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Overview of the problem of UML informalism

* Due to the informal graphical notation of UML, flaws
cannot be found in the design phase but in the execution
phase, which may cost a lot. (50% T, by software testing)
— To provide UML precise formal semantics is in the spotlight
— Formal methods such as formal specification and formal verification

— Incompleteness of requirements, incorrectness of representation
and inconsistency of different understanding towards system design

can be eliminated (“ 3 1 ” Principles)
* UML class diagram is indispensable and worth being verified
— UML class diagram specifies the structure of a system statically

— The information it contains is vital and indispensable to the whole
design process
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How situation calculus Deals with These Problems

* With respect to all aspects in UML class diagram, the
strength of reasoning about actions and describing the
state of the world in situation calculus can apply to
represent them appropriately.

— Though statically deployed as a whole, UML class diagram also has
some locally such as

and , the three main relationships
between classes, which is just situation calculus good at

— The static ingredient in UML class diagram can be described by
element in a first-order way easily
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UML vs. XMI

From the initiate idea of introducer, XMI (XML Metadata
Interchange) is a framework for defining, interchanging,
manipulating and integrating XML data and objects.

— Used for integration of tools, applications, repositories, data
warehouses (device independence of UML modelling)

— Typically used as interchange format for UML models

* Tool supports for transformation from UML to XMl
— Rational Rose, Poseidon For UML, ArgoUML, Enterprise Architect

* Why choose ArgoUML?
- (10.6MB for installed files which exceeds the other three)
— Relatively of XMI file generated (easier to parse)



The ABC's of situation calculus

 Introduced by John McCathy in 1963, situation calculus has
been widely applied in Artificial Intelligence related
research and other fields.

— A dialect of logic language

— Mostly used in dynamic domain modeling

« Key concepts in situation calculus

— Action, Situation and Fluent
¢ An action represents any possible change to the world

¢ A situation represents a possible world history, simply a sequence of
actions

¢ A fluent represents a relation or a function whose truth values varies
from one situation to the next, called relational fluent or functional
fluent respectively

— Two predefined binary symbols: Function do and Predicate Poss
¢ do: Action X Situation — Situation eg.: do(a, s)
¢ Poss: Action X Situation eg.: Poss(a, S)



Agenda

Outline of the prototype system, UCVSC

Formalization of an academic system in UML class diagram

Implementation and verification

Prospective routes for improvement



Outline UML Class diagram online Verification based on Situation Calculus
\

* To describe it more directly, the s),verall architecture of our
prototype verification system, UCVSC, is shown as follows:
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An Academic System in UML Class Diagram and
Formalization of It

* As a case study, we show an academic system in university
in terms of UML class diagram and formalize it by situation
calculus as follows:

Definition 1. A formal structure of a UML class diagram in situation
calculus is

x .= <Cl, As, G, Ag, Co, D>, where
Cl: a finite set of classes, // ‘Cl’ stands for ‘Class’
As: C « C, a bijection between two classes, // ‘As’: ‘Association’

G: C — C, an injection from a child class to its parent class, // ‘G’:
‘Generalization’

Ag: C — C, an injection from a part class to its shared aggregation
class, // ‘Ag’: ‘Aggregation’

Co: C — C, an injection from a part class to its composite aggregation
class, // ‘Co’: ‘Composite’

D: C — C, an injection from a friend class to its independent class. //
‘D’: ‘Dependency’



An Academic System in UML Class Diagram and
Formalization of It (Cont.)

« The academic system model in UML class diagram is below:
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An Academic System in UML Class Diagram and
Formalization of It (Cont.)

* Mapping mechanism definition between UML class diagram
and situation calculus are as follows:
Definition 2. Mapping from UML class diagram to situation calculus

UML class diagram situation calculus
Class Functional Fluent
Association Relational Fluent/Action
Generalization Action
Aggregation Action
Composition Action
Dependency Action

Definition 3. A formal model transformation rules from basic
elements of UML class diagram to Prolog script which implements
situation calculus can be defined in the follow table:



An Academic System in UML Class Diagram and
Formalization of It (Cont.)

Transformation rules definition among UML class diagram,
XMI and Prolog script (See examples as follows):
— Class ‘Faculty’ (Elements in UML class diagram in plain text)
equals UML:Class name = ‘Faculty’ (XM script)
equals Class(Faculty, s) (Prolog script)
— Association ‘takes’ between Class Student and Course (UML class D)

equals UML:Association name = ‘takes’
UML:AssociationEnd.participant (XMl script)

equals takes(Student, Course, s) (Prolog script)
— Generalization from ‘Instructor’ to ‘Faculty’ (UML class D)

equals UML:Generalization name = ‘FtoP’
UML:Generalization.child (XMl script)

equals Inherit(Instructor, Faculty, s) (Prolog script)
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Algorithm for Generalization: transform XMI
script to Prolog script

* When parsing the XMl file transformed from UML class
diagram of the target system, we propose the following
algorithm to formally transform XMI script to situation
calculus in Prolog syntax, a compacter format than XMI:

— Since the others are , only the algorithm for the path type of
Generalization in UML class diagram is given out

— This algorithm is not written strictly in terms of standard format,
but in

— This algorithm is mainly based on , Which is determined by



Algorithm for Generalization: transform XMI
script to Prolog script (Cont.)

Procedure transform_generalization()
1 for each UML.Model in XMl.content in XMI
2 extract attributes.name;

3 gen_exist = false; // global variable

4  for each UML.Class

5 extract attributes.name;

6 print “Class(attributes.name, s)”;

7 If(UML.GeneralizableElement.generalization != null)

8 gen_exist = attributes.id,;

9 for each UML.Attribute

10 extract attributes.name;

11 for each UML.Operation

12 extract attributes.name;

13 iIf(gen_exist 1= false)

14 for each UML.Generization

15 for each UML.Generization.child

16 extract child.name; // retrieved by class_id
17 for each UML.Generization.parent

18 extract parent.name; // retrieved by class_id
19 print “Inherit(child.name, parent.name, S)”;

end.



Implementation of the Prototype System and
Verification of the Model

Based on the structure and function of different parts
described above, the prototype system of UML class
diagram online verification tool is implemented by Perl

— Working Principle: After reading the XMl file generated by ArgoUML,
this verification tool parses every node, extracts and then translates
the information needed to a Prolog script. Finally, our tool will call
SWI-Prolog, a Prolog compiler (actually interpreter) to execute this
Prolog script and then display the result given out by SWI-Prolog



Implementation of the Prototype System and
Verification of the Model (Cont.

The following figure shows the user interface of our
prototype system:
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Implementation of the Prototype System and
Verification of the Model (Cont.)

* If we use SWI-Prolog to execute the Prolog script generated
by our tool, it will pass on the premise that the design of
the academic system described as above is correct. What if
the design is bad? Now, let’s take a look at another design
version of the same academic system in the next figure:
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Implementation of the Prototype System and
Verification of the Model (Cont.)

« Apparently the difference between 2 designs lies in
(i.e., class Person becomes
the direct parent class of class Faculty and Student).

* Then problem comes. The latter design
. Virtually, it’s a commonplace for a
teacher to get further study in the same university. Thus,
it’s incorrect and unreasonable to delete abstract class
Role in the latter figure.

— Fortunately, with the help of Prolog compiler, the Prolog script as

follows cannot pass. // A student and teacher case in Prolog script
Course(CS01, S0);
Course(CS04, S0);

Student(Nick, S0);

take(Nick, CS04, S);
teach(Nick, CS01, S);
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Prospective routes for improvement

 Qur contributions and value of work:

— With the help of UCVSC, the formal online verification tool for UML
class diagram we have developed, software architecture engineers
who design a software system can find the incorrectness in static
structure of this system in advance, rather than to redesign when
codes have been written and some problems have been found then

¢ Indispensability of UML class diagram
O General purpose of XMI Integrated by UCVSC

¢ Powerful reasoning ability of Situation Calculus
* There is still much work for further research:
— The final step is not automatic but manual
— Most elements in UML class diagram are referred to but not entirely
— Other UML diagrams and more formal languages should be involved

— More intelligent factors such as accessibility of verification options
configurable by users would be concerned (aim of our new platform)
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