVFS Scheduling
[0 AGGREE DVFS Scheduling [0 AGGREE DVFS Scheduling
B A2E DVFS Scheduling

B A2E DVFS Scheduling

Normalized EDP
Normalized ED2P

EDP: Energy Delay Product; ED2P: Energy Delay-Squared Product
- Two useful metrics to evaluate the balance between

energy and performance efficiency
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Conclusions

> Adaptively Aggressive Energy Saving for Data
Intensive Applications (Mem. and Disk Access)

Novelty

Overcome the disadvantages of other approaches
to save energy for app. w/ mixed types of workloads

Achieve the optimal energy and performance
efficiency by moderating performance loss trade-off

Save extra energy for imbalanced branches by spec.

Experimentally on average 32.6% energy savings
with 6.2% performance loss for 5 real applications



