
* = presenter

Department of Computer Science and Technology,
East China Normal University,

Shanghai, 200241, China
http://www.cs.ecnu.edu.cn/

Supported by National Research Fund for the Doctoral Program of Higher Education of China
under Grant No. 20060269002, Natural Science Fund of Shanghai Municipality under Grant No.
09ZR1409500 and Key Project in Basic Research of Science and Technology Commission of
Shanghai Municipality under Grant No. 09JC1405000. 1

http://www.cs.ecnu.edu.cn/

Other students involved:
Yefei Zhao, Qiang Liu and Kangle Cui

Special thanks to:
Hugo/RT project lead by Alexander Knapp at LMU, Munich, Germany:

Hugo/RT is a UML model translator for model checking, theorem
proving, and code generation: A UML model containing active classes
with state machines, collaborations, interactions, and OCL constraints
can be translated into the system languages of the real-time model
checker UPPAAL, the on-the-fly model checker SPIN, the system
language of the theorem prover KIV, and into Java and SystemC code.

See also: http://www.pst.ifi.lmu.de/projekte/hugo/

http://www.pst.ifi.lmu.de/projekte/hugo/

total
To provide UML precise formal semantics is in the spotlight
Formal methods such as formal specification and formal verification
Incompleteness of requirements, incorrectness of representation
and inconsistency of different understanding towards system design
can be eliminated (“ 3 I ” Principles)

UML class diagram specifies the structure of a system statically
The information it contains is vital and indispensable to the whole
design process

Though statically deployed as a whole, UML class diagram also has
some dynamic features locally such as generalizations,
dependencies and associations, the three main relationships
between classes, which is just situation calculus good at
The static ingredient in UML class diagram can be described by
situation element in a first-order way easily

Used for integration of tools, applications, repositories, data
warehouses (device independence of UML modelling)
Typically used as interchange format for UML models

Rational Rose, Poseidon For UML, ArgoUML, Enterprise Architect

Thinness (10.6MB for installed files which exceeds the other three)
Relatively smaller size of XMI file generated (easier to parse)

A dialect of logic language
Mostly used in dynamic domain modeling

Action, Situation and Fluent
An action represents any possible change to the world
A situation represents a possible world history, simply a sequence of
actions
A fluent represents a relation or a function whose truth values varies
from one situation to the next, called relational fluent or functional
fluent respectively

Two predefined binary symbols: Function do and Predicate Poss
do: Action × Situation → Situation eg.: do(a, s)
Poss: Action × Situation eg.: Poss(a, s)

UML Class diagram online Verification based on Situation Calculus

Manually: Design a
target system model
in UML tools

Automatically: Using
UML tools and mapping
rules ω, transform
(actually translate) UML
class diagram to the
Prolog script in situation
calculus.

Automatically:
Verify the model with
Prolog compiler and
give out result

Definition 1Definition 1. A formal structure of a UML class diagram in situation
calculus is

χc = <Cl, As, G, Ag, Co, D>, where
Cl: a finite set of classes, // ‘Cl’ stands for ‘Class’
As: C C, a bijection between two classes, // ‘As’: ‘Association’
G: C → C, an injection from a child class to its parent class, // ‘G’:

‘Generalization’
Ag: C → C, an injection from a part class to its shared aggregation

class, // ‘Ag’: ‘Aggregation’
Co: C → C, an injection from a part class to its composite aggregation

class, // ‘Co’: ‘Composite’
D: C → C, an injection from a friend class to its independent class. //

‘D’: ‘Dependency’

Definition 2Definition 2. Mapping from UML class diagram to situation calculus

Definition 3Definition 3. A formal model transformation rules from basic
elements of UML class diagram to Prolog script which implements
situation calculus can be defined in the follow table:

ActionDependency

ActionComposition

ActionAggregation

ActionGeneralization

Relational Fluent/ActionAssociation

Functional FluentClass

situation calculusUML class diagram

Class ‘Faculty’ (Elements in UML class diagram in plain text)
equals UML:Class name = ‘Faculty’ (XMI script)
equals Class(Faculty, s) (Prolog script)
Association ‘takes’ between Class Student and Course (UML class D)
equals UML:Association name = ‘takes’

UML:AssociationEnd.participant (XMI script)
equals takes(Student, Course, s) (Prolog script)
Generalization from ‘Instructor’ to ‘Faculty’ (UML class D)
equals UML:Generalization name = ‘FtoP’

UML:Generalization.child (XMI script)
equals Inherit(Instructor, Faculty, s) (Prolog script)

Since the others are similar, only the algorithm for the path type of
Generalization in UML class diagram is given out
This algorithm is not written strictly in terms of standard format,
but in the similar syntax of Perl
This algorithm is mainly based on iteration, which is determined by
the structure of XMI

Procedure transform_generalization()
1 for each UML.Model in XMI.content in XMI
2 extract attributes.name;
3 gen_exist = false; // global variable
4 for each UML.Class
5 extract attributes.name;
6 print “Class(attributes.name, s)”;
7 if(UML.GeneralizableElement.generalization != null)
8 gen_exist = attributes.id;
9 for each UML.Attribute
10 extract attributes.name;
11 for each UML.Operation
12 extract attributes.name;
13 if(gen_exist != false)
14 for each UML.Generization
15 for each UML.Generization.child
16 extract child.name; // retrieved by class_id
17 for each UML.Generization.parent
18 extract parent.name; // retrieved by class_id
19 print “Inherit(child.name, parent.name, S)”;
end.

Working Principle: After reading the XMI file generated by ArgoUML,
this verification tool parses every node, extracts and then translates
the information needed to a Prolog script. Finally, our tool will call
SWI-Prolog, a Prolog compiler (actually interpreter) to execute this
Prolog script and then display the result given out by SWI-Prolog

Fortunately, with the help of Prolog compiler, the Prolog script as
follows cannot pass. // A student and teacher case in Prolog script

Course(CS01, S0);
Course(CS04, S0);
...
Student(Nick, S0);
...
take(Nick, CS04, S);
teach(Nick, CS01, S);

With the help of UCVSC, the formal online verification tool for UML
class diagram we have developed, software architecture engineers
who design a software system can find the incorrectness in static
structure of this system in advance, rather than to redesign when
codes have been written and some problems have been found then

Indispensability of UML class diagram
General purpose of XMI
Powerful reasoning ability of Situation Calculus

The final step is not automatic but manual
Most elements in UML class diagram are referred to but not entirely
Other UML diagrams and more formal languages should be involved
More intelligent factors such as accessibility of verification options
configurable by users would be concerned (aim of our new platform)

Integrated by UCVSC

[1] J. Rumbaugh, I. Jacobson, G. Booch, The Unified Modeling Language Reference Manual,
Pearson Higher Education, Boston, 2005.

[2] OMG: UML 2.0 Superstructure Specification, version ptc/04-10-02. Object Management
Group, Inc., Needham, MA, http://www.omg.org, 2004.

[3] M. Gogolla, F Büttner. M. Richters, “USE: A UML-based specification environment for
validating UML and OCL,” Science of Computer Programming, vol. 69, pp. 27–34, 2007.

[4] R.V.D. Straeten, T. Mens, J. Simmonds, V. Jonckers, “Using description logic to maintain
consistency between UML models,” LNCS, vol. 2863, pp. 326–340, Springer, Heidelberg,
2003.

[5] J. McCarthy, “Situations, actions and causal laws,” Stanford Artificial Intelligence
Project, Memo 2, 1963.

[6] M. Gogolla, P. Ziemann, S. Kuske, “Towards an Integrated Graph Based Semantics for
UML,” Electr. Notes Theor. Comput. Sci, vol. 72, 2003.

[7] J. Kong, K. Zhang, J. Dong, D. Xu, “Specifying Behavioral Semantics of UML Diagrams
through Graph Transformations,” The Journal of Systems and Software, vol. 82, pp. 292–
306, 2009.

[8] J. Dong, Y. Zhao, Y. Sun, “XSLT-based evolutions and analyses of design patterns”.
Software: Practice and Experience. vol. 39, pp. 773–805, 2009.

[9] A. Knapp, S. Merz, Hugo/RT, http://www.pst.ifi.lmu.de/projekte/hugo/, 2004.
[10] OMG, XML Metadata Interchange, version 1.2, Object Management Group, Inc.,

Needham, MA, http://www.omg.org/, 2002.
[11] OMG, Meta Object Facility Specification, version 1.4, Object Management Group, Inc.,

Needham, MA, http://www.omg.org/, 2002.
[12] B. Li, J. Iijima, “A Survey on Application of situation calculus in Business Information

Systems,” Proc. International Conference on Convergence Information Technology (ICCIT
07), pp. 425–431, 2007.

http://www.omg.org
http://www.pst.ifi.lmu.de/projekte/hugo/
http://www.omg.org/
http://www.omg.org/

