
Lightweight Fault Detection in
Parallelized Programs

CGO’13, Shenzhen, China
Feb. 25, 2013

Rajiv Gupta
UC Riverside

Min Feng
NEC Labs

Li Tan
UC Riverside

• Parallelism can be achieved via parallelization
of sequential programs via easy-to-use parallel
constructs  OpenMP, SpiceC [PPoPP’11],
and TBB.

• Data Dependence Related Concurrency Bugs

• Data races
• Atomicity violations

Program Parallelization

• Conventional [PACT’98] [FSE’99]
• Locate program faults by leveraging the availability of

two versions of a program – one supposed correct
version and one derived version

• In Our Scenario

• A sequential version S and a parallelized version P
• Faulty parallelization  data dependence violation

• Data dependences enforced by S are not preserved
by P

Comparison Checking

• Comparison check the data dependences

exercised by the executions of S and P
• dynamic Data Dependence Graphs:sDDG+pDDG

• Nodes: execution instances of statements
• Edges: data dependences between nodes

• Faulty parallelization: different sDDG and pDDG
constructed using the same input

Debugging Parallelized Programs

Basic Idea:

 1: #pragma omp parallel for
 2: for (;;) {
 #pragma omp critical
 3: if (fgets(s, NUM, stdin) == NULL) break;
 4: if (s[0] == ‘!’) {
 5: /* Other relevant code here */
 6: }
 7: if (!separate_sentence(s)) {
 8: /* Other relevant code here */
 9: }
10: } sDDG

pDDG

Data Race Detection

• DDG Construction Overhead

Limitations

Execution
Time

Memory Space

• Graph Size and Checking Time

Limitations (Cont.)

• Dependence Violation May Not Occur
• Not every interleaving causes violation
• As low as 10% chance to expose a data race;

up to 22 hours to expose an atomicity
violation [ASPLOS’09]

• Validity of Comparing Two Runs

• Random numbers alter control flow [ISSTA’07]
• Inconsistency ≠ a concurrency bug

Limitations (Cont.)

Significant limitations…
How can we get rid of them?

• Eliminate irrelevant dependences
• Data dependences in sequentially executed code
• Savings: time + space for tracking and checking

• fine-grained graphs  coarse-grained
graphs
• Statements (DDG)  Code regions (DRG)
• Savings: graph size

OPT-1: Region Graphs

OPT-1: Region Graphs (Cont.)

sDRG

pDRG

/* the same data race example... */

 1: #pragma omp parallel for
 2: for (;;) {
 3: if (fgets(s, NUM, stdin) == NULL) break;
 4: if (s[0] == ‘!’) {
 5: /* Other relevant code here */
 6: }
 7: if (!separate_sentence(s)) {
 8: /* Other relevant code here */
 9: }
10: }

Region R1

• A single node in a DRG represents all execution
instances of a region
• Different dependences need to be distinguished
• Savings: time for tracking and checking + graph size

• Annotate each edge by dependence distances
• 0 indicates an intra-iteration dependence
• A non-zero value indicates a cross-iteration

dependence

OPT-2: Summarize Region Instances

OPT-2: Summarize Region Instances

sDRG ’

pDRG ’

/* the same data race example... */

 1: #pragma omp parallel for
 2: for (;;) {
 3: if (fgets(s, NUM, stdin) == NULL) break;
 4: if (s[0] == ‘!’) {
 5: /* Other relevant code here */
 6: }
 7: if (!separate_sentence(s)) {
 8: /* Other relevant code here */
 9: }
10: }

• Only the sequential version needs to be run
• Statically analyzing the parallel constructs in the

parallelized version
• Savings: time + space for tracking and checking

• Simplified concurrency bug detection
• Check if data dependences allowed by OpenMP,

SpiceC, and TBB violate sequential semantics
• Eliminate the limitations:

• Reproducibility rate + validity of comparing two runs

OPT-3: Static Region Graph

OPT-3: Static Region Graph (Cont.)

OPT-3: Static Region Graph (Cont.)

sDRG ’

SRG

/* the same data race example... */

 1: #pragma omp parallel for
 2: for (;;) {
 3: if (fgets(s, NUM, stdin) == NULL) break;
 4: if (s[0] == ‘!’) {
 5: /* Other relevant code here */
 6: }
 7: if (!separate_sentence(s)) {
 8: /* Other relevant code here */
 9: }
10: }

Execution Time Memory Space

Tracking Checking Tracking Graph Size

√ √ √ √

√ √ √

√ √

Optimization

OPT-1

OPT-2

OPT-3

Optimizing Comparison Checking

Observation: A dependence present in sDRG, but not allowed
by SRG, represents violation against sequential program
semantics by parallelization expressed by parallel constructs.

Optimized Region Graph Approach

Intel’s Pin

• Benchmarks
• Applied our technique to ten benchmarks

parallelized using OpenMP, SpiceC, and TBB
• Selected from MiBench, SPEC CPU2000,

Lonestar, and PARSEC benchmark suites

• Hardware Configuration

• A 2.66 GHz Intel Core Duo DELL Dimension 9200
machine with 4 GB RAM

• Linux kernel 2.6.32

Evaluation

sDRG Construction Overhead

Execution
Time

Memory Space

Graph Size Comparison

Previously Now

Comparison of DRG and DDG

Breakdown of Overhead Reduction

• Debugging Parallelized Programs
(OpenMP, SpiceC, and TBB)

 Versatility
• Support for multiple types of concurrency bugs
• Support for multiple parallel programming models

Novelty
• No requirement for execution of parallel programs
• Elimination of reproducibility and validity problems
• Region level data dependence graphs
• Only 3x slowdown on average

Conclusions

