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Abstract

Slack is pervasive in runs of high performance applica-

tions, in the presence of various performance boosting

solutions. The presence of slack provides ample oppor-

tunities for achieving energy efficiency for high perfor-

mance computing nowadays. Regardless of communica-

tion slack, classic energy saving approaches for saving

energy during the slack otherwise include race-to-halt

and CP-aware slack reclamation, which reply on power

scaling techniques to adjust processor power states ju-

diciously during the slack. Existing efforts demonstrate

CP-aware slack reclamation is superior to race-to-halt

in energy saving capability. In this paper, we formally

model our observation that the energy saving capabil-

ity gap between the two approaches is significantly nar-

rowed down on today’s processors, given the fact that

state-of-the-art CMOS technologies allow insignificant

variation of supply voltage as operating frequency of a

processor scales. We also provide experimental evalua-

tion for validation on a large-scale power-aware cluster.

1 Introduction

Power and energy efficiency are now of great concern

when the launching date of exascale computers is ap-

proaching. Power and energy consumption of a super-

computer nowadays have been rapidly increasing due to

expansion of its size and duration in use. The US Depart-

ment of Energy has set up a goal of 20 MW for the exas-

cale computers targeted in the year around 2020 [2]. The

advancement of hardware and software solutions have

greatly improved power and energy efficiency of high

performance computing, where the pervasive slack dur-

ing runs of task-parallel applications is regarded as an

important source for achieving power and energy sav-

ings, regardless of various performance boosting tech-

niques (e.g., load balancing [4] and work stealing [5])

for decreasing the slack as much as possible.

Slack generally refers to a time period when one hard-

ware component waits for another due to imbalanced

throughput and utilization. For instance, CPU usually

waits for data to be ready from memory for memory in-

tensive applications, in accordance with the fundamen-

tal memory hierarchy. Typical examples of slack in-

clude load imbalance, network latency, communication

delay, memory and disk access stalls, etc. Energy saving

opportunities can be exploited during the slack of runs

of task-parallel applications, since the peak performance

of hardware components that are not fully utilized dur-

ing the slack is not necessary. Software-controlled hard-

ware solutions such as Dynamic Voltage and Frequency

Scaling (DVFS) techniques have been extensively lever-

aged to mitigate energy costs by appropriately scaling

power states of the hardware without incurring perfor-

mance loss for the applications [6] [11] [7] [10] [12].

Critical Path (CP) is one particular task trace from the

beginning task of one execution of a task-parallel ap-

plication to the ending one with the total slack of zero.

Any delay on tasks on the CP increases the total execu-

tion time of the application, while appropriately slowing

down the processors where the application is running by

dilating tasks off the CP into their slack, or halting tasks

off the CP during their slack individually without fur-

ther delay, does not cause performance loss as a whole.

Energy savings can be achieved effectively by both ap-

proaches with negligible performance loss.

In this paper, we discuss the energy saving capability

of two classic energy saving approaches, and formally

calculate and compare the energy savings from both ap-

proaches. Previous formal proof indicates that CP-aware

slack reclamation always beat race-to-halt in terms of

energy efficiency [8] [9]. We demonstrate that for DVFS

on state-of-the-art architectures, supply voltage of a pro-

cessor scales much less than its operating frequency, the

energy saving gap between the two approaches is nar-

rowed down significantly. We also provide preliminary

experimental evaluation to validate our observations.
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Figure 1: DAG Representation of Slack Handling of Two

Energy Saving Approaches for a 3-Process Application.

2 Classic Energy Saving Strategies

Existing energy efficient approaches that save energy

strategically during slack of running high performance

applications can essentially be categorized into two

types: Race-to-halt and CP-aware slack reclamation.

Next we illustrate how they work in different ways.

2.1 Energy Saving for Communication

Slack from communication is an important source of en-

ergy savings. Consider a high performance application

running on a distributed-memory system based on mes-

sage passing, reduction of energy consumption can be

achieved by reducing frequency and voltage of comput-

ing components such as CPU and GPU for large-message

MPI communication, since generally execution time of

such operations barely increases at a low-power state

of the computing hardware during the communication

slack. We adopt the low-power strategy for communi-

cation slack (also known as scheduled communication

approach [11]). The next two classic energy saving ap-

proaches are intended in particular for slack arising from

non-communication, i.e., mostly, computation.

2.2 Race-to-halt

As the name suggests, race-to-halt is a DVFS scheduling

strategy that enforces hardware components (e.g., CPU

and GPU) to race when workloads are ready for process-

ing, and to halt when no workloads are available, as the

area covered by green dashed boxes shown in Figure 1.

Specifically, race refers to execute workloads with the

maximum performance at the highest working frequency

and voltage of the hardware, until the finish of the work-

Table 1: Notation in Energy Saving Capability Analysis.
E Total nodal energy consumption of all components

P Total nodal power consumption of all components

Pdynamic Dynamic power consumption in the running state

Pleakage Static/leakage power consumption in any states

T Execution time of a task at CPU peak performance

T ′ Slack of executing a task at CPU peak performance

A Percentage of active gates in a CMOS-based chip

C The total capacitive load in a CMOS-based chip

f Current CPU working frequency

V Current CPU supply voltage

V ′ Supply voltage of components other than CPU

Isub CPU subthreshold leakage current

I′sub non-CPU component subthreshold leakage current

fm
Available frequency assumed to eliminate T ′

without using frequency approximation

Vh The highest supply voltage set by DVFS

Vl The lowest supply voltage set by DVFS

Vm Supply voltage corresponding to fm set by DVFS

n Ratio between execution time and slack of a task

loads, while halt means to slow down the hardware to the

minimum working frequency and voltage, i.e., the low-

est power state for energy saving purposes, from the end

of the precedent workload to the start of the subsequent

workload. This straightforward approach can effectively

save energy without incurring performance loss.

2.3 CP-aware Slack Reclamation

Another critical strategy of saving energy during the

slack is to reclaim slack by appropriately slowing down

tasks that are not on the Critical Path (CP) of an execu-

tion trace of a HPC application. Per the definition of CP,

it is implied that any delay on tasks on the CP also de-

lays the application as a whole, while appropriately dilat-

ing tasks off the CP into their slack individually without

overflowing slack, does not increase the total execution

time of the application, as prolonged tasks in blue dashed

boxes shown in Figure 1. Energy savings can thus be

achieved from scaling down frequency/voltage for dilat-

ing tasks off the CP into their slack without performance

degradation. This solution is based on CP detection. En-

ergy efficient DVFS scheduling decisions for slack recla-

mation are determined among tasks on/off the CP.

3 Energy Saving Capability Analysis

Existing work demonstrates that under a time constraint,

slowing down a processor can reduce energy consump-

tion the most, compared to completing a task as fast as

possible and completing a task using combination of dis-

crete frequencies [8] [9]. However, the gap between

energy saving capability of race-to-halt and CP-aware
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Table 2: Frequency-Voltage Pairs for Different Processors (Unit: Frequency (GHz); Voltage (V)).

G
ear

AMD
AMD Opteron

AMD Intel Intel Pentium Intel Xeon Intel Core

Opteron 2380
846 and AMD

Opteron 2218 Pentium M 4 HT 530 E5 2687W i7-2760QM
Athlon64 3200+

Freq. Volt. Freq. Volt. Freq. Volt. Freq. Volt. Freq. Volt. Freq. Volt. Freq. Volt.

0 2.5 1.300 2.0 1.500 2.4 1.250 1.4 1.484 3.0 1.430 3.1 1.200 2.4 1.060

1 1.8 1.200 1.8 1.400 2.2 1.200 1.2 1.436 N/A N/A N/A N/A 2.0 0.970

2 1.3 1.100 1.6 1.300 1.8 1.150 1.0 1.308 N/A N/A N/A N/A 1.6 0.890

3 0.8 1.025 0.8 0.900 1.0 1.100 0.8 1.180 2.1 1.250 1.2 0.840 0.8 0.760

slack reclamation shrinks, since state-of-the-art CMOS

technologies allow insignificant variation of supply volt-

age as operating frequency of a processor scales. Next

we formally prove that the two approaches can be com-

parable in energy saving capability.

Given the following two energy saving strategies, to-

wards a task t with an execution time T and slack T ′

at the peak CPU performance, we calculate the total

nodal system energy consumption for both strategies,

i.e., E(S1) and E(S2) formally below:

• Strategy I (Race-to-halt): Execute t at the high-

est CPU frequency fh until the finish of t and then

switch to the lowest CPU frequency fl , i.e., run in

T at fh and in T ′ at fl ;

• Strategy II (CP-aware Slack Reclamation): Exe-

cute t at the optimal CPU frequency fm with which

T ′ is eliminated, i.e., run in T + T ′ at fm (For

simplicity in the later discussion, assume T ′ can

be eliminated using available frequency fm without

frequency approximation).

For simplicity, let us assume the tasks for the use of

DVFS are compute-intensive; i.e, T + T ′ = nT , when

fm = 1
n

fh, where 1 ≤ n ≤ fh
fl

. Consider the nodal power

consumption P, we model it formally as follows:

P = PCPU
dynamic +PCPU

leakage +Pother
leakage (1)

Pdynamic = AC fV 2 (2)

Pleakage = IsubV (3)

Then, substituting Equations 2 and 3 into Equation 1

yields:

P = AC fV 2 + IsubV + I′subV ′ (4)

In our scenario, Pother
leakage = I′subV ′ is independent of

CPU voltage and frequency scaling, and thus can be

regarded as a constant in Equation 4, so we denote

Pother
leakage as Pc for simplicity. Further, although subthresh-

old leakage current Isub has an exponential relationship

with threshold voltage, results presented in [13] indicate

that Isub converges to a constant after a certain thresh-

old voltage value. Without loss of generality, we treat

PCPU
leakage = IsubV as a function of supply voltage V only.

Thus, we model the nodal energy consumption Enode for

both strategies individually below:

E(S1) = P(S1)×T +P′(S1)×T ′

= (AC fhV 2
h + IsubVh +Pc)T +(AC flV

2
l + IsubVl +Pc)T

′

=AC( fhV 2
h T+ flV

2
l T ′)+Isub(VhT+VlT

′)+Pc(T+T ′) (5)

E(S2) = P(S2)× (T +T ′)

= (AC fmV 2
m + IsubVm +Pc)(T +T ′)

= AC fmV 2
m(T +T ′)+ IsubVm(T +T ′)+Pc(T +T ′) (6)

We obtain the difference between energy costs of both

strategies by subtracting Equation 5 from Equation 6:

E(S2)−E(S1) = AC
(

( fmV 2
m − fhV 2

h )T+( fmV 2
m − flV

2
l )T

′
)

+ Isub

(

(Vm −Vh)T +(Vm −Vl)T
′
)

(7)

Denote the first term as ∆Ed and the second term as

∆El in the above addition of products. Substituting the

assumption that T ′ = (n− 1)T and fm = 1
n

fh into both

terms yields simplified formulae:

∆Ed = AC

((

1

n
fhV 2

m− fhV 2
h

)

T+

(

1

n
fhV 2

m− flV
2
l

)

(n−1)T

)

= AC

((

1

n
fhV 2

m− fhV 2
h

)

T+

(

n−1

n
fhV 2

m−(n−1) flV
2
l

)

T

)

= ACT
(

fh

(

V 2
m −V 2

h

)

− (n−1) flV
2
l

)

(8)

∆El = Isub ((Vm −Vh)T +(Vm −Vl)(n−1)T )

= IsubT (nVm −Vh − (n−1)Vl) (9)

Given the fact that voltage has a positive correlation

with (i.e., not strictly proportional/linear to) frequency

(scaling up/down frequency results in voltage up/down

accordingly as shown in Table 2), from Equation 8 we

conclude that ∆Ed is a monotonically decreasing func-

tion for n, where the maximum 0 is attained when n = 1,

i.e., when slack T ′ equals 0. Although generally ∆Ed ≤
0, state-of-the-art CMOS technologies allow insignifi-

cant variation of voltage as frequency scales (see Table

2). Consequently the term V 2
m −V 2

h within ∆Ed is not a

large value. Moreover, the ratio between the highest fre-

quency and the lowest one determines the upper bound of

n, so the term (n−1) flV
2
l is not significant either. Equa-

tion 9 indicates that ∆El is a non-monotonic function for

n, since Vm decreases as n increases.
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EXAMPLE. From the operating points of different pro-

cessors shown in Table 2, we can calculate numerical en-

ergy savings for different n values for a specific proces-

sor configuration, and thereby quantify energy efficiency

of both energy saving strategies. For instance, for AMD

Opteron 2218 processor, given a task with the execution

time T and slack 0.25T , i.e., n = 1.25, for eliminating

the slack, 1.8 GHz is adopted as the working frequency

for running the task, and thus ∆Ed = ACT × (2.4 ×
(1.152 −1.252)− (1.25−1)×1.0×1.12) =−0.8785×
ACT ; ∆El = IsubT × (1.25× 1.15− 1.25− (1.25− 1)×
1.1) =−0.0875× IsubT ; E(S2)−E(S1) = ∆Ed +∆El =
−0.8785×ACT − 0.0875× IsubT < 0. We can see that

with slightly higher energy costs, Strategy I is compara-

ble to Strategy II in energy efficiency.

4 Scalability Analysis

Regardless of energy saving capability, a scalable energy

saving solution can prevail for today’s ever-growing su-

percomputers. Due to the nature of slowing down pro-

cessors during identified slack instead of placing them in

an idle mode, CP-aware slack reclamation can be supe-

rior to race-to-halt in terms of power scalability. We next

use an example to illustrate the case.

Consider a IBM Blue Gene/Q configured cluster that

has a power range from 9 MW at full load (e.g., running

the High Performance LINPACK benchmark) to 0.1 MW

when idle. Assume a CPU-bound and load-imbalanced

application is running on the cluster, where 1% of nodes

need to run 10% longer than other nodes. When 99% of

nodes have completed their tasks and been placed into an

idle mode by race-to-halt, the total system power costs

amount to around 0.2 MW (0.1 MW × 0.99 + 9 MW

× 0.01) for the rest 10% execution time, when there is

a huge drop from 9 MW to 0.2 MW in the total system

power. The case is even worse if the power variation hap-

pens within a loop. If the interval of power variation is

small enough, the power gap can be absorbed in the ca-

pacitors on the motherboard or in the nodal power sup-

ply. Otherwise the huge power spike will be reflected

on the transmission lines, which jeopardizes the hard-

ware reliability of the whole system. The case is however

greatly mitigated if the load is balanced, or the load im-

balance is caused by inevitable data dependencies among

tasks, without considering the effect of looping.

5 Experimental Evaluation

In this section, we validate our findings aforementioned.

We applied both energy saving solutions individually to

an MPI implementation of one widely used numerical

linear algebra operation Cholesky factorization to assess

their energy efficiency empirically. Experiments were

performed on a large-scale power-aware cluster ARC,
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Figure 2: Power Consumption of Cholesky Factorization

with Two Energy Efficient Approaches on Cluster ARC.

equipped with an 40 GB/s Infiniband switch and con-

sisting of 108 computing nodes with two 8-core AMD

Opteron 6128 processors (totalling 1728 cores) and 32

GB RAM running 64-bit Linux kernel 2.6.32. The range

of CPU frequency on ARC was {0.8, 1.0, 1.2, 1.5, 2.0}
GHz. The total of static and dynamic power consump-

tion was measured using Watts up? PRO [3] power me-

ter, which is shared by three ARC nodes. Thus the power

consumption measured is the total value of three nodes.

CPU frequency scaling was implemented via CPUFreq

[1] which directly modifies CPU frequency system con-

figuration files. We did not utilize the whole cluster but

only a 16 × 16 process grid (totalling 256 cores), which

is sufficient to demonstrate solid power results.

Next we present preliminary results on power and per-

formance efficiency of the two approaches for the target

application by fine-grained comparison.

POWER SAVINGS. First we evaluate the capability of

saving power from the two energy efficient approaches,

taking distributed Cholesky factorization running on the

ARC cluster for example, where power consumption is

measured by sampling at a constant rate through the ex-

ecution of the application. Figure 2 depicts the total sys-

tem power consumption of three nodes (out of sixteen

nodes in use) running the application with the two ap-

proaches individually using a 160000 × 160000 global

matrix. Here we present time durations of the first few

iterations, where the core loop performs alternating com-

putation and communication with decreasing execution

time of each iteration, as the remaining unfactorized ma-

trix shrinks. Thus we can see that for all curves, from

left to right, the durations of computation (i.e., the peak

power values) decrease as the factorization proceeds.

The three executions manifest three different power

variation patterns. The original run employed the same

highest CPU performance for computation and commu-

nication, resulting almost constant power costs around

950 Watts. The CP-aware slack reclamation approach
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Figure 3: Performance of Cholesky Factorization with

Two Energy Efficient Approaches on the ARC Cluster.

slowed down computation to eliminate slack, while the

race-to-halt approach lowered down CPU performance

to the minimum scale for all durations other than com-

putation. Both energy saving approaches scaled down

CPU performance during the communication, i.e., the

five low-power durations around 700 Watts, and resumed

the peak CPU performance when computation started.

Energy saving solutions only slow down processors

during communication are semi-optimal. Thus both CP-

aware slack reclamation and race-to-halt are expected

to utilize computation slack for further energy savings.

The difference lies in that the former requires detection

of CP and calculation of the extent of slowing down per

the amount of slack, while the latter only needs to know

when the slack arises, which is much easier to implement

and deploy. Figure 2 demonstrates that CP-aware slack

reclamation succeeded to lower power states down to an

intermediate scale, i.e., the two medium-power durations

around 850 Watts during the third and the fourth com-

putation as the blue line shows. Whereas race-to-halt

observed when the computation started and ended, and

utilized the peak CPU performance when it started and

switched to the lowest power state immediately when it

ended. Moreover, the nature of race-to-halt also guaran-

tees no high-power states are employed during the wait-

ing durations resulting from load imbalance and data

dependency, i.e., the two low-power durations in green

where the application started and ended.

PERFORMANCE TRADE-OFF. Both energy saving ap-

proaches incur minor performance loss while achieving

considerable power savings. Figure 3 illustrates slow-

down of the two approaches compared to the original

runs. The time overhead on employing CP-aware slack

reclamation and race-to-halt are negligible: 3.5% and

3.9% on average respectively. Besides the time over-

head on employing the DVFS techniques [12], additional

performance loss is caused by both approaches individ-

ually. Detection of CP and slack and frequency calcu-

lation (in some cases frequency approximation is also

needed) are necessary to perform CP-aware slack recla-

mation. Race-to-halt requires to monitor the completion

of tasks to determine the appropriate timing for power

state switching. Generally the time overhead incurred by

both approaches are acceptable in an HPC environment.

6 Future Work

The debate between energy efficiency of CP-aware slack

reclamation and race-to-halt is an ongoing issue as hard-

ware technologies advance. Preliminary theoretical and

experimental results provide us solid support to extend

this work. We intend to model and generalize the idea of

race-to-halt for more scientific applications and present

complete empirical evidence to validate our observation.

The implementation of both energy saving solutions is

in the prototype stage, and we also plan to apply more

energy efficient approaches on emerging accelerated ar-

chitectures for investigating the optimal energy savings.
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