UCVSC: A Formal Approach to UML Class Diagram
Online Verification Based on Situation Calculus

Li Tan*, Zongyuan Yang, Jinkui Xie
* = presenter

ICCIT 2009, Seoul, Korea, Nov. 24-26, 2009

Department of Computer Science and Technology,
East China Normal University,
Shanghai, 200241, China

http://www.cs.ecnu.edu.cn/

Supported by National Research Fund for the Doctoral Program of Higher Education of China
under Grant No. 20060269002, Natural Science Fund of Shanghai Municipality under Grant No.
09ZR1409500 and Key Project in Basic Research of Science and Technology Commission of
Shanghai Municipality under Grant No. 09JC1405000.

http://www.cs.ecnu.edu.cn/

Additional Acknowledgements for this presentation

* Other students involved:
Yefei Zhao, Qiang Liu and Kangle Cui

» Special thanks to:
Hugo/RT project lead by Alexander Knapp at LMU, Munich, Germany:

Hugo/RT is a UML model translator for model checking, theorem
proving, and code generation: A UML model containing active classes
with state machines, collaborations, interactions, and OCL constraints
can be translated into the system languages of the real-time model
checker UrPPAAL, the on-the-fly model checker SPIN, the system
language of the theorem prover KV, and into Java and SystemC code.

See also: http://www.pst.ifi.Imu.de/projekte/hugo/

http://www.pst.ifi.lmu.de/projekte/hugo/

Agenda

* QOverview of the problem of UML informalism

Why situation calculus?

« Background knowledge (UML vs. XMI, situation calculus)

* Qutline of the prototype system, UCVSC

* Formalization of an academic system in UML class diagram
* Implementation and verification

* Prospective routes for improvement

Agenda

* QOverview of the problem of UML informalism

Why situation calculus?

« Background knowledge (UML vs. XMI, situation calculus)

* Qutline of the prototype system, UCVSC

* Formalization of an academic system in UML class diagram
* Implementation and verification

* Prospective routes for improvement

Overview of the problem of UML informalism

* Due to the informal graphical notation of UML, flaws
cannot be found in the design phase but in the execution
phase, which may cost a lot. (50% T, by software testing)
— To provide UML precise formal semantics is in the spotlight
— Formal methods such as formal specification and formal verification

— Incompleteness of requirements, incorrectness of representation
and inconsistency of different understanding towards system design

can be eliminated (“ 3 1 ” Principles)
* UML class diagram is indispensable and worth being verified
— UML class diagram specifies the structure of a system statically

— The information it contains is vital and indispensable to the whole
design process

Agenda

Why situation calculus?

« Background knowledge (UML vs. XMI, situation calculus)

* Qutline of the prototype system, UCVSC

* Formalization of an academic system in UML class diagram
* Implementation and verification

* Prospective routes for improvement

How situation calculus Deals with These Problems

* With respect to all aspects in UML class diagram, the
strength of reasoning about actions and describing the
state of the world in situation calculus can apply to
represent them appropriately.

— Though statically deployed as a whole, UML class diagram also has
some locally such as

and , the three main relationships
between classes, which is just situation calculus good at

— The static ingredient in UML class diagram can be described by
element in a first-order way easily

Agenda

« Background knowledge (UML vs. XMI, situation calculus)

* Qutline of the prototype system, UCVSC

« Formalization of an academic system in UML class diagram
« Implementation and verification

* Prospective routes for improvement

UML vs. XMI

From the initiate idea of introducer, XMI (XML Metadata
Interchange) is a framework for defining, interchanging,
manipulating and integrating XML data and objects.

— Used for integration of tools, applications, repositories, data
warehouses (device independence of UML modelling)

— Typically used as interchange format for UML models

* Tool supports for transformation from UML to XMl
— Rational Rose, Poseidon For UML, ArgoUML, Enterprise Architect

* Why choose ArgoUML?
- (10.6MB for installed files which exceeds the other three)
— Relatively of XMI file generated (easier to parse)

The ABC's of situation calculus

 Introduced by John McCathy in 1963, situation calculus has
been widely applied in Artificial Intelligence related
research and other fields.

— A dialect of logic language

— Mostly used in dynamic domain modeling

« Key concepts in situation calculus

— Action, Situation and Fluent
¢ An action represents any possible change to the world

¢ A situation represents a possible world history, simply a sequence of
actions

¢ A fluent represents a relation or a function whose truth values varies
from one situation to the next, called relational fluent or functional
fluent respectively

— Two predefined binary symbols: Function do and Predicate Poss
¢ do: Action X Situation — Situation eg.: do(a, s)
¢ Poss: Action X Situation eg.: Poss(a, S)

Agenda

Outline of the prototype system, UCVSC

Formalization of an academic system in UML class diagram

Implementation and verification

Prospective routes for improvement

Outline UML Class diagram online Verification based on Situation Calculus
\

* To describe it more directly, the s),verall architecture of our
prototype verification system, UCVSC, is shown as follows:

Target UML - XMI file Mapping o > Prolc?g - X Result
system tools - compiler ‘
e |
I | | I
| | Instance of To program| |
MararaHiic Biégidising : ! ! : Automatically:
takgle toytstemdnoaleping | MOF Situation | | Verify the model with
nled tdoassform || metamodel Calculus | | Prolog compiler and
I

(actually translate) UML |
class diagram to the
Prolog script in situation
calculus.

give out result

Agenda

Formalization of an academic system in UML class diagram

Implementation and verification

Prospective routes for improvement

An Academic System in UML Class Diagram and
Formalization of It

* As a case study, we show an academic system in university
in terms of UML class diagram and formalize it by situation
calculus as follows:

Definition 1. A formal structure of a UML class diagram in situation
calculus is

x .= <Cl, As, G, Ag, Co, D>, where
Cl: a finite set of classes, // ‘Cl’ stands for ‘Class’
As: C « C, a bijection between two classes, // ‘As’: ‘Association’

G: C — C, an injection from a child class to its parent class, // ‘G’:
‘Generalization’

Ag: C — C, an injection from a part class to its shared aggregation
class, // ‘Ag’: ‘Aggregation’

Co: C — C, an injection from a part class to its composite aggregation
class, // ‘Co’: ‘Composite’

D: C — C, an injection from a friend class to its independent class. //
‘D’: ‘Dependency’

An Academic System in UML Class Diagram and
Formalization of It (Cont.)

« The academic system model in UML class diagram is below:

Faculty Instructar
Person Role facultylD : int courseMum : int
f'IIEf'I"IE ' strm;;a ap—— duration : string < title : string {]—
birthday - string | - R _ tauahte
query0 : void information : string gnioy 1+
Transcript Student teaches
course . Course studentiD ; int
grace ;. int ; departmentlD : int
1 = transcripty . coursesTaught 4 *
addEntry) © woid recisten() - void B
deleteEntry() - void dropd) - void 1.x lakes 4 e
. _ ourse K

modify Entey O - woid 1] enralled taking _ =
query() : void include1 Jinclude2 courselD: int

: 1 1 name ;. string

' information © string

[UnderGraduate || Graduate

|

: cuery () woid

| N

dcLesses

prereguisite

An Academic System in UML Class Diagram and
Formalization of It (Cont.)

* Mapping mechanism definition between UML class diagram
and situation calculus are as follows:
Definition 2. Mapping from UML class diagram to situation calculus

UML class diagram situation calculus
Class Functional Fluent
Association Relational Fluent/Action
Generalization Action
Aggregation Action
Composition Action
Dependency Action

Definition 3. A formal model transformation rules from basic
elements of UML class diagram to Prolog script which implements
situation calculus can be defined in the follow table:

An Academic System in UML Class Diagram and
Formalization of It (Cont.)

Transformation rules definition among UML class diagram,
XMI and Prolog script (See examples as follows):
— Class ‘Faculty’ (Elements in UML class diagram in plain text)
equals UML:Class name = ‘Faculty’ (XM script)
equals Class(Faculty, s) (Prolog script)
— Association ‘takes’ between Class Student and Course (UML class D)

equals UML:Association name = ‘takes’
UML:AssociationEnd.participant (XMl script)

equals takes(Student, Course, s) (Prolog script)
— Generalization from ‘Instructor’ to ‘Faculty’ (UML class D)

equals UML:Generalization name = ‘FtoP’
UML:Generalization.child (XMl script)

equals Inherit(Instructor, Faculty, s) (Prolog script)

Agenda

Implementation and verification

Prospective routes for improvement

Algorithm for Generalization: transform XMI
script to Prolog script

* When parsing the XMl file transformed from UML class
diagram of the target system, we propose the following
algorithm to formally transform XMI script to situation
calculus in Prolog syntax, a compacter format than XMI:

— Since the others are , only the algorithm for the path type of
Generalization in UML class diagram is given out

— This algorithm is not written strictly in terms of standard format,
but in

— This algorithm is mainly based on , Which is determined by

Algorithm for Generalization: transform XMI
script to Prolog script (Cont.)

Procedure transform_generalization()
1 for each UML.Model in XMl.content in XMI
2 extract attributes.name;

3 gen_exist = false; // global variable

4 for each UML.Class

5 extract attributes.name;

6 print “Class(attributes.name, s)”;

7 If(UML.GeneralizableElement.generalization != null)

8 gen_exist = attributes.id,;

9 for each UML.Attribute

10 extract attributes.name;

11 for each UML.Operation

12 extract attributes.name;

13 iIf(gen_exist 1= false)

14 for each UML.Generization

15 for each UML.Generization.child

16 extract child.name; // retrieved by class_id
17 for each UML.Generization.parent

18 extract parent.name; // retrieved by class_id
19 print “Inherit(child.name, parent.name, S)”;

end.

Implementation of the Prototype System and
Verification of the Model

Based on the structure and function of different parts
described above, the prototype system of UML class
diagram online verification tool is implemented by Perl

— Working Principle: After reading the XMl file generated by ArgoUML,
this verification tool parses every node, extracts and then translates
the information needed to a Prolog script. Finally, our tool will call
SWI-Prolog, a Prolog compiler (actually interpreter) to execute this
Prolog script and then display the result given out by SWI-Prolog

Implementation of the Prototype System and
Verification of the Model (Cont.

The following figure shows the user interface of our
prototype system:

ck” s THL Yerification Tool — ¥Windows Internet Ezplorer

@ I |g. http:/F127.0.0. 1 egi-bin/IMLYeriTool /UCYSC/ form. cgi?filepath=CHIARSCIMLY eriT ool ¥SCUCYSCHECEiles¥Elar ¥ || X

B
ITEE EEE BEFY WEXRe TR FEhm
Go 8[E| v (MR- o DB - qpEiE- SEs- O 85 2 EE - LR - @ darlh. . v
S b [{émck‘s WNL Verification Tosl I l M- B M= - rWEE - GTREO -
- UML Class diagram Verification tool based on Situation Calculus -
|
— XMl Code Area — Result Area
Input your XMl text (or open it above directly): Parsing result as a Prolog scriptin Situation Calculus:
<?znl wersion = '1.0° encoding = "UTF-8" 7> fad Class (Course, 50) »~
CEIMI xmi.wersion = "1.2° xmlns:TML E Class (Instructor, 30}
= "org.omg. xmi.namespace. UML" timestamp = " Sun Jul
19 20:34:04 C5T 2009 » Inherit (Faculty, Role, 35)
<¥NI. header> <¥MI. document ation> Inherit (Student, Role, 3}
<IMI. exporter>irgolML (using Netbeans ¥MI Inherit (Instructor, Faculty, 3)
Writer wersion 1.0)</ENI.exporter> transcript (Transcript, Student, 3)
CEIMI. exporterVersion>0. 28(A) revized on teaches {(Instructor, Course, 5)
$Date: 2007-05-12 08:08:08 +0200 (Sat, 12 May prerequisite (Course, Course, 35)
2007) § </fMI.exporterVersion» takes (Student, Courze, S)
</EMI. document at i9ﬂ> Comp (5tudent, UnderGraduate, 5)
<EMI. metamodel xmi.name="TML Comp (Student, Graduate, 5)
zmi.version="1.4"/></ENI. header> Comp (Person, Role, S)
<ENMI. content >
SUML:Multiplicity =mi.id = "-34--52--24-46- Student (21)
1deb&122: 122744d4012:~8000: 000000000000ODOE" > Courss (o1)
<U'h‘|l.:]‘f[u1tip2!.ic:?.t3.f. range’ .) {3=1){Jecllenrolled(=l, cl, 3}
<IML:MultiplicityRange zmi.id = "-34-——562— Poss{drop(zl, cl), S} = enrolled
24-46-1deb8122: 1227444401 a:-8000: 0000000000000D0C7 (=1, cl, 5
lower = " 1" upper = "1"/> entrolled(sl, cl, dofa, 5)) = a=
<STML:Multiplicity. range> register (=1, cl)%enrolledisl, cl, 5)
<UML:Multiplicity> v Ma #=dropisl, cl) v
~Mick Tan All rights reserved -
—~ECNU CS Software Engineering Lab 2009.07--

E Q Internet

F100% -

Implementation of the Prototype System and
Verification of the Model (Cont.)

* If we use SWI-Prolog to execute the Prolog script generated
by our tool, it will pass on the premise that the design of
the academic system described as above is correct. What if
the design is bad? Now, let’s take a look at another design
version of the same academic system in the next figure:

Person Faculty Instructor
name ;. string facultylD : int courseium ;int
:] departmentiD | int {:]]
fitle : string
\Z information ; string taughtBy 1
- guery () ; voicl
Transcript Student teaches
*'::;59] ‘:"‘"SE studentiD * int
ain
a departmert|D : int coursesTaught q»
addEntry() - vokd) 1.7 transcript 1.7 |register]) ; void + lakes .)
deleteEntryd) : void 1. 1. Course
modify Entry(: void 1 b 1 enrolled taking 0.7
query() | void |rﬁ|ude1 include? courselD ; int
T 1 narme - string
: UMErGr&ﬂJQtE Graﬂuﬁt& wfurmahon : strng prerequsﬂe
. o
: premiu ;. ind quEy(- void
N 0

accesses [

Implementation of the Prototype System and
Verification of the Model (Cont.)

« Apparently the difference between 2 designs lies in
(i.e., class Person becomes
the direct parent class of class Faculty and Student).

* Then problem comes. The latter design
. Virtually, it’s a commonplace for a
teacher to get further study in the same university. Thus,
it’s incorrect and unreasonable to delete abstract class
Role in the latter figure.

— Fortunately, with the help of Prolog compiler, the Prolog script as

follows cannot pass. // A student and teacher case in Prolog script
Course(CS01, S0);
Course(CS04, S0);

Student(Nick, S0);

take(Nick, CS04, S);
teach(Nick, CS01, S);

Agenda

* QOverview of the problem of UML informalism

Why situation calculus?

» Background knowledge (UML vs. XMI, situation calculus)

* Qutline of the prototype system, UCVSC

 Formalization of an academic system in UML class diagram
* Implementation and verification

« Prospective routes for improvement

Prospective routes for improvement

 Qur contributions and value of work:

— With the help of UCVSC, the formal online verification tool for UML
class diagram we have developed, software architecture engineers
who design a software system can find the incorrectness in static
structure of this system in advance, rather than to redesign when
codes have been written and some problems have been found then

¢ Indispensability of UML class diagram
O General purpose of XMI Integrated by UCVSC

¢ Powerful reasoning ability of Situation Calculus
* There is still much work for further research:
— The final step is not automatic but manual
— Most elements in UML class diagram are referred to but not entirely
— Other UML diagrams and more formal languages should be involved

— More intelligent factors such as accessibility of verification options
configurable by users would be concerned (aim of our new platform)

References

[1] J. Rumbaugh, I. Jacobson, G. Booch, The Unified Modeling Language Reference Manual,
Pearson Higher Education, Boston, 2005.

[2] OMG: UML 2.0 Superstructure Specification, version ptc/04-10-02. Object Management
Group, Inc., Needham, MA, http://www.omg.org, 2004.

[3] M. Gogolla, F Buttner. M. Richters, “USE: A UML-based specification environment for
validating UML and OCL,” Science of Computer Programming, vol. 69, pp. 27-34, 2007.

[4] R.V.D. Straeten, T. Mens, J. Simmonds, V. Jonckers, “Using description logic to maintain
consistency between UML models,” LNCS, vol. 2863, pp. 326-340, Springer, Heidelberg,
2003.

[5] J. McCarthy, “Situations, actions and causal laws,” Stanford Artificial Intelligence
Project, Memo 2, 1963.

[6] M. Gogolla, P. Ziemann, S. Kuske, “Towards an Integrated Graph Based Semantics for
UML,” Electr. Notes Theor. Comput. Sci, vol. 72, 2003.

[7] J. Kong, K. Zhang, J. Dong, D. Xu, “Specifying Behavioral Semantics of UML Diagrams
through Graph Transformations,” The Journal of Systems and Software, vol. 82, pp. 292-
306, 20009.

[8] J. Dong, Y. Zhao, Y. Sun, “XSLT-based evolutions and analyses of design patterns”.
Software: Practice and Experience. vol. 39, pp. 773-805, 2009.

[9] A. Knapp, S. Merz, Hugo/RT, http://www.pst.ifi.Imu.de/projekte/hugo/, 2004.

[10] OMG, XML Metadata Interchange, version 1.2, Object Management Group, Inc.,
Needham, MA, http://www.omg.org/, 2002.

[11] OMG, Meta Object Facility Specification, version 1.4, Object Management Group, Inc.,
Needham, MA, http://www.omg.org/, 2002.

[12] B. Li, J. lijima, “A Survey on Application of situation calculus in Business Information
Systems,” Proc. International Conference on Convergence Information Technology (ICCIT
07), pp. 425-431, 2007.

http://www.omg.org
http://www.pst.ifi.lmu.de/projekte/hugo/
http://www.omg.org/
http://www.omg.org/

Thanks

