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Abstract—Featured by high portability and programmability,
Dynamic Voltage and Frequency Scaling (DVFS) has been widely
employed to achieve energy efficiency for high performance appli-
cations on distributed-memory architectures nowadays through
various scheduling algorithms. Generally, different forms of slack
from load imbalance, network latency, communication delay,
memory and disk access stalls, etc. are exploited as energy saving
opportunities where peak CPU performance is not necessary, with
little or limited performance loss. The deployment of DVFS for
communication intensive applications is straightforward due to
the explicit boundary between Energy Saving Blocks (ESBs) at
source code level, while for data (e.g., memory and disk access)
intensive applications it is difficult for applying DVFS since ESB
boundary is implicit due to mixed types of workloads. We propose
an adaptively aggressive DVFS scheduling strategy to achieve
energy efficiency for data intensive applications, and further save
energy via speculation to mitigate DVFS overhead for imbalanced
branches. We implemented and evaluated our approach using five
memory and disk access intensive benchmarks with imbalanced
branches against another two energy saving approaches. The
experimental results indicate an average of 32.6% energy savings
were achieved with 6.2% average performance loss compared to
the original executions on a power-aware 64-core cluster.

Keywords—energy; performance; DVFS; adaptive; aggressive;
speculative; data intensive; memory accesses; disk accesses.

I. INTRODUCTION

With the growing severity of power and energy con-
sumption on high performance distributed-memory computing
systems nowadays in terms of operating costs and system
reliability [1] [2], reducing power and energy costs has been
considered as a critical issue in high performance computing,
in particular in this big data era [3]. Featured by high porta-
bility and programmability, Dynamic Voltage and Frequency
Scaling (DVFS) [4] [5] techniques have been empirically
applied for scaling down power and energy costs with little
or limited performance loss [6] [7] [8] [9] [10] [11] [12] [13]
[14] [15] [16]. Generally, energy efficiency can be achieved
during runs of high performance applications by scaling down
operating voltage and frequency of CPU, where peak CPU per-
formance is not necessary such as slack from load imbalance,
communication delay, memory and disk access latency, etc.,
given the assumption that CPU dominates the total system-
wise energy consumption. DVFS is thus deemed an effective
approach to address the concerns of operating costs and system
reliability for high performance applications nowadays.

Per the functionality of an application, types of workloads
within the application consist of computation, communication,
memory accesses, and disk accesses, etc. For communication
intensive applications, an effective way of improving energy
efficiency, referred to as basic DVFS scheduling strategy, is to
scale down CPU voltage and frequency during communication,
while keep peak CPU performance when CPU is fully loaded
during computation. This approach can be easily fulfilled, since
at source code level the boundary between communication
and computation is explicit. Appropriate CPU frequency can
be assigned via DVFS techniques at the boundary between
communication and computation. Since the execution of com-
munication is not CPU-bound, communication time will barely
increase due to low CPU performance. Moreover, computation
time will not grow since CPU performance during computation
is kept the same as the orignal by not altering CPU frequency.
Since generally voltage is proportional to frequency, energy
savings can be achieved using basic DVFS scheduling strategy
with negligible performance loss due to lower CPU voltage and
frequency on average compared to the original execution.

Similarly, peak CPU performance is not needed when
CPU is waiting for data from memory and disk. Typically,
for memory and disk access intensive applications, memory
and disk access latency are performance bottleneck of the
applications. According to the fundamental memory hierachy
of moderm computer architectures, compared to CPU, main
memory access takes hundreds of clock cycles while local disk
access time is of the order of magnitude of millisecond, 106

greater than memory access time in general. As for memory
and disk access intensive applications, energy efficiency can be
intuitively achieved by reducing CPU frequency when memory
and disk accesses are performed and CPU is waiting for data.

Despite the straightforward deployment of DVFS for com-
munication intensive applications, it is however not intuitive
to achieve energy efficiency for other types of data inten-
sive applications such as memory and disk access intensive
applications due to two reasons: Firstly, employing DVFS in
our approach is implemented at source code level within the
application via system calls for modifying CPU frequency
configuration files at runtime. Empirically, memory and disk
accesses are generally accompanied by CPU-bound operations
at source code level, which causes the boundary between
memory and disk accesses and computation implicit. As a
consequence, it is difficult to separate memory and disk



accesses from computation and then apply DVFS for energy
savings. Secondly, the overhead on employing DVFS can be
high: Given the iterative nature of many high performance
applications, the time and energy costs on employing fine-
grained DVFS scheduling can be non-negligible due to a
large number of CPU frequency switches [12] [17] [18]. A
lightweight DVFS scheduling strategy is thus desirable.

In this paper, we introduce an adaptively aggressive DVFS
scheduling strategy (A2E) for energy efficient memory and
disk access intensive applications with imbalanced branches,
where memory and disk accesses are mixed with minor com-
putation. Instead of separating memory and disk accesses from
computation for an Energy Saving Block (ESB) with different
types of workloads, and then performing fine-grained DVFS
scheduling accordingly, we aggressively apply DVFS to the
hybrid ESB holistically, and adaptively set an appropriate CPU
frequency to the hybrid ESB according to the computation
time proportion within the total execution time of the ESB. In
summary, the contributions of this paper are as follows:

• We analyze the impact of factors such as CPU fre-
quency and execution time on energy consumption
of applications consisting of different dominant work-
loads, which motivates our idea of A2E;

• We demonstrate the significance of code boundary for
achieving energy efficiency via DVFS, and thus define
ESB to refine energy saving opportunities and model
energy and performance efficiency of our approach;

• We propose A2E to improve energy efficiency for
memory and disk access intensive applications with
mixed minor computation, and further save energy
using speculation to mitigate DVFS overhead for
imbalanced branches. Our approach is evaluated to
achieve considerable energy savings (32.6% on aver-
age) and incur minor performance loss (6.2% on aver-
age) compared to the original runs of five benchmarks.

The rest of this paper is organized as follows. Section 2
discusses relevant research. Section 3 motivates and section 4
introduces three energy saving approaches for data intensive
applications. We provide implementation details and evaluate
our approach in section 5, and section 6 concludes.

II. RELATED WORK

DVFS Scheduling for Compute Intensive Applications:
A large body of work has been done for achieving energy
efficiency in compute intensive applications by exploiting CPU
slack or idle time from imbalanced CPU-bound applications.
Ge et al. [13] proposed a runtime system and an integrated
performance model for achieving energy efficiency and con-
straining performance loss through DVFS and performance
modeling and prediction. Rountree et al. [15] presented another
runtime system by improving and extending previous classic
scheduling algorithms and achieved significant energy savings
with extremely limited performance loss. Kappiah et al. [8]
proposed a scheduled iteration method that computes the
total slack per processor per timestep, then scheduling CPU
frequency for the upcoming timestep.

DVFS Scheduling for Data Intensive Applications: There
also exists a large amount of work for energy efficient

communication via different DVFS scheduling algorithms. A
relatively small amount of research has been conducted for
reducing energy costs of memory/disk access intensive appli-
cations. Kappiah et al. [8] devised a system that exploits slack
arising at synchronization points of MPI programs by reducing
inter-node energy gear via DVFS. Li et al. [19] proposed
to characterize energy saving opportunities in executions of
hybrid MPI/OpenMP applications without performance loss.
Predictive models and novel algorithms were presented via
statistical analysis of power and time requirements under
different configurations. Ge et al. [1] observed that memory
stalls in the memory-bound sequential application swim from
the SPEC CPU2000 benchmark suite produced considerable
slack for energy savings via DVFS with alomost no impact on
performance. Our work focuses on improving energy efficiency
for parallel exeuctions of memory/disk-bound applications on
distributed-memory computing systems.

Aggressive and Speculative Mapping and Scheduling: Liu
et al. [20] leveraged the fact that at runtime some applica-
tions typically have shorter execution time than their worst-
case execution time, and applied DVFS to dynamically and
aggressively reduce voltage and frequency on a heterogeneous
system consisting of CPUs and GPUs. Luo et al. [21] proposed
to improve energy efficiency for thread-level speculation in a
same-ISA heterogeneous multicore system with an overhead
throttling mechanism and a competent resource allocation
scheme. Our work differs from them in that prior knowledge
of the worst-case execution time of the application is not
a prerequisite, and the target of our work is data intensive
applications running on a distributed-memory architecture.

III. MOTIVATION: DVFS SCHEDULING FOR DIFFERENT

WORKLOAD INTENSIVE APPLICATIONS

In order to learn the impact of factors such as CPU
frequency and execution time that may affect energy con-
sumption of applications with different dominant workloads,
we conducted some experiments and the results are plotted
in Figures 1 and 2. Motivated by the experimental results
on DVFS scheduling for compute intensive and compute/non-
compute comparable applications, we observe that the propor-
tion of non-compute operations in an application determines
whether energy consumption of the application is time-directed
or frequency-directed. In other words, energy consumption
is affected more by exectuion time in a compute intensive
application, and is affected more by CPU frequency in a
compute/non-compute comparable application, given the fact
that energy consumption equals product of average power and
time, where power is proportional to frequency and voltage.

As shown in Figure 1, CPU performance degradation for
the compute intensive application EP from NPB [22] leads
to more energy costs due to the longer execution time that is
the more dominant factor compared to CPU frequency. On the
other hand, for an application with comparable proportion of
computation and non-computation such as pdgemm() routine
from ScaLAPACK [18] shown in Figure 2, there exists even
a slight decrease of energy costs as CPU frequency goes
down, despite the increasing execution time due to low CPU
performance. We can further infer from the experimental
results that if computation only takes a small proportion of the
total execution time of an application as in the case of data



Fig. 1. DVFS Scheduling for Compute Intensive Application. Fig. 2. DVFS Scheduling for Compute/Non-Compute Comparable Application.

1: while (caseA) {
2: ...

3: buffer = (char*)malloc(num*sizeof(char));

4: /* MPI communication routine call I */

5: MPI_Bcast(&buffer, count, type, root, comm);

6: /* Independent computation code */

7: computation();

8: /* MPI communication routine call II */

9: MPI_Alltoall(&sb, sc, st, &rb, rc, rt, comm);

10: ...

11: }

Fig. 3. Typical Kernel Pattern of Communication Intensive Code.

intensive applications such as memory and disk access inten-
sive applications, performance loss at a low CPU frequency is
comparatively limited, and the less computation exists, the less
performance loss is incurred from reducing CPU frequency.
Therefore, the resulting reduction of power from lowering
frequency dominates the ultimate energy costs. Compared
to the compute/non-compute comparable application, more
energy savings can be achieved by aggressively reducing CPU
frequency for a non-compute intensive application.

Non-compute intensive applications can be any applica-
tions with a dominant proportion of non-compute workloads
such as communication, memory accesses, and disk accesses,
etc., where memory and disk access intensive applications are
commonly regarded as data intensive applications. Different
from communication intensive applications, it is challenging
to employ DVFS on memory and disk access intensive appli-
cations for achieving energy efficiency, since data operations
such as memory and disk accesses generally mix with minor
computation at source code level. As we know, energy savings
can be achieved by applying DVFS at source code level by
lowering CPU frequency for data intensive operations where
peak CPU performance is not necessary. It is however difficult
to separate non-computation from computation for later assign-
ment of appropriate CPU frequency to different workloads.
To fulfill energy efficiency for data intensive applications, our
goals include: (a) Reducing the performance loss from com-
putation accompanying data intensive operations due to low
CPU frequency, i.e., low-performance trade-off; (b) reducing
the number of CPU frequency switches by DVFS, i.e., DVFS
overhead. Both low-performance trade-off and DVFS overhead
result in higher execution time and thus greater energy costs.

IV. ENERGY EFFICIENT DVFS SCHEDULING STRATEGIES

FOR DATA INTENSIVE APPLICATIONS

In this section, we present our adaptively aggressive energy
efficient DVFS scheduling strategy (A2E) for data intensive

1: while (caseA) {
2: ...

3: /* Memory accesses mixed with computation */

4: valueA = arrayA[baseA+offset];

5: arrayB[baseB] += valueB;

6: arrayC[baseC++] = arrayB[baseB++]+ valueC;

7: ...

8: /* Disk accesses mixed with computation */

9: buffer = (char*)malloc(num*sizeof(char));

10: fread(buffer, size, count, read_file_stream);

11: fwrite(buffer, size, count, write_file_stream);

12: ...

13: }

Fig. 4. Typical Kernel Pattern of Memory and Disk Access Intensive Code.

applications, e.g., memory and disk access intensive applica-
tions. Leveraging speculation, A2E can also handle conditional
statements with imbalanced branches whose possibilities of
occurrence are significantly different. Next we first introduce
the concept of Energy Saving Blocks at source code level.

A. Energy Saving Blocks

Similarly as the common term basic block in the area of
compilers, from the perspective of energy, an Energy Saving
Block (ESB) is defined as a statement block of one specific
type of workload such as computation, communication, mem-
ory accesses and disk accesses, etc., where runtime energy
savings may be achieved by different means. For simplicity,
such ESBs are referred to as Comp-ESB, Comm-ESB, Mem-
ESB, and Disk-ESB respectively in the later text. For instance,
in the code example shown in Figure 5 (a), there exist six
ESBs located at Lines 5, 7, 8, 9, 11, and 17, respectively, i.e.,
two Comp-ESBs, two Comm-ESBs, one Mem-ESB, and one
Disk-ESB, each of which can be assigned an appropriate CPU
frequency accordingly via DVFS for energy saving purposes.

B. Basic DVFS Scheduling for Comp-ESB and Comm-ESB

We can apply a basic DVFS scheduling strategy for Comp-
ESB and Comm-ESB that simply sets CPU frequency to
as high as possible for Comp-ESB and sets CPU frequency
to as low as possible for Comm-ESB, which can be easily
fulfilled since the boundary of Comm-ESB is explicit as
shown in Figure 3: Little computation is involved in the MPI
communication routine calls at Lines 5 and 9 respectively,
and computation independent of communication at Line 7 is
conducted after the communication code. The basic DVFS
scheduling strategy is shown in Figure 5 (a), where a low-high
CPU frequency pair is assigned around the communication
code, since CPU is barely utilized in the communication and
peak CPU performance is thus not necessary. Yet, the basic



1: while (caseA) { 1: SetFreq(LDV FS );
2: if (caseB) { P1 2: while (caseA) {
3: ... 3: if (caseB) { P1

4: SetFreq(LDV FS ); 4: ...

5: communication(); 5: communication();

6: SetFreq(HDV FS ); 6: memory_access();

7: memory_access(); 7: disk_access();

8: disk_access(); 8: computation();

9: computation(); 9: communication();

10: SetFreq(LDV FS ); 10: ...

11: communication(); 11: }
12: SetFreq(HDV FS ); 12: else { P2 (P2 ≪ P1)
13: ... 13: ...

14: } 14: SetFreq(HDV FS );
15: else { P2 (P2 ≪ P1) 15: computation();

16: ... 16: SetFreq(LDV FS );
17: computation(); 17: ...

18: ... 18: }
19: } 19: }
20: } 20: SetFreq(HDV FS );

(b) Aggressive DVFS Scheduling
(a) Basic DVFS Scheduling with Speculation (AGGREE)

Fig. 5. Basic and Aggressive DVFS Scheduling for Typical Communication,
Memory Access, and Disk Access Mixed Code with Imbalanced Branches.

DVFS scheduling strategy suffers from two disadvantages: (a)
It can only work at inter-ESB level but fail at intra-ESB level,
i.e., towards single ESB with mixed workloads as shown in
Figure 4 (we discuss it next); (b) the number of CPU frequency
switches can be considerably large if the number of Comm-
ESBs and the number of iterations of the loop are large, which
incurs non-negligible overhead on time and energy [18].

C. Aggressive DVFS Scheduling for Mem-ESB and Disk-ESB

Figure 4 depicts typical kernel of memory and disk access
intensive applications. Lines 4, 5, and 6 give three typical
memory accesses mixed with computation. At Line 4, valueA
is assigned until the finish of calculating the array index and
accessing the content of corresponding memory location. Lines
5 and 6 show how array values are involved in computation
after and before addressing, respectively. Likewise, for disk
accesses given at Lines 10 and 11 that read and write blocks
of data from and into local disk files individually, the value of
input/output buffer pointer is frequently accessed and updated
for current and next reading/writing position as the file reading
and writing operations proceed. If the CPU-bound computation
time is significant among the total execution time of the
Mem-ESB/Disk-ESB, i.e., in the case of compute intensive
applications, considerable slowdown will be incurred from
reducing CPU frequency for the ESB as a whole, and thus
energy consumption grows as the trend shown in Figure 1.

Yet for applications with a small proportion of computation
mixed with memory and disk accesses depicted in Figure
4, aggressively reducing CPU frequency for the whole ESB
only causes minor performance loss while obtains considerable
energy savings from low CPU frequency and voltage during
waiting for memory and disk data, since memory and disk
access time dominate the total execution time. Basic DVFS
scheduling strategy fails to achieve energy savings for such
applications since it is difficult to separate non-computation
from computation and then apply DVFS accordingly. Even
if the programmer manages to rewrite the source code for
categorizing ESBs with explicit boundary between each other
via the use of temporary variables, etc. (we use this method
to calculate the proportion/percentage of different types of

Algorithm 1 Adaptively Aggressive DVFS Scheduling Algo.

SetDVFS(ESB, pcomp) /*Assume f0 < f1 < · · · < fNf−1*/
1: Bcast(pcomp)
2: Nf ← GetNumFreq()
3: p′comp ← Max(pcomp of all ESBs)
4: pSet0,...,Nf−1 ← GetRange(p′comp, Nf )
5: while 0 ≤ i < Nf − 1 do
6: if (0 ≤ pcomp < pSeti) then
7: SetFreq(f0)
8: else if (pSeti ≤ pcomp < pSeti+1) then
9: SetFreq(fi)

10: else if (pcomp ≥ pSetNf−1) then
11: SetFreq(fNf−1)
12: end if
13: i ← i+ 1
14: end while

workloads within a hybrid ESB), performance and energy loss
can be caused by numerous CPU frequency switches within
the loop of ESBs, as shown in Figure 5 (a), the kernel of an
application with different types of workloads including com-
putation, communication, memory accesses and disk accesses.
The basic DVFS scheduling strategy sets CPU frequency to
low before the Comm-ESBs at Lines 5 and 11 respectively
and sets it back to high after the Comm-ESBs. It keeps CPU
frequency high for all Mem-ESB, Disk-ESB, and Comp-ESB
if the Mem-ESB and the Disk-ESB are accompanied by minor
computation as shown in Figure 4. Potential energy saving
opportunities can be leveraged by aggressive DVFS scheduling
(AGGREE) as presented in Figure 5 (b). Instead of fine-grained
deployment of DVFS for setting appropriate CPU frequency
to Comm-ESBs without exploiting energy saving opportunities
from Mem-ESBs and Disk-ESBs, AGGREE aggressively sets
CPU frequency to low once for the whole loop given that the
loop is data intensive, which achieves higher energy efficiency
than the basic DVFS scheduling strategy due to lower CPU
power at the cost of minor performance and energy loss from
the small proportion of computation. Moreover, AGGREE
overcomes the excessive number of CPU frequency switches
by croase-grained DVFS scheduling outside the loop.

D. Adaptively Aggressive DVFS Scheduling for Mem-ESB and
Disk-ESB

Recall one of our goal is to reduce the performance loss
from minor computation accompanying data intensive opera-
tions at low CPU frequency. One effective way to moderate the
low-performance trade-off from AGGREE for data intensive
applications is to set an intermediate CPU frequency adaptively
on case-by-case basis for Mem-ESBs and Disk-ESBs within
such applications, instead of always employing the lowest
CPU frequency during executions. We refer to this adaptively
aggressive DVFS scheduling strategy as A2E. The heuristic of
A2E is similar to AGGREE: For those ESBs with implicit
boundaries, we specify an appropriate CPU frequency for
them as a whole, since fine-grained DVFS scheduling upon
the finish of separating non-computation from computation is
difficult. Considering the code example shown in Figure 5
(b), AGGREE aggressively sets CPU frequency to the lowest
possible value once outside the data intensive loop, while
A2E calculates an intermediate CPU frequency adaptively



1: SetFreq(LDV FS ); 1: SetFreq(LDV FS );
2: while (caseA) { 2: while (caseA) {
3: if (caseB) { P1 3: if (caseB) { P1

4: ... 4: ...

5: communication(); 5: communication();

6: memory_access(); 6: SetFreq(MDV FS );
7: disk_access(); 7: memory_access();

8: computation(); 8: SetFreq(M ′

DV FS );
9: communication(); 9: disk_access();

10: ... 10: SetFreq(HDV FS );
11: } 11: computation();

12: else { P2 (P2 ≪ P1) 12: SetFreq(LDV FS );
13: ... 13: communication();

14: SetFreq(HDV FS ); 14: ...

15: computation(); 15: }
16: SetFreq(LDV FS ); 16: else { P2 (P2 ≪ P1)
17: ... 17: ...

18: } 18: SetFreq(HDV FS );
19: } 19: computation();

20: SetFreq(HDV FS ); 20: SetFreq(LDV FS );
21: ...

22: }
23: }
24: SetFreq(HDV FS );

(a) Aggressive DVFS Scheduling (b) Adaptively Aggressive DVFS
with Speculation (AGGREE) Scheduling with Speculation (A2E)

Fig. 6. AGGREE and A2E DVFS Scheduling for Typical Communication,
Memory Access, and Disk Access Mixed Code with Imbalanced Branches.

according to the proportion of computation time among the
total execution time of an ESB, and also aggressively sets the
calculated frequency once for the ESB with mixed workloads.
Algorithm 1 details the steps of employing A2E. For each
ESB in the application, we empirically obtain in advance
the proportion of computation time pcomp among the total
execution time of the ESB. The A2E algorithm first broadcasts
the pcomp of current ESB to all other ESBs and thus the highest
pcomp, p′comp can be used as a threshold for future reference.
Given a set of CPU frequencies defined for DVFS, we divide
the range of possible pcomp [0, p′comp] into Nf sub-ranges,
where Nf is the number of available CPU frequencies. Which
sub-range the pcomp of an ESB sits determines which CPU
frequency to apply for the ESB. Figure 6 contrasts AGGREE
and A2E using the same code example shown in Figure 5.

Example. Consider a data intensive application with 10 ESBs,
among which the highest proportion of computation time
within the total execution time is 20%, and there are four gears
of CPU frequency available for DVFS. According to Algorithm
1, the range of CPU frequency for adaptively aggressive DVFS
scheduling consists of four individual sub-ranges from 0 to
20%, i.e., [0, 5%), [5%, 10%), [10%, 15%), and [15%, 20%].
If the proportion of computation time for an ESB is within the
range of [0, 5%), we set CPU frequency to f0, i.e., the lowest
frequency; if the proportion falls into the range of [5%, 10%),
we set CPU frequency to f1, i.e., the second lowest frequency,
and so on. Consequently for each ESB, we can assign a fitting
frequency based on the amount of computation within the ESB.

Although the low-performance trade-off is moderated by
A2E, the overhead on employing DVFS increase a bit due to
more CPU frequency switches issued by A2E. From Figure
6, we can see that the number of CPU frequency switches
approximates the number of ESBs in the if branch, since for
each ESB, we at least set an appropriate CPU frequency for
it once. For the code example shown in Figure 6, we do not
need to switch CPU frequency for the ESB within the else

branch, because we guarantee at the end of the if branch CPU
frequency is set to high. Overall, the number of CPU frequency
switches for A2E approximates NNiP1, comparable to that for
the basic DVFS scheduling 2NiNm, where N is the number
of ESBs in the loop, Ni is the number of iterations of the
loop, and Nm is the number of Comm-ESBs in the loop. Note
that different types of workloads do not necessarily appear in
a loop, we let Ni = 1 when hybrid workloads are not present
in a loop, but in a code segment without loops. In this case,
the number of CPU frequency switches for A2E dramatically
decreases to NP1 that is of the same order of magnitude as that
for AGGREE. In other words, the DVFS overhead of A2E and
AGGREE are comparable when different types of workloads
are present in a code segement without loops.

E. Speculative DVFS Scheduling for Imbalanced Branches

Speculation is a technique that allows a compiler or a
processor to predict the execution of an instruction so that an
earlier execution of other instructions depending on the specu-
lated instruction may be enabled. In our case, we speculate the
outcome of a branching statement for energy saving purposes.
If the application consists of conditional statements with sig-
nificantly different possibility of occurrence (i.e., imbalanced
branches) such as the if-then-else construct shown at
Lines 2 and 15 in the kernel of an application with different
workloads with imbalanced branches as depicted in Figure 5
(a). There are two branches to take where the taken possibility
P1 of the if branch is much greater than that of the else

branch P2, which is a real case for the benchmark DT from
NPB. As shown in Figures 5 (b) and 6, we can speculatively set
CPU frequency to low outside the rarely taken else branch
inside the loop, and set CPU frequency to high for computation
within the else branch, as a recovery mechanism used for
incorrect speculation, so that the overall performance is not
compromised even if the else branch is taken empirically.

Speculation can be applied to both AGGREE and A2E
to reduce the number of CPU frequency switches for less
DVFS overhead. Although in comparison to AGGREE with
no speculation and A2E with no speculation, the use of spec-
ulation within both approaches slightly increases the number
of CPU frequency switches by additional 2NiP2 times, re-
spectively. Overall, the speculative DVFS scheduling together
with AGGREE and A2E effectively reduce the number of CPU
frequency switches from 2NiNm of the basic DVFS schedul-
ing strategy to 2 + 2NiP2 and NNiP1 + 2NiP2 individually.
Following the constraint P2 ≪ P1 due to the imbalanced
branches, AGGREE with speculation is more effective on
reducing DVFS overhead against A2E with speculation.

F. Performance Model

Next we model the performance efficiency of the three
approaches (Basic DVFS, AGGREE, and A2E) at ESB level
for a data intensive application. Since the application con-
sists of different types of ESBs, performance efficiency of
each ESB reflects the overall performance efficiency of the
application. Table I lists the notation used in the formalization
of performance. Given an application with different types of
workloads comprised of computation (CPU-bound), commu-
nication (network-bound), memory accesses (memory-bound),
and disk accesses (disk-bound), we model the performance



TABLE I. NOTATION IN PERFORMANCE EFFICIENCY FORMALIZATION.

T Total execution time of the application

Tcomp Computation time of the application

Tcomm Communication time of the application

Tmem Average memory access time of the application

Tdisk Average disk access time of the application

Ocomp Time complexity of computation of the application

f Current CPU operating frequency

fh A high CPU frequency set by DVFS

fm A medium CPU frequency set by DVFS adaptively

fl A low CPU frequency set by DVFS

Nc Number of cores within one node of the cluster

NF Floating Point Unit of one core divided by 64-bit

TDV FS Time consumed by a DVFS CPU frequency switch

P1 Taken possibility of the likely taken imblanced branch

P2 Taken possibility of the rarely taken imblanced branch

Ni Number of iterations of a loop with hybrid workloads

N Number of ESBs in a hybrid loop/application

Nm Number of Comm-ESBs in a hybrid loop/application

of the original application without any DVFS scheduling
strategies as sum of execution time of different components:

T = Tcomp + Tcomm + Tmem + Tdisk (1)

Let us assume the application is executed with the optimal
efficiency (100%), Tcomp can be represented as:

Tcomp =
Ocomp

fNcNF

(2)

As we know, only CPU frequency f in calculating Tcomp

is affected by DVFS, while execution time of operations other
than computation is bounded by non-CPU hardware factors
such as network bandwith and disk data transfer rate, and
is not related to CPU frequency. Therefore we separate the
computation accompanying memory and disk accesses from
the actual memory and disk accesses for each approach below,
where T ′

mem and T ′

disk denote the actual memory and disk
access time respectively, and the impact of DVFS on execution
time is shown by setting different CPU frequencies. Note that
each approach employs the same heuristic for energy efficient
computation and communication: Keeping the highest CPU
performance for computation and applying the lowest CPU
performance for communication.

Torig =
Ocomp

fhNcNF

+ Tcomm + T ′

mem +
Ocomp mem

fhNcNF

+ T ′

disk +
Ocomp disk

fhNcNF

(3)

Tbasic =
Ocomp

fhNcNF

+ Tcomm + T ′

mem +
Ocomp mem

fhNcNF

+ T ′

disk +
Ocomp disk

fhNcNF

+ TDV FS × 2NiNm (4)

T aggree =
Ocomp

flNcNF

+ Tcomm + T ′

mem +
Ocomp mem

flNcNF

+ T ′

disk +
Ocomp disk

flNcNF

+ TDV FS × (2 + 2NiP2) (5)

Ta2e =
Ocomp

fhNcNF

+ Tcomm + T ′

mem +
Ocomp mem

fmNcNF

+ T ′

disk +
Ocomp disk

f ′

mNcNF

+ TDV FS × (NNiP1 + 2NiP2) (6)

TABLE II. NOTATION IN ENERGY EFFICIENCY FORMALIZATION.

Esys Total energy consumption of the whole cluster

Enode Total energy consumption of all components in a node

Pnode Total power consumption of all components in a node

PCPU d CPU dynamic power consumption in the busy state

PCPU s CPU static/leakage power consumption in any states

Pother Power consumption of components other than CPU

A Percentage of active gates in the CMOS-based chip

C Total capacitive load in the CMOS-based chip

V Current CPU supply voltage

Vh A high supply voltage set using DVFS

Vl A low supply voltage set using DVFS

n Time ratio between non-computation and computation

TABLE III. FREQUENCY-VOLTAGE PAIRS FOR THE AMD OPTERON

2380 PROCESSOR.

Gear Frequency (GHz) Voltage (V)

0 2.5 1.35

1 1.8 1.2

2 1.3 1.1

3 0.8 1.025

Without loss of generality, given a data intensive ap-
plication with different types of workloads and imblanced
branches, since computation only takes a small proportion
of the total execution time of the application, we assume

Tcomm+T ′

mem+T ′

disk = n×Tcomp =
nOcomp

fhNcNF
, where n > 1.

The last added items in Equations 4, 5, 6 are the overhead on
employing DVFS. We know P2 approximates to 0 since this
branch is rarely taken, so the DVFS overhead is negligible
for AGGREE. Additionally, from Table III we can see that in
our experimental platform fh ≈ 3fl if we adopt Gear 0 as fh
and Gear 3 as fl for AGGREE, and we assume fm = mfl
and f ′

m = m′fl. Thus we obtain the simplified formulae of
performance for the three approaches as:

Torig ≈
(n+ 1)Ocomp +Ocomp mem +Ocomp disk

3flNcNF

(7)

Tbasic ≈
(n+ 1)Ocomp +Ocomp mem +Ocomp disk

3flNcNF

+ TDV FS × 2NiNm (8)

Taggree ≈
(n
3
+ 1)Ocomp +Ocomp mem +Ocomp disk

flNcNF

+ TDV FS × (2 + 2NiP2) (9)

Ta2e =
(n+1

3
)Ocomp +

1
m
Ocomp mem + 1

m′
Ocomp disk

flNcNF

+ TDV FS × (NNiP1 + 2NiP2) (10)

From the comparison between Equations 7, 8, 9, and 10,
we can see that against the original application without any
DVFS strategies, the basic DVFS scheduling strategy only
results in performance loss due to additional DVFS overhead,
while both AGGREE and A2E incur performance loss from
reducing CPU performance during computation. Compared to
AGGREE, performance loss from A2E is moderated, since
each coefficient of computation time complexity of A2E is



smaller than that of AGGREE. Moreover, A2E suffers from
DVFS overhead comparable to the basic DVFS scheduling
strategy, while AGGREE has the minimal overhead on using
DVFS due to the constraint P2 ≪ P1 for imbalanced branches.

G. Energy Model and Energy Efficiency Analysis

We next formalize energy saving opportunities provided
by the three energy efficient approaches individually using the
notation in Table II. Within a given time interval (t1, t2), the
total energy costs of a distributed-memory computing system
consisting of multiple computing nodes can be formulated as
below, where we denote the execution time as T = t2− t1 and
the nodal average power consumption as Pnode:

Esys =

#nodes∑
1

Enode =

#nodes∑
1

∫ t2

t1

Pnodedt =

#nodes∑
1

Pnode×T (11)

Assuming each node in the computing system has the same
hardware configuration and local energy efficiency results in
global energy efficiency according to Equation 11, we only
consider nodal energy consumption in the later discussion.
Generally, we break down nodal power consumption as:

Pnode = PCPU d+PCPU s+Pother; PCPU d ≈ ACfV 2 (12)

In (12), we categorize the nodel power consumption by
power consumption of CPU and other components. By substi-
tuting PCPU d, we obtain the ultimate nodal power consump-
tion formula with DVFS-dependent parameters f and V as:

Pnode ≈ ACfV 2 + PCPU s + Pother (13)

In our case, PCPU s and Pother barely change during the
execution and thus we denote PCPU s + Pother as a constant
Pc. From Equation 9, we know that the DVFS overhead of
AGGREE is negligible due to the presence of P2. Following
the constraints of Equations 11, 12, and 13, we can calculate
energy costs of running a data intensive application with
different DVFS scheduling strategies respectively. Further, we
model the energy savings achieved by AGGREE and A2E in
contrast to the original application individually as below:

∆Eaggree = Eorig
node − Eaggree

node = P orig
node × Torig − P aggree

node × Taggree

≈ (ACfhV
2
h + Pc)Torig − (ACflV

2
l + Pc)Taggree (14)

∆Ea2e = Eorig
node − Ea2e

node = P orig
node × Torig − P a2e

node × Ta2e

≈ (ACfhV
2
h + Pc)Torig − (ACfV 2 + Pc)Ta2e (15)

From Equations 14 and 15, we observe that there exists
a performance-energy trade-off that should be considered to
determine the optimal CPU frequency to employ in different
requirements. In our scenario, achieving the maximal energy
savings with minor performance loss is the goal. For evalu-
ating if the energy efficiency achieved and the performance
degradation incurred are balanced, we adopt an integrated
metric to quantify the energy-performance efficiency: Energy-
Delay Product (EDP), a widely used metric to weigh the
comprehensive effects of energy and performance for a given
application under different configurations [23]. Therefore, we
leverage the EDP metric and its variant ED2P to evaluate
among the three energy efficient approaches, which one is
able to achieve the optimal energy-performance efficiency
(the smaller value, the better efficiency) for data intensive
applications. Details of the implementation and evaluation of
all three energy efficient approaches are illustrated next.

TABLE IV. BENCHMARK DETAILS.

Benchmark Source Test Case Category

DT NPB Class B
Memory Access Intensive
and Imbalanced Branches

MG NPB Class C
Memory and Disk
Access Intensive

SPhot ASC
Track 4000

Memory Access Intensive
particles

MPIBZIP2 bzip2
Compress a

Disk Access Intensive
0.77GB file

cp MPI Linux
Copy a file

Disk Access Intensive
of 54.4MB

V. IMPLEMENTATION AND EVALUATION

We have implemented all three energy efficient DVFS
scheduling strategies and evaluated their effectiveness towards
five high performance data intensive applications with different
dominant workloads such as memory and disk accesses with
imbalanced branches. Instead of assigning appropriate CPU
frequencies to an ESB with differet types of workloads in a
fine-grained fashion, we aggressively schedule CPU frequency
to an intermediate value for memory and disk accesses mixed
with minor computation adaptively according to the proportion
of computation time among the total execution time, in order
to achieve considerable energy savings at the cost of minor
performance loss. As for imbalanced branches, we adopt
speculative DVFS scheduling to reduce the number of CPU
frequency switches to minimize the overhead on employing
DVFS. The DVFS technique in our approach through modify-
ing CPU frequency configuration files dynamically at system
level enables us to scale CPU voltage and frequency up and
down if necessary for energy efficiency. Benchmarks used
consist of various sources of memory and disk access intensive
programs with imbalanced branches, such as DT and MG from
NPB and ASC benchmark suites [22] [24], an MPI version
of the high-quality data compressor bzip2 [25], and an self-
written MPI version of the Linux standard file copy command
cp [26]. Table IV shows the details of benchmarks.

A. Experimental Setup

We applied the three DVFS scheduling approaches indi-
vidually to the five benchmarks to assess their effectiveness of
energy savings and performance loss trade-off. Experiments
were performed on a computing cluster with an Ethernet
switch consisting of 8 computing nodes with two Quad-
core 2.5 GHz AMD Opteron 2380 processors (totalling 64
cores) and 8 GB RAM running 64-bit Linux kernel 2.6.32,
The power-aware and DVFS-enabled cluster was equipped
with power sensors and meters for energy measurement. In
our experiments, time was measured using the MPI Wtime()
routine. Energy consumption was measured using PowerPack
[23], a comprehensive software and hardware framework for
energy profiling and analysis of high performance systems
and applications. The range of CPU frequency on HPCL
was {0.8, 1.3, 1.8, 2.5} GHz. PowerPack was deployed and
running at a meter node within the cluster to collect energy
costs on all involved components such as CPU, memory, disk,
motherboard, etc. on all 8 computing nodes of the cluster. The
collected energy information was recorded into a log file in the
local disk and accessed after execution of these benchmarks.



Fig. 7. Performance Loss and Energy Savings on a Cluster with 8 Nodes, 64
Cores of {0.8, 1.3, 1.8, 2.5} GHz CPU frequencies, and 8 GB Memory/Node.

B. Performance Degradation

All three DVFS scheduling approaches improve energy
efficiency for data intensive applications at the cost of minor
performance loss as shown in Figure 7, where the x axis label
Original denotes the original application without any DVFS
scheduling strategies, and Basic DVFS, AGGREE DVFS, and
A2E represent the basic, AGGREE, and A2E DVFS schedul-

ing strategies introduced in the last section, respectively, where
speculation is applied to both AGGREE and A2E. We can see
that in general A2E incurs similar performance loss as the basic
DVFS scheduling strategy compared to the original no-DVFS
executions: 6.2% and 4.7% on average, respectively, while
AGGREE degrades performance more (8.1% on average) due
to aggressively lowering down CPU performance regardless of
minor computation within the data intensive application.

The overhead on employing DVFS in the basic DVFS
scheduling strategy primarily results from two factors: (a) The
additional time spent on modifying CPU frequency configura-
tion files dynamically at system level and (b) CPU frequency
transition latency. Thus the number of CPU frequency switches
by DVFS determines the DVFS overhead. Some application
such as MG incurs up to 13.0% performance loss due to
applying DVFS, since there exist a great amount of alternate
Comm-ESBs and Comp-ESBs as shown in Figure 5 (a), which
requires a large amount of CPU frequency switches by DVFS
as well. The communication time for some application like
cp MPI is negligible and the amount of Comm-ESBs is
limited. Therefore constrained by both factors, the overhead
on employing DVFS for cp MPI is also negligible (1.5%).

As discussed before, performance loss from AGGREE
is attributed to low performance of the small proportion of
computation mixed with memory and disk accesses. According
to Equation 5, reducing CPU frequency aggressively results
in longer execution time for the CPU-bound computation
and thus incurs overall performance degradation, although
performance of memory and disk accesses is barely affected.
Since the ratio between computation and non-computation
is significantly low in memory and disk access intensive
applications, the impact of performance loss from computation
is limited on the total execution time. A2E further decreases
the performance loss by adaptively scheduling an appropriate
CPU frequency to an ESB according to the computation time
proportion instead of always setting the lowest CPU frequency.
On the other hand, AGGREE and A2E successfully reduce the
number of CPU frequency switches by applying DVFS outside
of a loop of ESBs and inside a rarely taken branch, respec-
tively. The DVFS overhead is reduced accordingly compared to
the basic DVFS scheduling strategy where there exist a larger
number of CPU frequency switches due to fine-grained DVFS
scheduling before and after each Comm-ESB within the loop.
Consequently, with less DVFS overhead, AGGREE and A2E
only suffer from 3.4% and 1.5% more performance loss than
that of the basic DVFS scheduling strategy, respectively.

C. Energy Savings for Memory Access Intensive Applications

Figure 7 also reflects energy efficiency achieved by the
three approaches. Compared to the basic and AGGREE DVFS
scheduling strategies, A2E is able to achieve more energy
savings, since energy saving opportunities from memory and
disk accesses that the basic DVFS scheduling strategy fails to
leverage are exploited by AGGREE and A2E as depicted in
Figures 5 (b) and 6 (b) respectively, and further moderation
of low-performance trade-off is performed by A2E against
AGGREE. Specifically, considering energy consumption of the
original executions as the baseline, 32.6% on average energy
savings are fulfilled by A2E, in contrast to 17.3% and 31.7%
energy savings on average achieved by the basic and AGGREE
DVFS scheduling strategies individually.



Fig. 8. Performance and Energy Efficiency upon Employing Speculation in
AGGREE and A2E for the DT Benchmark with Imbalanced Branches.

The most energy savings 43.4% AGGREE achieves is for
the memory access intensive application SPhot, while A2E
manages to achieve less energy savings 40.9%. We applied
AGGREE and A2E to a code segment within SPhot, where a
great amount of memory accesses mixed with calculating array
indices before accessing corresponding memory locations are
present in a double-loop. The basic DVFS scheduling strategy
only obtains 13.9% energy savings, since it fails to handle
Mem-ESBs accompanied by computation but only saves en-
ergy for Comm-ESBs. With AGGREE employed, performance
of SPhot is degraded by 7.2% due to low performance of
memory address calculation interleaved in memory accesses as
a consequence of aggressively scaling down CPU frequency.
Performance loss is moderated by A2E to 4.9% at the cost
of less energy savings, since the Mem-ESBs of SPhot have
similar proportion of computation time and thus most CPU
frequencies adaptively assigned are close to the highest one.

D. Energy Savings for Disk Access Intensive Applications

Besides memory access intensive applications, A2E per-
forms better than the other two approaches in gaining energy
efficiency for disk access intensive applications. Regarding the
disk access dominant application cp MPI, the basic DVFS
scheduling strategy saves a limited amount of energy (2.1%)
since the communication time is significant low compared to
the disk access time. AGGREE and A2E can obtain more
energy savings for this type of applications, since aggressively
reducing CPU frequency barely affects performance of the ap-
plication. As for cp MPI, most execution time is spent on non-
CPU-bound opertions, disk accesses, whose execution time is
constrained by non-CPU hardware factors such as average seek
time and disk data transfer rate. Low CPU performance brings
in considerable energy savings from CPU during data waiting
time without significant performance loss as a whole. Another
disk access intensive application MPIBZIP2 also benefits from
the moderation of low-performance loss by A2E with 40.5%
energy savings achieved compared to 37.1% from AGGREE.

Note that although similar percentage of energy savings
are fulfilled for memory access intensive and disk access
intensive applications, performance degradation for employing
aggressive DVFS scheduling strategies like AGGREE and A2E
towards the two types of applications differ: Despite MG, an
application with comparable memory and disk accesses, mem-
ory access intensive applications (DT and SPhot) suffer from
average performance loss of 7.2% for AGGREE and 4.7% for
A2E, while disk access intensive applications (MPIBZIP2 and
cp MPI) only sacrifice minor performance loss on average of

Fig. 9. Energy-Performance Efficiency Trade-off in Terms of EDP and ED2P.

3.4% for AGGREE and 2.7% for A2E. This is attributed to
two causes: (a) Memory access time is much smaller than disk
access time (typically with a ratio of the order of magnitude
1/106) and thus is closer to CPU clock cycles; (b) The amount
of computation mixed with memory accesses is generally more
than that with disk accesses. Both reasons make the impact
of CPU performance degradation on the total execution time
of memory access intensive applications greater than that of
disk access intensive applications. It is notable that moderating
performance loss from A2E shrinks the gap.

E. Energy Savings for Imbalanced Branches

AGGREE and A2E adopt speculation to further gain energy
efficiency for code with imbalanced branches by reducing
the DVFS overhead. DT is a memory intensive graph appli-
cation where a great amount of imbalanced branches exist.
Figure 8 shows energy consumption and execution time of
DT using AGGREE and A2E with and without speculation
individually. We can see that employing speculation within
AGGREE and A2E mitigates performance degradation and
thus saves energy: Performance loss from AGGREE drops
from 10.8% to 7.1%, while energy savings increase from
22.7% to 27.4%; performance loss from A2E drops from
6.8% to 4.4%, while energy savings increase from 27.3% to
28.6%. The effectiveness of speculation for saving time and
energy results from aggressively reducing CPU frequency for
the frequently taken branch while keeping CPU frequency high
for computation within the rarely taken branch as the recovery
mechanism used for incorrect speculation, as shown in Figures
5 (b) and 6. Note that A2E is empirically less effective than



AGGREE in reducing the DVFS overhead upon the use of
speculation, which is consistent with the performance loss
from employing DVFS calculated formally in section 4.

F. Energy and Performance Efficiency Trade-off

From Equations 14 and 15, we observe there exists an
energy-performance efficiency trade-off for AGGREE and
A2E. In general, moderating CPU performance degradation
by adaptively scheduling an intermediate rather than always
the lowest CPU frequency for a Mem-ESB or a Disk-ESB
decreases performance loss at the cost of higher average power,
since power is proportional to CPU frequency and voltage.
Variation of performance and energy efficiency at different
operating points can be quantified by an integrated metric
that both impacts of performance and energy are considered.
We adopt the EDP (Energy-Delay Product) metric and its
variant ED2P (Energy-Delay-Squared Product) to evaluate the
balance between energy and performance efficiency for the
three energy saving approaches, as presented in Figure 9.

Since a smaller value in the EDP and ED2P metrics
represents higher energy and performance efficiency as a
whole, we can see that for data intensive applications, the basic
DVFS scheduling strategy is not the optimal approach since it
fails to exploit the energy saving opportunities present in the
operations other than communication. Except that for SPhot,
A2E and AGGREE have similar EDP and ED2P values, A2E
is superior to AGGREE for all other applications in terms
of the balance of energy-performance efficiency. The average
values of EDP and ED2P for A2E and AGGREE over all five
benchmark consolidate this observation.

VI. CONCLUSIONS

Driven by the growing energy concerns, DVFS techniques
have been widely applied to improve energy efficiency for high
performance applications on distributed-memory computing
systems nowadays. Energy saving opportunities from slack
in terms of load imbalance, network latency, communication
dalay, memory and disk access stalls, etc. are exploited to
save energy through scaling up and down CPU voltage and
frequency via DVFS, since peak CPU performance is not
necessary during the slack. We propose an adaptively ag-
gressive energy efficient DVFS scheduling strategy (A2E) for
data intensive applications such as memory and disk access
intensive applications with imbalanced branches. Instead of
assigning CPU frequency in a fine-grained fashion towards an
Energy Saving Block (ESB) with different types of workloads,
A2E adaptively schedules an appropriate CPU frequency for
the hybrid ESB aggressively as a whole and reduces the
overhead on employing DVFS via speculation to save energy
with minor performance loss. The experimental results indicate
the effectiveness of A2E for saving energy of running target
applications with minor performance loss.
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