
UCVSC: A Formal Approach to UML Class Diagram Online Verification Based on
Situation Calculus

Li Tan, Zongyuan Yang and Jinkui Xie
Department of Computer Science and Technology

East China Normal University
Shanghai, China

darkwhite29@gmail.com, {yzyuan, jkxie}@cs.ecnu.edu.cn

Abstract—The gap between informal models used in a UML
environment and formal verifications and proofs in academic
research prevents UML from valid and efficient application. In
this paper, we propose an approach to bridge the gap between
UML class diagram and situation calculus via our formal
verification tool, UCVSC (UML Class diagram online
Verification based on Situation Calculus). UML class diagram
describes a software system informally while situation calculus
is employed as the underlying formalism to precisely specify
the system. With respect to most components in UML class
diagram, the strength of reasoning about actions and
describing the state of the world in situation calculus can be
applied to represent them appropriately. Using UML tools and
predefined mapping mechanism, we transform UML class
diagram to XMI, an intermediate format, and finally to
situation calculus in Prolog syntax. This approach attempts to
provide precise semantics of UML class diagram which can be
logically verified. In addition, we automate the verification
process in an online prototype system. Furthermore, a case
study on an academic system is presented to illustrate and
evaluate our approach.*

Keywords-UCVSC; UML class diagram; XMI; situation
calculus; online prototype system

I. INTRODUCTION

With evolution of the process of software development,
the design phase of software engineering becomes greatly
concerned. For its powerful model capability and general
purpose, UML [1][2] is increasingly popular in the design
process of object-oriented software system nowadays.
Enhancing from the rapid-changed version and embracing
some new concepts in software engineering nowadays, UML
tries to keep pace with emerging requirements and gradually
gets more accredited by industry.

A. The Problems
UML has been bringing a revolution of software design

generalization, whereas due to the informal graphical
notation of UML, flaws cannot be found in the design phase

* This work is supported by National Research Fund for the
Doctoral Program of Higher Education of China under Grant No.
20060269002, Natural Science Fund of Shanghai Municipality
under Grant No. 09ZR1409500 and Key Project in Basic Research
of Science and Technology Commission of Shanghai Municipality
under Grant No. 09JC1405000.

but in the execution phase, which may cost a lot. Recently, to
provide UML, the industrial de facto standard, firm
foundation of formal semantics is in the spotlight and it is
getting popular to analyze UML models from a viewpoint of
formal methods such as formal specification [3] and formal
verification [4]. As part of the modern software engineering,
the UML Formal Verification (UFV) emphasizes the
correctness and soundness checks of system modeling
throughout the design process, and this behavior attempts to
use formal methods, the precise mathematical fundamentals,
to make up for the lack of formalism of UML itself. Hence,
the inconsistency of different understanding to system design
can be eliminated.

Using the components of a class and the relationships
among classes, UML class diagram specifies the structure of
a system by a static pathway and it is often regarded as the
foundation of other UML diagrams such as UML statechart
and collaboration. Obviously, though UML class diagram
holds a concise definition and a small size, the information it
contains is vital and indispensable to the whole design
process. Thus, it is also important to make some verification
on UML class diagram.

Although research related to UFV exists, a great deal of
related work focuses on not the verification process but the
mapping mechanism between UML models and formal
languages, our work try to provide a more integrative and
dynamic design environment for UML users, i.e., a web-
based prototype system for UML class diagram formal
verification is presented for UML users to dynamic verify
their design draft.

B. How Situation Calculus Deals with These Problems
In UCVSC, we focuses on situation calculus [5] from the

perspective of describing UML graphic notation formally,
especially class diagram. With respect to all aspects in UML
class diagram, the strength of reasoning about actions and
describing the state of the world in situation calculus can
apply to represent them appropriately.

The reason why situation calculus is employed as the
underlying formalism is given as follows. Though statically
deployed as a whole, UML class diagram also has some
dynamic features locally such as generalizations,
dependencies and associations, the three main relationships
between classes. As we know, the strength of situation
calculus is its capability of representing and reasoning about
actions. Moreover, the static ingredient in UML class

2009 Fourth International Conference on Computer Sciences and Convergence Information Technology

978-0-7695-3896-9/09 $26.00 © 2009 IEEE

DOI 10.1109/ICCIT.2009.307

375

diagram can be described by situation element in a first-order
way easily. Hence, it’s sufficient for situation calculus to
precisely specify the semantics in UML class diagram and
the attempt to formalize UML class diagram by situation
calculus is feasible logically.

The rest of this paper is organized into four sections.
Firstly, the formalization of UML diagrams in previous work
of others will be simply reviewed in Section 2. In Section 3,
brief introduction to XMI and situation calculus will be
given. Then, our formal approach and the implementation of
an online prototype system are elaborated in Section 4.
Finally, the conclusion and future work are put forwarded in
Section 5.

II. RELATED WORK

The formalization of UML diagrams has been widely
studied [6][7][8]. Some of them are really good jobs and the
core concepts they’ve proposed are accepted in a large scale.
A formal framework is provided to support visual simulation
of UML models composed of class, object, state, sequence
and collaboration diagrams and an integrated semantics of
these models is presented in [6]. However, it only focus on
the semantics building and transformation rules of UML
diagrams, but the verification of modeling process is not
considered. Furthermore, a graphical yet formal approach is
offered to specify the behavioral semantics of statechart
diagrams using graph transformation techniques in [7].
Additionally, a powerful transformation tool was developed
by Alexander Knapp’s group [9], i.e., Hugo/RT, an excellent
UML model translator for model checking, theorem proving,
and code generation, is famous for its comprehensiveness in
the variety of destination languages. The formal languages
that Hugo/RT doesn’t refer to are situation calculus and Pi-
Calculus, etc.

The fact that UML models are represented in the XMI
format greatly facilitates the transformations. To adapt to
XMI, a web-based tool for the selection and invocation of
design pattern evolutions represented by UML models is
developed in [8]. Hence, a web interface is preferred in our
prototype system, UCVSC. In this condition, verification
service can be provided online and easy to access via the
Internet.

III. BACKGROUND KNOWLEDGE

A. UML in an XMI Way
In this era of daily changing Internet and knowledge

explosion, XMI (XML Metadata Interchange) [10], which
attempts to describe system model in the syntax of XML,
was introduced to express and communicate the design of
software efficiently on the Internet. From the initiate idea of
the introducer, XMI is a framework for defining,
interchanging, manipulating and integrating XML data and
objects, typically used as interchange format for UML
models.

Currently, many tools have realized the interchange
format transformation from UML to XMI. Rational Rose,
Poseidon For UML and ArgoUML are excellent ones among
them. Therefore, data model of system design can be

communicated among different UML modeling tools and
data warehouses based on MOF (Meta Object Facility) [11].
As a uniform expression of internal data models, XMI can
separate the description of system from different design tools,
which achieves the isolation between the design process and
design tools and provides great convenience to save and load
data models in a structured way.

In this paper, we choose ArgoUML, a lightweight and
free UML tool, to model a target system and export the
primitive UML class diagram into an XMI file. Then we
parse this XMI file and transform the information needed
into situation calculus automatically. In the final step, we use
Prolog engine to verify the correctness of the modeling
process in the design phase.

B. Situation Calculus
Introduced by John McCathy in 1963 [5], situation

calculus has been widely applied in Artificial Intelligence
related research and other fields. This formalism is
considered as a dialect of logic language and mostly used in
dynamic domain modeling.

The key concepts in situation calculus include action,
situation and fluent.

An action represents any possible change to the world,
denoted by a function, for example, drop(A), clean(B) and
check_in(ID).

A situation represents a possible world history, simply a
sequence of actions, denoted by a first-order term. The
constant S0 is used to denote the initial situation, namely, the
empty sequence of actions [12].

A fluent represents a relation or a function whose truth
values varies from one situation to the next, called relational
fluent or functional fluent respectively. For example,
hunger_status(person, s) and weather_condition(location,
season).

Additionally, introduce two predefined binary symbols as
follows:

Function symbol do is defined as do: Action × Situation
→ Situation, which maps an action a and a situation s to a
new situation called successor situation, which results from
performing the action a in the situation s. This successor
situation is denoted as do(a, s).

Predicate symbol Poss is defined as Poss: Action ×
Situation. Similarly as above, Poss(a, s) means it is possible
to execute the action a in the situation s.

IV. THE PROTOTYPE SYSTEM BASED ON A FORMAL
APPROACH

A. Outline
So far we have briefly introduced and reviewed the core

concepts of our idea of verification process of UML class
diagram. To describe it more directly, the overall architecture
of our prototype verification system, UCVSC, is shown in
Figure 1.

376

 Figure 1. Outline of our online prototype system, UCVSC
Step 1 (Manually): Design a target system model in

UML tools.
In this paper, ArgoUML 0.28 is used as a UML modeling

tool in the above figure.
Step 2 (Automatically): Using UML tools and mapping

rules ω, transform from the model described in UML class
diagram to the Prolog script in situation calculus.

Using the formal mapping rules, it is convenient to define
the corresponding model in another formalism and
understand the relationships between the two types of
notation.

The formal structure in UML class diagram is
represented by χc, that in situation calculus by respectively,
where the transformation is implemented by Perl.

Step 3 (Automatically): Verify the model with Prolog
compiler and give out result.

We verify the model of the target system by SWI-Prolog
and check if there are some conflicts among classes and their
relationships or not.

B. An Academic System in UML Class Diagram and
Formalization of It
In this paper, we transform target system modeling by

UML class diagram into situation calculus expression and
verify the transformed model. In order to avoid unnecessary
misunderstanding and ambiguous points of the modeling
methods, we introduce the following six rules to design
model of the target system in UML class diagram via the
UML modeling tool ArgoUML 0.28.

Rule 1: The whole content of the target system must only
be described in the class diagram rather than other
diagrams such as Use Case diagram.

Rule 2: The naming mechanism is in accordance with
Java name rules.

Rule 3: For the simplicity, path type aggregation and
composite are considered as two types of aggregation,
shared aggregation and composite aggregation, respectively.

Rule 4: By default, each generalization has only name
but no discriminator, and the return value type of each
function in a class is void. We conform to the default.

Rule 5: Data type ‘int’ is the internal type of ArgoUML
while data type ‘string’ is the build-in type in the class which
uses it.

Rule 6: For the integrity and readability, the relationship
between class ‘Student’ and classes ‘UnderGraduate’ and
‘Graduate’ is not generation but aggregation.

As a case study, we show an academic system in
university by terms of UML class diagram and formalize it
by situation calculus as follows:

Definition 1. A formal structure of a UML class diagram
in situation calculus is

χc = <Cl, As, G, Ag, Co, D>, where
Cl: a finite set of classes,
// ‘Cl’ stands for ‘Class’ in UML class diagram notation.
As: C ↔ C, a bijection between two classes,
// ‘As’ stands for ‘Association’ in UML class diagram

notation.
G: C → C, an injection from a child class to its parent

class,
// ‘G’ stands for ‘Generalization’ in UML class diagram

notation.
Ag: C → C, an injection from a part class to its shared

aggregation class,
// ‘Ag’ stands for ‘Aggregation’ in UML class diagram

notation.
Co: C → C, an injection from a part class to its

composite aggregation class,
// ‘Co’ stands for ‘Composite’ in UML class diagram

notation.
D: C → C, an injection from a friend class to its

independent class.
// ‘D’ stands for ‘Dependency’ in UML class diagram

notation.
Note: ‘multiplicity’ attributes of elements ‘As’, ‘Ag’ and

‘Co’ can be of 4 types: 0, 1, 0..* and 1..*.
Figure 2 shows the academic system model in UML class

diagram.

Figure 2. An academic system in UML class diagram
Definition 2. A mapping mechanism of between

counterparts of UML class diagram and situation calculus
can be defined in the following table:

TABLE I. MAPPING MECHANISM DEFINITION BETWEEN UML CLASS
DIAGRAM AND SITUATION CALCULUS

UML class
diagram

situation
calculus Comments

Class Functional Fluent Functional Fluent
may have a static

effect.
Association Relational Both Relational

377

Fluent/Action Fluent and Action
can depict the

association
between classes
appropriately.

Generalization Action Generalization is
assumed not to

change from one
situation to

another.
Aggregation Action Aggregation is

assumed not to
change from one

situation to
another.

Composition Action Composition is
assumed not to

change from one
situation to

another.
Dependency Action Dependency is

assumed not to
change from one

situation to
another.

Rule 7: As is hard and unnecessary, multiplicity attribute
is not considered in situation calculus.

Definition 3. A formal model transformation rules from
basic elements of UML class diagram to Prolog script which
implements situation calculus can be defined in the follow
table:

TABLE II. TRANSFORMATION RULES DEFINITION AMONG UML CLASS
DIAGRAM, XMI AND PROLOG SCRIPT

Elements in
UML class
diagram (in
plain text)

XMI script Prolog script Comments

Class
‘Faculty’

UML:Class
name =
‘Faculty’

Class(Faculty,
s)

Faculty is a
Class.

Association
‘takes’

between
Class

Student and
Course

UML:Associ
ation name =

‘takes’
UML:Associ
ationEnd.par

ticipant

takes(Student,
Course, s)

Class
‘Student’
and Class

‘Course’ are
associated
with the
action
‘takes’.

Generalizati
on from

‘Instructor’
to ‘Faculty’

UML:Gener
alization
name =
‘FtoP’

UML:Gener
alization.chil

d

Inherit(Instruc
tor, Faculty, s)

Class
‘Instructor’

inherits
Class

‘Faculty’.

Compositio
n ‘include’

from
‘Graduate’
to ‘Student’

UML:Associ
ation name =
‘include1’

UML:Associ
ationEnd

aggregation
=

‘composite’
UML:Associ
ationEnd.par

ticipant

Comp(Graduat
e, Student, s)

Class
‘Graduate’

is a part
class to

compose its
composite

aggregation
Class

‘Student’.

Dependency
‘accesses’

from
‘Transcript’
to ‘Course’

UML:Depen
dency name
= ‘accesses’
UML:Depen
dency.client
UML:Depen
dency.suppli

er

Dep(Transcrip
t, Course, s)

Class
‘Transcript’
is a friend
class of
Class

‘Course’.
i.e., the

former can
access the
data and
operation
defined in
the latter.

According to the mapping mechanism and transform
rules defined above, when parsing the XMI file transformed
from UML class diagram of the target system, we propose
the following algorithm to formally transform XMI script to
situation calculus specification in Prolog in a compact format
(Since the others are similar, only the algorithm for the path
type of Generalization in UML class diagram is given out.):

// Algorithm for Generalization: transform XMI script
to Prolog script:

Procedure transform_generalization()
1 for each UML.Model in XMI.content in XMI
2 extract attributes.name;
3 gen_exist = false; // global variable
4 for each UML.Class
5 extract attributes.name;
6 print “Class(attributes.name, s)”;
7 if(UML.GeneralizableElement.generalization != null)
8 gen_exist = attributes.id;
9 for each UML.Attribute
10 extract attributes.name;
11 for each UML.Operation
12 extract attributes.name;
13 if(gen_exist != false)
14 for each UML.Generization
15 for each UML.Generization.child
16 extract child.name; // class_id to retrieve
17 for each UML.Generization.parent
18 extract parent.name; //class_id to retrieve
19 print “Inherit(child.name, parent.name, S)”;
end.

378

From this algorithm, we can see that though not
explicitly referred, the precondition axioms and successor
state axioms in situation calculus are embodied in the lines of
Prolog script.

C. Implementation of the Prototype System and
Verification of the Model
Based on the structure and function of different parts

described in Subsection 4.2, the prototype system of UML
class diagram verification tool is implemented by Perl.

After reading the XMI file generated by ArgoUML, the
verification tool parses every node, extracts and then
transforms the information needed to Prolog script. Finally,
the tool calls SWI-Prolog to compile this Prolog script and
displays the result given out by SWI-Prolog.

Figure 3 shows the user interface of the implemented
prototype system.

Figure 3. The screenshot of the online prototype system, UCVSC
If we use SWI-Prolog to compile the Prolog script

generated as above in Figure 3, it will pass on the premise
that the design of the academic system described in
Subsection 4.2 is correct. What if the design is bad? Now,
let’s take a look at another design version of the same
academic system in Figure 4:

Figure 4. A “bad” design of the academic system
We can see clearly that the difference between Figure 2

and Figure 4 lies in the deletion of abstract class Rule (i.e.,
class Person becomes the direct parent class of class Faculty
and Student). Then problem comes. The academic system

described in Figure 4 does not permit a teacher to be a
student. As a matter of fact, it’s a commonplace for a teacher
to get further study in the same university. Therefore, it’s
incorrect and unreasonable to delete abstract class Role in
Figure 4. Fortunately, with the help of Prolog compiler, the
Prolog script as follows cannot pass:

// A student and teacher case in Prolog script
...
Course(CS01, S0);
Course(CS04, S0);
...
Student(Nick, S0);
...
take(Nick, CS04, S);
teach(Nick, CS01, S);
With the help of UCVSC, the formal verification tool for

UML class diagram we develop, software architecture
engineers who design a software system can find the
incorrectness in this system in advance, rather than to re-
design when codes have been written and some problems
have been found then.

V. CONCLUSION AND FUTURE WORK

In order to eliminate ambiguity among different
viewpoints of system design and ensure completeness,
people attempt to use formal methods to specify and verify
the UML diagrams. In this paper, we focus on a formal
verification way for UML class diagram and implement
corresponding online prototype system, UCVSC, to deal
with the verification task and thus firmly support our idea.
The core concepts in our approach are as follows: Since XMI
is an XML-based format which has been widely used for
model interchange in UML tools, we transform pre-drawn
UML Class to XMI format via UML modeling tool itself
automatically. Then according to the mapping mechanism
we design, XMI is transformed to a formal and verifiable
language, situation calculus in Prolog syntax automatically.
Finally, we use a Prolog compiler, SWI-Prolog, to verify the
correctness of the Prolog script generated automatically by
our online prototype system.

There is still much work for further research. In current
version of UCVSC, the final step is not automatic but
manual. We hope to call the Prolog Compiler in codes and
then display the verification result on the web page directly,
which can make our online prototype system more integrated
and easier to manipulate. Moreover, most concepts in UML
class diagram are referred to in our approach but not the
whole. We can further define and extend our mapping
mechanism. In addition, we only implement basic
verification for UML class diagram. Other UML diagram
can also be considered to verify. Virtually, another
verification platform for more UML diagrams and more
formal languages is the next item on our agenda. In addition,
more intelligent facts such as an accessibility of verification
options configurable by users will be concerned in our
following work.

REFERENCES

379

[1] J. Rumbaugh, I. Jacobson, G. Booch, The Unified Modeling
Language Reference Manual, Pearson Higher Education, Boston,
2005.

[2] OMG: UML 2.0 Superstructure Specification, version ptc/04-10-02.
Object Management Group, Inc., Needham, MA, http://www.omg.org,
2004.

[3] M. Gogolla, F Büttner. M. Richters, “USE: A UML-based
specification environment for validating UML and OCL,” Science of
Computer Programming, vol. 69, pp. 27–34, 2007.

[4] R.V.D. Straeten, T. Mens, J. Simmonds, V. Jonckers, “Using
description logic to maintain consistency between UML models,”
LNCS, vol. 2863, pp. 326–340, Springer, Heidelberg, 2003.

[5] J. McCarthy, “Situations, actions and causal laws,” Stanford Artificial
Intelligence Project, Memo 2, 1963.

[6] M. Gogolla, P. Ziemann, S. Kuske, “Towards an Integrated Graph
Based Semantics for UML,” Electr. Notes Theor. Comput. Sci, vol.
72, 2003.

[7] J. Kong, K. Zhang, J. Dong, D. Xu, “Specifying Behavioral
Semantics of UML Diagrams through Graph Transformations,” The
Journal of Systems and Software, vol. 82, pp. 292–306, 2009.

[8] J. Dong, Y. Zhao, Y. Sun, “XSLT-based evolutions and analyses of
design patterns”. Software: Practice and Experience. vol. 39, pp. 773–
805, 2009.

[9] A. Knapp, S. Merz, Hugo/RT,
http://www.pst.ifi.lmu.de/projekte/hugo/, 2004.

[10] OMG, XML Metadata Interchange, version 1.2, Object Management
Group, Inc., Needham, MA, http://www.omg.org/, 2002.

[11] OMG, Meta Object Facility Specification, version 1.4, Object
Management Group, Inc., Needham, MA, http://www.omg.org/, 2002.

[12] B. Li, J. Iijima, “A Survey on Application of situation calculus in
Business Information Systems,” Proc. International Conference on
Convergence Information Technology (ICCIT 07), pp. 425–431, 2007.

380

