Improving Performance and Energy Efficiency of Matrix Multiplication via Pipeline Broadcast

UCERSITY OF CALIFORNIA UCERSITY OF CALIFORNIA

Li Tan¹, Longxiang Chen¹, Zizhong Chen¹, Ziliang Zong², Rong Ge³, Dong Li⁴

Summary

Goal: Improving communication performance of distributed matrix multiplication to achieve energy efficiency

- Devise a high performance communication scheme
 Fully exploiting network bandwidth of distributed matrix multiplication via non-blocking pipeline broadcast with tuned chunk size
- ☐ Model and quantify the communication time complexity of binomial tree broadcast and pipeline broadcast
 - Analyzing communication slack in two types of pipeline broadcast
- ☐ Evaluate all three types of communication schemes
 - o On a 64-core power-aware cluster
 - Non-blocking pipeline broadcast with tuned chunk size is able to gain performance and energy savings

Background

- ☐ Matrix multiplication is a core operation of most numerical linear algebra algorithms
- LU, Cholesky, and QR factorizations
- Provided by ScaLAPACK and DPLASMA, etc.
- ☐ Distributed matrix multiplication algorithm (DIMMA)
- Distribute matrix elements into a process grid
- Broadcast local matrices in row-/column-wise
- Perform local matrix multiplication

Fig. 1. A Distributed Matrix Multiplication Algorithm with a Global View.

Binomial Tree and Pipeline Broadcast Algorithms

Round 2 Binomial Tree Broadcast

- Round 0, P0 sends to P1
 Round j (j > 0), Pi (i <= j)
- sends to the subsequent one

 Communication time com-
- ☐ Communication time complexity
- Binomial Tree Broadcast

$$T_B = (T_s + \frac{S_{msg}}{BD}) \times logP$$

Pipeline Broadcast

Utilization%

$$T_P = (T_s + \frac{S_{msg}/n}{BD}) \times (n+P-1)$$

Time Slot(s) Utilization%

Blocking Pipeline Broadcast

Time Slot(s)

Non-blocking
Pipeline Broadcast

Max Pipeline Type of **Pipeline** Average Pipeline Broadcast Is Full? **Utilization**² Time Latency¹ $2(\lfloor \frac{PL}{2} \rfloor - 1)$ Blocking, Odd PL ~ 1 – No Yes³ Blocking, Even PLPL-2 ~ 1 – 2PL-5 $\sim 100\%$ Non-blocking, Odd PLYes 2PL-5Non-blocking, Even PL $\sim 100\%$ Yes

TABLE III. PIPELINE BROADCAST EFFICIENCY COMPARISON

Implementation

- ☐ Rewriting the pdgemm() routine provided by ScaLAPACK
- Employing non-blocking pipeline broadcast for comm.
- Tuning the chunk size of pipeline broadcast
- Call the dgemm() routine provided by ATLAS for comp.
- The same interface & results as ScaLAPACK pdgemm

Performance Gain and Energy Savings

Performance Gain

- Non-blocking vs.
 Binomial: 6.5%
- Non-blocking vs.
 Blocking: 8.4%

Pipelining Global Matrix Size: 12800 Time Energy 90000 80000 80000 70000 80000 70000 80000 70000 80000 70000 80000 70000 80000 70000 70000 10000 10000 10000 0 My pdgemm w/ My pdgemm w/ My pdgemm w/ Binomial Tree Blocking Pipelining Non-blocking

□ Energy Savings

- Non-blocking vs.
 Binomial: 6.1%
- Non-blocking vs.
 Blocking: 6.9%

Acknowledgements

INSIR.

- Special thanks to:
 - The HPCL Lab at the Marquette University
 National Science Foundation Grant #CNS-
 - 1118043, #CNS-1116691, #CNS-1304969
- . University of California, Riverside, CA, USA
- 2. Texas State University-San Marcos, TX, USA
- 3. Marquette University, WI, USA
- 4. Oak Ridge National Laboratory, TN, USA