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Abstract—Boosting performance and energy efficiency of
scientific applications running on high performance computing
systems arise cruicially nowadays. Software and hardware based
solutions for improving communication performance have been
recognized as significant means of achieving performance gain
and thus energy savings for such applications. As a fundamental
component of most numerical linear algebra algorithms, im-
proving performance and energy efficiency of distributed matrix
multiplication is of major concerns. For such purposes, we
propose a high performance communication scheme that fully
exploits network bandwidth via non-blocking pipeline broadcast
with tuned chunk size. Empirically, substantial performance
gain up to 8.4% and energy savings up to 6.9% are achieved
compared to blocking pipeline broadcast, and against binomial
tree broadcast, performance gain up to 6.5% and energy savings
up to 6.1% are observed on a 64-core cluster.

Keywords—distributed matrix multiplication; performance; en-
ergy; pipeline broadcast; binomial tree broadcast; ScalLAPACK.

I. INTRODUCTION

The ever-growing number of cores and bandwidth of net-
work for interconnected processors in a distributed-memory
computing system provide unprecedented capability for large-
scale computation. Boosting performance and energy effi-
ciency of scientific applications by exploiting parallelism in
high performance computing systems has become a significant
issue, which motivates a large amount of hardware-related [1]
[2] [3] [4] and software-based solutions [5] [6] [7] [8] [9] [10]
[11] [12]. Among these approaches, improving communication
efficiency has been recognized as the cornerstone of achieving
performance gain during the execution of applications running
on distributed-memory computing systems.

Matrix multiplication serves as a fundamental compo-
nent of most numerical linear algebra algorithms like LU,
Cholesky, and QR factorizations [13]. The classic algorithm
of matrix multiplication on a distributed-memory computing
cluster performs alternate broadcast and matrix multiplication
on local computing nodes [14]. Different distributed broadcast
algorithms have been devised and industrialized [15] [16]
for high performance communication, including basic linear,
chain, pipeline, binary tree, and binomial tree. Binomial tree
and pipeline broadcast in general outperform other algorithms
for different system configurations [17].

Regarding pipeline broadcast, two distinct types, non-
blocking and blocking pipeline broadcast represent sending
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and receiving messages with shared CPU usage with other
routines and dedicated CPU usage individually, which de-
termines different resource utilization and slack pattern in
the communication of distributed matrix multiplication. Many
factors, including pipeline length and time latency to reach the
maximal pipeline can impact the communication performance.

In this paper, we introduce a high performance communi-
cation scheme via pipeline broadcast to achieve performance
and energy efficiency for distributed matrix multiplication.
Specifically, we take advantage of a non-blocking pipeline
broadcast scheme with tuned chunk size to boost performance
of communication, with which network bandwidth is exploited
more thoroughly compared to binomial tree broadcast. In
summary, the contributions of this paper are as follows:

e  We model and quantify the communication time com-
plexity of binomial tree and pipeline broadcast, and
analyze communication slack in two types of pipeline
broadcast to achieve performance and energy effi-
ciency in distributed matrix multiplication;

e  The non-blocking pipeline broadcast with tuned chunk
size is evaluated to achieve significant speed-up and
energy savings compared to blocking pipeline broad-
cast and binomial tree broadcast on a 64-core cluster.

The rest of this paper is organized as follows. Section
2 discusses related work and section 3 details distributed
matrix multiplication algorithms. We present high performance
pipeline broadcast compared to binomial tree broadcast in
section 4. We provide implementation details and evaluate our
approach in section 5, and section 6 concludes the paper.

II. RELATED WORK

Improving Communication Performance at System Level:
Chan et al. [3] redesigned and reimplemented many MPI
communication algorithms to achieve that one node can com-
municate with multiple nodes simultaneously with lower costs,
rather than the traditional one-to-one at a time algorithms. Faraj
et al. [7] presented a customized system that generates effi-
cient MPI collectve communication routines via automatically-
generated topology specific routines and performance tuning to
achieve high performance consistently. Karwande et al. [6] pre-
sented an MPI prototype that supports compiled communica-
tion to improve performance of MPI communication routines,
which featured that it allowed the user to manage network



resouces to aggressively optimize communication. Hunold et
al. [8] proposed a mechanism that automatically selected a
suitable set of blocking factors and block sizes for pdgemm()
to maximize performance. Our approach differs from these
techniques, since it improves MPI communication performance
via implementing a pipeline broadcast that maximizes the slack
utilization, without modifying MPI communication routines
and any parameters of the pdgemm() routine interface.

Improving Communication Performance at Algorithm
Level: Solomonik ef al. [4] mapped 2.5D dense linear algebra
algorithms to allow the algorithms to exploit optimized line
multicasts and reductions that cannot be leveraged in 2D
algorithms. Speed-ups were achieved due to communication
reductions from rectangular collectives over binomial tree
broadcast. Ballard et al. [9] developed a novel parallel matrix
multiplication algorithm based on Strassen’s algorithm with
minimized communication. Given the observation that the crit-
ical bottleneck of performance gain was the communication,
the authors reached the lower bounds on communication costs
and the experimental results scaled well. For improving per-
formance of sparse matrix multiplication with most execution
time comsumed on inter-processor communication, Ballard et
al. [10] proved a new lower bound on the expected commu-
nication costs and proposed two new parallel algorithms to
match the expected lower bound. Ballard er al. [11] observed
that maintaining numerical stability via partial pivoting in LU
factorization involved row interchanges leading to inefficient
data access patterns. The authors introduced a shape morphing
procedure that dynamically matches the data layout to the
computation and demontrated that Gaussian Elimination can
be performed in a communication efficient fashion.

Improving Pipeline Broadcast Performance: Desprez et
al. [5] made efficient use of pipelining on LU factorization
and a column-scattered data decomposition to derive precise
variations of computational complexities, where a synchronous
communication scheme and overlapping communication by
computation were exploited. Watts et al. [1] addressed the
problem of conducting pipelined broadcast on a mesh archi-
tecture. The proposed algorithm worked on meshes of any
dimension with any number of nodes. Beaumont er al. [2]
handled broadcast on heterogeneous platforms where messages
were routed in a pipelined spanning tree fashion. Given that
most systems supporting pipeline parallelism used a construct-
and-run approach, Lee er al. [12] investigated on-the-fly
pipeline parallelism where pipeline emerged as the program
ran, and proposed simple linguistics for specifying a provably
efficient scheduling algorithm in a work-stealing fashion. Our
work focuses on analyzing the efficiency of binomial tree and
pipeline broadcast and quantifying the communication costs.

III. DETAILS OF DISTRIBUTED MATRIX MULTIPLICATION
ALGORITHMS

Matrix multiplication is one fundamental operation of most
numerical linear algebra algorithms for solving a system of
linear equations, such as LU factorization, Cholesky factoriza-
tion, and QR factorization [13]. Matrix multiplication is also
widely used in many other areas, such as computer graphics,
quantum mechanics, game theory, and economics. Various
software libraries of numerical linear algebra for distributed
multi-core cluster computing like ScaLAPACK [18] provide
routines of matrix multiplication related computing. In this
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paper, we propose a high performance communication scheme
to achieve performance gain in distributed matrix multiplica-
tion, which serves as a stepping stone for fulfilling further
demands of improving performance efficiency in other linear
algebra operations where matrix multiplication is frequently
employed. As shown in Table I, the runtime percentage of
matrix multiplication in the execution of the above three classic
numerical linear algebra algorithms is significant, where nb
denotes the block size for cache efficiency.

TABLE 1. RUNTIME PERCENTAGE OF MATRIX MULTIPLICATION.
Algorithm | Matrix Multiplication Runtime Percentage
Cholesky 92.0%, nb = 128
LU 89.5%, nb = 32
QR 72.4%, nb = 256

The matrix multiplication routines from ScaLAPACK are
derived from the DIMMA (Distribution-Independent Matrix
Multiplication) algorithm, an advanced version of SUMMA
(Scalable Universal Matrix Multiplication Algorithm) [14].
The algorithm skeleton consists of three steps: (a) Distribute
matrix elements into the process grid using a 2-D block
cyclic distribution for load balancing; (b) broadcast local
sub-matrices in a row-/column-wise way as a logical ring;
and (c) perform local sub-matrix multiplication. Leveraging
an optimized communication scheme, DIMMA outperforms
SUMMA by eliminating slack from overlapping computation
and communication effectively. We observe that additional
performance improvement can be achieved by adopting an
optimal communication scheme in accordance with system
and application characteristics. We elaborate our idea of a
high performance communication scheme in distributed matrix
multiplication in the following section.

IV. HIGH PERFORMANCE PIPELINE BROADCAST

Due to distributing the global matrix evenly into the process
grid for load balancing, we need to broadcast each row to all
other rows and broadcast each column to all other columns to
perform local matrix multiplication in parallel.

A. Binomial Tree and Pipeline Broadcast

There exist a large body of distributed broadcast algorithms
to apply in cluster computing, where binomial tree and pipeline
broadcast generally outperform other algorithms for different
system configurations. In the original pdgemm() routine from
ScaLAPACK atop different MPI implementations, different
schemes like ring-based, binomial tree and pipeline broadcast



TABLE II. NOTATION IN BINOMIAL TREE AND PIPELINE BROADCAST.

P Total number of processes in the communication
Smsg | Message size in one broadcast

BD | Network bandwidth in the communication

Tp Total time consumed by the binomial tree broadcast
Tp Total time consumed by the pipeline broadcast
Ty Time consumed by one binomial tree broadcast
T, Time consumed by one pipeline broadcast
Ts
Ty

n

Network latency of starting up a communication link
Time consumed by transmitting messages
Number of chunks from dividing a message

are adopted depending on message size and other factors [18].
Table II lists the notation used in this section. Figure 2 (a)
depicts how the algorithm works using a 3-round iteration on
a 8-process cluster. We can see that in each round, a process
sends messages complies with the following pattern:

e In Round 0, process Py (sender) sends a message to

the subsequent available process P; (receiver);

e InRoundj (j > 0),process P; (1 < j,1=0,1,2,...)

that is a sender/receiver in the precedent round sends
a message to the subsequent available process.

In other words, in Round j, the number of senders/receivers
is 27 and thus the algorithm takes logP rounds for the
P! process to receive a message. The communication time
complexity can be modeled as:

Sms
Tp =Ty x logP Ty =T, + —9 (1)

By substituting 73, we obtain the ultimate time complexity
formula of the binomial tree bgoadcast:
Ty = (Ts + 5p) X logP )
Pipeline broadcast works in a time-sliced fashion so that
different processes simultaneously broadcast different message
chunks as stages in pipelining, as shown in Figure 2 (b).
Assume a message in the pipeline broadcast is divided into n
chunks, when the pipeline is not saturated (the worst case), it
takes n+ P — 1 steps for the P process to receive a message.
We can model the time complexity of pipeline broadcast as:
Sms
Tp=T,x(n+P—1) Tp:Ts—i—ﬁ!n 3)
Similarly, we obtain the pipeline broadcast final time costs:
Sins
TPZ(TS+%D/”)><(n+P—1) 4)
From Equations 2 and 4, despite the steps needed to receive
a message, we can see that both Tz and Tp are the sum of
T, and Ty. In a cluster connected by an Ethernet/Infiniband
switch, T is of the order of magnitude of us, so T is negli-
gible when S, is comparatively large. Therefore, Equations
2 and 4 can be simplied as follows:

Sy g P-1
Tp = BD xlogP Tp = BD X (]. + T) ®))

It is clear that both 75 and Tp scale up as P increases,
with fixed message size and fixed number of message chunks.
However the pipeline broadcast outperforms the binomial tree
broadcast with given P and message size by increasing n,
since the ratio of binomial tree broadcast to pipeline broadcast
approximates to logP when n is large enough and %
becomes negligible. We experimentally observed the commu-
nication schemes in ScaLAPACK pdgemm() routines are not
optimal in our experimental platform. Performance gain can be
fulfilled by leveraging slack arising from the communication.
Therefore, a pipeline broadcast scheme with tuned chunk size
according to system characteristics is desirable.
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Fig. 2. Binomial Tree Broadcast Algorithm.

B. Two Pipeline Broadcast Schemes

Typically, there exist two types of pipeline broad-
cast schemes, non-blocking pipeline broadcast and blocking
pipeline broadcast. Figures 3 and 4 show how messages are
routed in the two broadcast schemes, where P1, P2, ..., P5
denote different processes, m1, m2, ..., m6 denote different
messages, and T1, T2, ..., T11 denote different time slots with
the same unit. Due to the use of different MPI communication
routines, in the blocking pipeline method, each process can
either send data or receive data when data is available, while
in the non-blocking one, one process can send and receive data
simultaneously without waiting for each other.

Time Slot(s) Utilization%

T 215
72 215
™3 s
T4 4/5

Fig. 3. Blocking Pipeline Broadcast Scheme.
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Fig. 4. Non-blocking Pipeline Broadcast Scheme.

Assuming that in the non-blocking scheme, the sending and
receiving routines evenly split network bandwidth, we can see
in Figures 3 and 4 that it takes twice execution time for P3
to finish receiving m1 from P2, since the sending routine in
P2 shares network with the receiving routine. Consequently, in
the blocking method, P5 finishes receiving the first message at
the end of T4, while P5 in the non-blocking scheme finishes
receiving the first message at the end of T7. We can model
the relationship between time overhead and the i*" received
message for the blocking and non-blocking schemes following
the constraints of Equations 6, respectively:

TH =2i+2 Th =2i+5 (6)



TABLE III. PIPELINE BROADCAST EFFICIENCY COMPARISON

Type of Pipeline Max Pipeline Average
Pipeline Broadcast Is Full? | Time Latency' | Utilization>
Blocking, Odd PL No Q(L%j —-1) ~1— ﬁ
Blocking, Even PL Yes3 PL —2 ~1-— ﬁ

Non-blocking, Odd PL Yes 2PL —5 ~ 100%
Non-blocking, Even PL Yes 2PL —5 ~ 100%

We can see that although receiving a message in the non-
blocking scheme requires three more time units than that in
the blocking scheme, both pipeline broadcast schemes have
the same time complexity O(i) for receiving a message.

C. Slack Analysis

Slack in pipeline broadcast of distributed matrix multipli-
cation mostly arises from communication latency due to non-
fully exploited network bandwidth. Figures 3 and 4 show a
blocking and a non-blocking pipeline broadcast with an odd
Pipeline Length (P L), respectively. Blocking and non-blocking
pipelining with an even pipeline length are not presented due to
similarity. We consider three factors to analyze possible slack
in pipelining: (a) Saturated pipeline or not, (b) time latency to
reach maximal pipeline, and (c) average network utilization in
pipelining. In summary, we compare pipeline efficiency on the
three factors of four types of pipeline broadcasts in Table III,
where the following inferences are concluded:

e The pipe of the blocking pipeline broadcast is never
saturated when the pipeline length is odd;

e  With limited number of computing nodes and a great
number of messages to send and receive, the average
network utilization of the non-blocking scheme is
higher than that of the blocking scheme;

e Time latency for reaching maximal pipeline (if not
saturated) of the non-blocking method is smaller than
that of the blocking method, when PL < 3, while is
greater than that of the blocking method, when PL >
3. The boundary value of PL for maximal pipeline
can be relaxed to greater values if only reaching the
same network utilization is required.

Although on receiving messages, both schemes have sim-
ilar time overhead and the same time complexity, according
to the above inferences, the non-blocking scheme exploits
network bandwidth more thoroughly than the blocking scheme
in two aspects: Saturated pipeline or not and average network
utilization. As for maximal pipeline time latency, the blocking
scheme may be superior to the non-blocking scheme as PL
is generally of the order of magnitude of tens or greater. Nev-
ertheless, the gap for reaching maximal pipeline between two
schemes shrinks if only reaching the same network utilization
is considered, since pipeline in the blocking scheme can never
be always saturated®. Therefore, the non-blocking pipeline
broadcast is adopted for exploiting communication slack to
improve performance of distributed matrix multiplication.

IThe numbers are relative values instead of absolute values.

2We assume that the number of messages is considerably large, and
the processes involved in communication have 100% network utilization
individually while those not involved in communication have 0% network
utilization individually. For simplicity, approximate arithmetic average values
are calculated.

3Pipeline is not always saturated with alternate pipeline capacities between

1 — 27 and 100% after saturated pipeline has been reached.

V. IMPLEMENTATION AND EVALUATION

We have implemented the high performance pipeline
broadcast with tuned chunk size for improving performance
efficiency of distributed matrix multiplication. Our implemen-
tation was accomplished by rewriting the pdgemm() routine
based on the algorithm provided by ScaLAPACK [18], one
widely used scalable numerical linear algebra libraries for
distributed-memory clusters nowadays. In our implementation
of pdgemm(), instead of using binomial tree broadcast for
communication, we take advantage of tuning chunk size of
pipeline broadcast to fully exploit possible slack during com-
munication. For achieving optimal performance of computa-
tion, we employ the dgemm() routine provided by ATLAS
[19], a linear algebra software library that automatically tunes
performance according to configuration of the hardware. The
rewritten pdgemm() has the same interface and is able to
produce the same results as the pdgemm() of ScaLAPACK.

A. Experimental Setup

We applied the non-blocking pipeline broadcast to five
matrix multiplications with different global matrix sizes to
assess performance gain achieved from our approach. Ex-
periments were performed on a computing cluster (HPCL)
with an Ethernet switch consisting of 8 computing nodes
with two Quad-core 2.5 GHz AMD Opteron 2380 processors
(totalling 64 cores) and 8 GB RAM running 64-bit Linux
kernel 2.6.32. In our experiments, time was measured using the
MPI_Wtime() routine, and energy consumption was measured
using PowerPack [20], a comprehensive software and hardware
framework for energy profiling and analysis of high perfor-
mance systems and applications. PowerPack was deployed and
running at a meter node to collect energy costs on all involved
hareware components on all 8 computing nodes of HPCL.

B. Performance Gain via Pipeline Broadcast

The optimal performance and energy costs can be achieved
by applying the non-blocking pipeline broadcast with tuned
chunk size in distributed matrix multiplication. We evalu-
ated performance and energy efficiency of our high perfor-
mance pipeline broadcast by contrasting our implementation
of pdgemm() against pdgemm() with binomial tree broadcast
and pdgemm() with the blocking pipeline broadcast on the
HPCL cluster, respectively, as shown in Tables IV and V.
The default block size 32 as in the pdgemm() routine of
ScaLAPACK was adopted in our experiments.

Compared to the binomial tree pipelining, the non-blocking
pipeline broadcast exploits network resources more completely
via pipelined fine-grained message communication as illus-
trated in section 4A, where chunk size of sending and receiving
messages is highly tuned. Specifically, performance gain can
be maximized by increasing the number of message chunks
from partitioning messages to send and receive into smaller
pieces, so that the advantage of pipelining is fully utilized with
the fine-grained communication. As Table IV shows (speed-
ups are calculated by comparing time in the 4" column with
time in the 2°4 and the 3'4 column individually), execution
time of pdgemm() with the non-blocking pipelining is 4.8%
on average and up to 6.5% less than that with the binomial tree
scheme. On the other hand, compared to the blocking pipeline
broadcast, the non-blocking pipeline broadcast exploits net-
work bandwidth more throughly due to the fully leveraged
pipeline and higher average network utilization in pipelining



TABLE IV. NON-BLOCKING PIPELINE BROADCAST SPEED-UPS OVER BLOCKING PIPELINE AND BINOMIAL TREE BROADCAST (UNIT: SECOND)
Global Execution Time with Execution Time with Execution Time with Performance Gain in %
Matrix Size | Binomial Tree Pipelining Blocking Pipelining Non-blocking Pipelining 4th yg ond 4th g grd
7680 11.657 11.931 11.130 4.5%, 6.7%
10240 20.956 21.843 20.104 4.1%, 8.0%
12800 34.579 35.666 32.654 5.6%, 8.4%
15360 58.313 57.132 54.525 6.5%, 4.6%
17920 80.874 81.929 78.161 3.4%, 4.6%
TABLE V. NON-BLOCKING PIPELINE BROADCAST ENERGY SAVINGS OVER BLOCKING PIPELINE AND BINOMIAL TREE BROADCAST (UNIT: JOULE)
Global Energy Costs with Energy Costs with Energy Costs with Energy Savings in %
Matrix Size | Binomial Tree Pipelining | Blocking Pipelining | Non-blocking Pipelining | 4th vs 2nd 4th g 3rd
7680 16486.7 16842.6 15692.4 4.8%, 6.8%
10240 31164.8 31908.9 29699.1 4.7%, 6.9%
12800 51896.5 52372.6 49269.2 5.1%, 5.9%
15360 88676.4 86147.8 83259.9 6.1%, 3.4%
17920 123986.3 124839.4 120006.1 3.2%, 3.9%
as discussed in section 4B. As shown in Table IV, the non- REFERENCES

blocking scheme achieves 6.5% on average and up to 8.4%
performance gain compared to the blocking scheme. As shown
in the last column of Table IV, performance gain drops as
matrix size increases. This is because when matrices expand
in size, computation time increases faster than communication
time, and thus performance gain from the communication can
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