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ABSTRACT

The presence of pervasive slack provides ample opportunities
for achieving energy efficiency for HPC systems nowadays.
Regardless of communication slack, classic energy saving ap-
proaches for saving energy during the slack otherwise include
race-to-halt and CP-aware slack reclamation, which reply on
power scaling techniques to adjust processor power states ju-
diciously during the slack. Existing efforts demonstrate CP-
aware slack reclamation is superior to race-to-halt in energy
saving capability. In this paper, we formally model our ob-
servation that the energy saving capability gap between the
two approaches is significantly narrowed down on today’s
processors, given that state-of-the-art CMOS technologies
allow insignificant variation of supply voltage as operating
frequency of a processor scales. Experimental results on a
large-scale power-aware cluster validate our findings.

Categories and Subject Descriptors

D.4.1 [Operating Systems]: Process Management—Schedul-
ing, Multiprocessing/multiprogramming/multitasking
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1. INTRODUCTION
Power and energy efficiency are now of great concern when

the launching date of exascale computers is approaching.
Power and energy consumption of a supercomputer nowa-
days have been rapidly increasing due to expansion of its size
and duration in use. The US Department of Energy has set
up a goal of 20 MW for the exascale computers targeted in
the year around 2020 [2]. The advancement of hardware and
software solutions have greatly improved power and energy
efficiency of High Performance Computing (HPC), where
the pervasive slack during runs of task-parallel applications
is regarded as an important source for achieving power and
energy savings, regardless of various performance boosting
techniques (e.g., load balancing [4] and work stealing [5]) for
decreasing the slack as much as possible.
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Slack generally refers to a time period when one hardware
component waits for another due to imbalanced throughput
and utilization. For instance, CPU usually waits for data to
be ready from memory for memory intensive applications, in
accordance with the fundamental memory hierarchy. Typ-
ical examples of slack include load imbalance, network la-
tency, communication delay, memory and disk access stalls,
etc. Energy saving opportunities can be exploited during
the slack of runs of task-parallel HPC applications, since
the peak performance of hardware components that are not
fully utilized during the slack is not necessary. Software-
controlled hardware solutions such as Dynamic Voltage and
Frequency Scaling (DVFS) techniques have been extensively
leveraged to mitigate energy costs by appropriately scaling
power states of the hardware without incurring performance
loss for the HPC applications [6] [10] [9].

Critical Path (CP) is one particular task trace from the
beginning task of a task-parallel HPC run to the ending
one, with the total slack of zero. Any delay on tasks on
the CP increases the total execution time of the application,
while appropriately slowing down the processors where the
application is running by dilating tasks off the CP into their
slack, or halting tasks off the CP during their slack individ-
ually without further delay, does not cause performance loss
as a whole. Energy savings can be achieved effectively by
both approaches with negligible performance loss.

In this paper, we discuss energy saving capability of two
classic energy saving approaches, and formally calculate and
compare energy savings from both solutions. Previous for-
mal proof shows that CP-aware slack reclamation beats race-
to-halt in terms of energy efficiency [7] [8]. We demonstrate
that for DVFS on state-of-the-art architectures, supply volt-
age of a processor scales much less than its operating fre-
quency, the energy saving gap between the two approaches
is narrowed down significantly. We also provide preliminary
experimental evaluation to validate our observations.

2. CLASSIC ENERGY SAVING STRATEGIES
Existing energy efficient approaches that save energy strate-

gically during slack of HPC runs can essentially be catego-
rized into two types: race-to-halt and CP-aware slack recla-
mation. Next we illustrate how they work in different ways.

2.1 Energy Saving for Communication
Slack from communication is an important source of en-

ergy savings. Consider a HPC run on a distributed-memory
system based on message passing, reduction of energy con-
sumption can be achieved by reducing frequency and volt-
age of computing components such as CPU and GPU for



Figure 1: DAG Notation of Slack Handling of Two
Energy Saving Solutions for a 3-Process HPC Run.

large-message MPI communication, since generally execu-
tion time of such operations barely increases at a low-power
state of the computing hardware during the communication
slack. We adopt this scheduled communication [10] strategy
for communication slack. However, the next two classic en-
ergy saving approaches are intended in particular for slack
arising from non-communication, i.e., mostly, computation.

2.2 Race-to-halt
As the name suggests, race-to-halt is a DVFS scheduling

strategy that enforces hardware components (e.g., CPU and
GPU) to race when workloads are ready for processing, and
to halt when no workloads are available, as the area cov-
ered by green dashed boxes shown in Figure 1. Specifically,
race refers to execute workloads with the maximum perfor-
mance, i.e., at the highest frequency and voltage of proces-
sors, until the finish of the workloads, while halt means to
slow down processors to the minimum frequency and volt-
age, i.e., the lowest power state for energy saving purposes,
from the end of the precedent workload to the start of the
subsequent workload. This straightforward approach can
effectively save energy without incurring performance loss.

2.3 CP-aware Slack Reclamation
Another critical strategy of saving energy during the slack

is to reclaim slack by appropriately slowing down tasks that
are not on the Critical Path (CP) of an execution trace of a
HPC run. Per the definition of CP, it is implied that any de-
lay on tasks on the CP also delays the application as a whole,
while appropriately dilating tasks off the CP into their slack
individually without overflowing slack, does not increase the
total execution time of the application, as prolonged tasks
in blue dashed boxes shown in Figure 1. Energy savings
can thus be achieved from scaling down frequency/voltage
for dilating tasks off the CP into their slack without perfor-
mance degradation. This solution is based on CP detection.
Energy efficient DVFS scheduling decisions for slack recla-
mation are determined among tasks on/off the CP.

3. ENERGY SAVING CAPACITY ANALYSIS
Existing work demonstrates that under a time constraint,

slowing down a processor can reduce energy consumption the
most, compared to completing a task as fast as possible and
completing a task using combination of discrete frequencies
[7] [8]. However, the gap between energy saving capability of
race-to-halt and CP-aware slack reclamation shrinks, since

Table 1: Notation in Energy Efficiency Analysis.
E Total nodal energy consumption of all components
P Total nodal power consumption of all components

Pdynamic Dynamic power consumption in the running state
Pleakage Static/leakage power consumption in any states

T Execution time of a task at CPU peak performance
T ′ Slack of executing a task at CPU peak performance
A Percentage of active gates in a CMOS-based chip
C The total capacitive load in a CMOS-based chip
f Current CPU working frequency
V Current CPU supply voltage
V ′ Supply voltage of components other than CPU
Isub CPU subthreshold leakage current
I′
sub

non-CPU component subthreshold leakage current

fm
Available frequency assumed to eliminate T ′

without using frequency approximation
Vh The highest supply voltage set by DVFS
Vl The lowest supply voltage set by DVFS
Vm Supply voltage corresponding to fm set by DVFS
n Ratio between execution time and slack of a task

state-of-the-art CMOS technologies allow insignificant vari-
ation of supply voltage as operating frequency of a processor
scales. Next we formalize that the two approaches can be
comparable in energy saving capability. Given the following
two energy saving strategies, towards a task t with an exe-
cution time T and slack T ′ at the peak CPU performance,
we calculate the total nodal system energy consumption for
both strategies, i.e., E(S1) and E(S2) formally below:

• Strategy I (Race-to-halt): Execute t at the highest fre-
quency fh until the end, and then switch to the lowest
frequency fl, i.e., run in T at fh and in T ′ at fl;

• Strategy II (CP-aware Slack Reclamation): Execute t at
the optimal frequency fm with which T ′ is eliminated,
i.e., run in T + T ′ at fm (For simplicity in the later
discussion, assume T ′ can be eliminated using available
frequency fm without frequency approximation).

For simplicity, let us assume the tasks for the use of DVFS
are compute-intensive (memory-intensive tasks can be dis-
cussed with minor changes in the model), i.e., T +T ′ = nT ,

when fm = 1

n
fh, where 1 ≤ n ≤ fh

fl
. Consider the nodal

power consumption P , we model it formally as follows:

P = P
CPU
dynamic + P

CPU
leakage + P

other
leakage (1)

Pdynamic = ACfV
2 (2)

Pleakage = IsubV (3)
Substituting Equations 2 and 3 into Equation 1 yields:

P = ACfV
2 + IsubV + I

′

subV
′ (4)

In our scenario, P other
leakage = I ′subV

′ is independent of CPU
voltage and frequency scaling, and thus can be regarded as
a constant in Equation 4, so we denote P other

leakage as Pc for
simplicity. Further, although subthreshold leakage current
Isub has an exponential relationship with threshold voltage,
results presented in [11] indicate that Isub converges to a
constant after a certain threshold voltage value. Without
loss of generality, we treat PCPU

leakage = IsubV as a function
of supply voltage V only. Thus, we model the nodal energy
consumption Enode for both strategies individually below:

E(S1) = P (S1)× T + P ′(S1)× T
′

= (ACfhV
2

h + IsubVh + Pc)T + (ACflV
2

l + IsubVl + Pc)T
′

=AC(fhV
2

h T+flV
2

l T
′)+Isub(VhT+VlT

′)+Pc(T+T
′) (5)

E(S2) = P (S2)× (T + T
′)

= (ACfmV
2

m + IsubVm + Pc)(T + T
′)

= ACfmV
2

m(T + T
′) + IsubVm(T + T

′) + Pc(T + T
′) (6)



Table 2: Frequency-Voltage Pairs for Different Processors (Unit: Frequency (GHz) and Voltage (V)).

G
ea

r

AMD
AMD Opteron

AMD Intel Intel Pentium Intel Xeon Intel Core
Opteron 2380

846 and AMD
Opteron 2218 Pentium M 4 HT 530 E5 2687W i7-2760QM

Athlon64 3200+
Freq. Volt. Freq. Volt. Freq. Volt. Freq. Volt. Freq. Volt. Freq. Volt. Freq. Volt.

0 2.5 1.300 2.0 1.500 2.4 1.250 1.4 1.484 3.0 1.430 3.1 1.200 2.4 1.060
1 1.8 1.200 1.8 1.400 2.2 1.200 1.2 1.436 N/A N/A N/A N/A 2.0 0.970
2 1.3 1.100 1.6 1.300 1.8 1.150 1.0 1.308 N/A N/A N/A N/A 1.6 0.890
3 0.8 1.025 0.8 0.900 1.0 1.100 0.8 1.180 2.1 1.250 1.2 0.840 0.8 0.760

We obtain the difference between energy costs of both
strategies by subtracting Equation 5 from Equation 6:

E(S2)− E(S1) = AC
(

(fmV
2

m − fhV
2

h )T+(fmV
2

m − flV
2

l )T
′
)

+ Isub
(

(Vm − Vh)T + (Vm − Vl)T
′
)

(7)

Denote the first term as ∆Ed and the second term as
∆El. Substituting the assumption that T ′ = (n − 1)T and
fm = 1

n
fh into both terms yields simplified formulae:

∆Ed = AC

((

1

n
fhV

2

m−fhV
2

h

)

T+

(

1

n
fhV

2

m−flV
2

l

)

(n−1)T

)

= AC

((

1

n
fhV

2

m−fhV
2

h

)

T+

(

n− 1

n
fhV

2

m−(n−1)flV
2

l

)

T

)

= ACT
(

fh
(

V
2

m − V
2

h

)

− (n− 1) flV
2

l

)

(8)

∆El = Isub ((Vm − Vh)T + (Vm − Vl) (n− 1)T )

= IsubT (nVm − Vh − (n− 1)Vl) (9)

Given the fact that voltage has a positive correlation with
(i.e., not strictly proportional/linear to) frequency (scaling
up/down frequency results in voltage up/down accordingly
as shown in Table 2), from Equation 8 we conclude that ∆Ed

is a monotonically decreasing function for n, where the max-
imum 0 is attained when n = 1, i.e., when slack T ′ equals 0.
Although generally ∆Ed ≤ 0, state-of-the-art CMOS tech-
nologies allow insignificant variation of voltage as frequency
scales (see Table 2). Consequently the term V 2

m−V 2

h within
∆Ed is not a large value. Moreover, the ratio between the
highest frequency and the lowest one determines the upper
bound of n, so the term (n−1)flV

2

l is not significant either.
Equation 9 indicates that ∆El is a non-monotonic function
for n, since Vm decreases as n increases.
Example. From the operating points of different processors
shown in Table 2, we can calculate numerical energy savings
for different n values for a specific processor, and thus quan-
tify energy efficiency of the two approaches. For instance,
for AMD Opteron 2218 processor, given a task with the exe-
cution time T and slack 0.25T , i.e., n = 1.25, for eliminating
the slack, 1.8 GHz is adopted as the working frequency for
running the task, and thus ∆Ed = ACT × (2.4 × (1.152 −
1.252)− (1.25− 1)× 1.0× 1.12) = −0.8785× ACT ; ∆El =
IsubT×(1.25×1.15−1.25−(1.25−1)×1.1) = −0.0875×IsubT ;
E(S2)−E(S1) = ∆Ed +∆El = −0.8785×ACT − 0.0875×
IsubT < 0. We can see that with slightly higher energy costs,
Strategy I is comparable to Strategy II in energy efficiency.

4. SCALABILITY ANALYSIS
Regardless of energy saving capability, a scalable energy

efficient solution prevails for today’s supercomputers. Due
to the nature of slowing down processors during identified
slack instead of switching to an idle mode, CP-aware slack
reclamation can be superior to race-to-halt in terms of power
scalability. We next use an example to illustrate the case.
Consider a IBM Blue Gene/Q configured cluster that has

a power range from 9 MW at full load (e.g., running the
High Performance LINPACK benchmark) to 0.1 MW when

idle. Assume a CPU-bound and load-imbalanced applica-
tion is running on the cluster, where 1% of nodes need to
run 10% longer than other nodes. When 99% of nodes have
completed their tasks and been placed into an idle mode by
race-to-halt, the total system power costs amount to around
0.2 MW (0.1 MW × 0.99 + 9 MW × 0.01) for the rest 10%
execution time, when there is a huge drop from 9 MW to
0.2 MW in the total system power. The case is even worse
if the power variation happens within a loop. If the inter-
val of power variation is small enough, the power gap can
be absorbed in the capacitors on the motherboard or in the
nodal power supply. Otherwise the huge power spike will
be reflected on the transmission lines, which jeopardizes the
hardware reliability of the whole system. The case is how-
ever greatly mitigated if the load is balanced, or the load
imbalance is caused by inevitable data dependencies among
tasks, without considering the effect of looping.

5. EXPERIMENTAL EVALUATION
In this section, we validate our findings aforementioned.

We applied both energy saving solutions individually to an
MPI implementation of one widely used numerical linear
algebra operation Cholesky factorization to assess their en-
ergy efficiency empirically. Experiments were performed on
a large-scale power-aware cluster ARC, equipped with an
40 GB/s Infiniband switch and consisting of 108 computing
nodes with two 8-core AMD Opteron 6128 processors (to-
talling 1728 cores) and 32 GB RAM running 64-bit Linux
kernel 2.6.32. The range of CPU frequency on ARC was
{0.8, 1.0, 1.2, 1.5, 2.0} GHz. The total of static and dy-
namic power consumption was measured using Watts up?
PRO [3] power meter, which is shared by three ARC nodes.
Thus the power consumption measured is the total value of
three nodes. CPU frequency scaling was implemented via
CPUFreq [1] which directly modifies CPU frequency system
configuration files. We did not utilize the whole cluster but
only a 16× 16 process grid (totalling 256 cores), which is suf-
ficient to demonstrate solid power results. Next we present
preliminary results on power and performance efficiency of
the two approaches for the target HPC runs.

Power Savings. First we evaluate the capability of sav-
ing power from the two energy efficient approaches, taking
Cholesky factorization running on the ARC cluster for exam-
ple, where power consumption is measured by sampling at a
constant rate through the execution of the application. Fig-
ure 2 depicts the total system power consumption of three
nodes (out of sixteen nodes in use) running the applica-
tion with the two approaches individually using a 160000
× 160000 global matrix. Here we present time durations
of the first few iterations, where the core loop performs al-
ternating computation and communication with decreasing
execution time of each iteration, as the remaining unfactor-
ized matrix shrinks. Thus we can see that for all curves,
from left to right, the durations of computation (i.e., the
peak power values) decrease as the factorization proceeds.
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Figure 2: Power Costs of Cholesky Factorization
with Two Energy Saving Solutions on Cluster ARC.
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Figure 3: Performance of Cholesky Factorization
with Two Energy Saving Solutions on Cluster ARC.

The three runs manifest three different power variation
patterns. The original run used the same highest CPU fre-
quency for computation and communication, resulting al-
most constant power costs around 950 Watts. The CP-
aware slack reclamation approach slowed down computation
to eliminate slack, while the race-to-halt approach lowered
down CPU performance to the minimum scale for all dura-
tions other than computation. Both approaches employed
the lowest CPU frequency during communication, i.e., the
five low-power durations around 700 Watts, and resumed
the peak CPU performance when computation started.
Energy saving solutions only slow down processors dur-

ing communication are semi-optimal. Thus both CP-aware
slack reclamation and race-to-halt are expected to utilize
computation slack for further energy savings. The differ-
ence lies in that the former requires detection of CP and
calculation of the extent of slowing down per the amount
of slack, while the latter only needs to know when the slack
arises, which is much easier to implement and deploy. Figure
2 demonstrates that CP-aware slack reclamation succeeded
to lower power states down to an intermediate scale, i.e.,
the two medium-power durations around 850 Watts dur-
ing the third and the fourth computation as the blue line
shows. Whereas race-to-halt observed when the computa-
tion started and ended, and utilized the peak CPU perfor-
mance when it started and switched to the lowest power
state immediately when it ended. Moreover, the nature of
race-to-halt also guarantees no high-power states are em-
ployed during the waiting durations resulting from load im-
balance and data dependency, i.e., the two low-power dura-
tions in green where the application started and ended.

Performance Trade-off . Both energy saving approaches
incur minor performance loss while achieving considerable
power savings. Figure 3 illustrates slow-down of the two ap-
proaches compared to the original runs. The time overhead
on employing CP-aware slack reclamation and race-to-halt
are negligible: 3.5% and 3.9% on average respectively. Be-
sides the time overhead on employing the DVFS techniques,
additional performance loss is caused by both approaches in-
dividually. Detection of CP and slack and frequency calcula-
tion (in some cases frequency approximation is also needed)
are necessary to perform CP-aware slack reclamation. Race-
to-halt requires to monitor the completion of tasks to de-
termine the appropriate timing for power state switching.
Generally the time overhead incurred by both approaches
are acceptable in a message-passing HPC environment.

6. FUTURE WORK
The debate between energy efficiency of CP-aware slack

reclamation and race-to-halt is an ongoing issue as hardware
technologies advance. We intend to model and generalize
both solutions for more scientific applications and present
complete empirical evidence to validate our observations.
We also plan to apply improved solutions on emerging accel-
erated architectures for gaining the optimal energy savings.
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