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Abstract
A popular approach for producing parallel software is to de-
velop a sequential version of an application and then incre-
mentally introduce parallel constructs to parallelize differ-
ent parts of the application. During the parallelization pro-
cess, programming errors may be introduced, causing con-
currency bugs. In this paper we develop a technique for run-
time detection of data dependence faults (i.e., data races and
atomicity violations) introduced during parallelization. By
leveraging the availability of two versions of the program,
the sequential one and the parallelized one, we comparison
check dynamic data dependences exercised during execu-
tions of the two versions to identify faults.

To reduce the cost of comparison checking we develop
three optimizations. The first optimization causes only a sub-
set of dynamically exercised data dependences to be com-
parison checked. The second optimization shows that not all
instances of a dynamically exercised data dependence need
to be comparison checked. The third optimization shows that
static analysis of parallelizing constructs can be exploited to
eliminate the need for executing the parallelized version al-
together. In addition, our solution is applicable when differ-
ent program executions on the same input may follow dif-
ferent execution paths, it is effective in situations where the
fault introduced manifests itself rarely during execution, and
it is also effective in pinpointing the location of the fault in
the program. We implemented and evaluated our approach
using ten benchmarks. The experimental results indicate an
average slowdown of 3x to perform fault detection.

Categories and Subject Descriptors D.2.5 [Software En-
gineering]: Testing and Debugging – Debugging aids, Test-
ing tools, Tracing; D.3.4 [Programming Languages]: Pro-
cessors – Debuggers

General Terms Algorithms, Measurement, Reliability
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1. Introduction
With an increasing number of cores on a single chip, ex-
ploiting parallelism is crucial to enhancing the performance
of applications. A widely used approach is to develop a se-
quential version of an application and incrementally par-
allelize it using parallel constructs provided by high level
parallel programming models such as OpenMP [9], SpiceC
[11], and TBB [28]. While these models provide easy-to-use
constructs for parallelization, however, parallelization can
be an error-prone process. Incorrect parallelization can lead
to introduction of concurrency bugs such as data races and
atomicity violations. Providing tools for detecting and lo-
cating faults in parallelized programs is important to reduce
debugging efforts and increase programmer productivity.

In this paper we present a technique for detecting and
locating data dependence faults introduced during program
parallelization. A data dependence fault is introduced when
the parallelization violates a data dependence enforced by
the sequential execution – data races and atomicity viola-
tions are two forms of data dependence faults. The technique
we propose is based upon comparison checking [14, 15]
which leverages the availability of two versions of the pro-
gram, the sequential one and the parallelized one, to detect
faults. In particular, the two versions are executed on the
same input and the dynamic data dependences exercised by
the two versions are compared to identify differences that
result from introduction of data dependence faults.

While comparison checking is an effective approach,
there are several challenges for utilizing it in practice. First,
the cost of using it to solve our problem is very high. Not
only both sequential and parallelized program versions must
be executed, but the overhead of dynamically tracking data
dependences and checking corresponding dependences is
very high both in terms of execution time and memory space
[22]. Second, programs may contain features (use of ran-
dom numbers, time dependent code etc.) that may alter the
control and data flow arbitrarily in different runs [13]. The
variation of program flow further increases the difficulty
of exposing faults. Third, the potential of non-deterministic
events such as random interleaving involved during execu-



tions of parallel programs makes it difficult to reproduce
and hence locate faults [26]. Lastly, many techniques are
designed for certain types of concurrency bugs, e.g., data
races [12, 19–21, 23, 24, 27, 29, 33, 34] and atomicity vio-
lations [6, 16, 26]. However, developers rarely know the bug
type present in advance. Therefore, a technique that handles
multiple kinds of bugs is desirable.

We propose an efficient and precise approach to locat-
ing data dependence faults in parallelized programs. Our ap-
proach is based on Region Graphs (RGs), which are coarse-
grained data dependence graphs. Each node in an RG cor-
responds to a code region, which is a code block annotated
by parallel constructs used in parallelization. By comparing
RGs of two versions of a program, the sequential one and the
parallelized one we identify faults introduced during paral-
lelization. We also show our approach is general – it can lo-
cate data dependence faults like data races and atomicity vi-
olations and it can be employed for many parallel program-
ming models like OpenMP, SpiceC, and TBB. In summary,
the contributions of this paper are as follows:

• We show that two types of concurrency bugs cause the
dynamic data dependences in the parallel run to differ
from those in the sequential run;

• We propose an efficient and precise approach to locating
data dependence faults in parallelized programs, which
only requires dynamically profiling the execution of the
sequential version of the program and statically analyzing
the parallel constructs inserted for parallelization;

• We prove that our approach is equivalent to directly com-
paring the fine-grained dynamic data dependences in the
sequential and parallel runs; and

• Our fully optimized approach achieves on average 3x
slowdown compared to original executions.

The remainder of the paper is organized as follows. In
section 2 we introduce comparison checking of dynamic
data dependence graphs and analyze its costs. In section
3 we present optimizations to reduce the cost of compari-
son checking without sacrificing precision. In section 4 we
present a detailed evaluation of our technique. We discuss
related work in section 5 and conclude in section 6.

2. Comparison Checking
Comparison checking is a technique for locating faults in the
scenario where two versions of a program are available – one
version that is considered to be the correct version and an-
other version that has been derived from the correct version
via transformations. It was initially introduced for locating
inconsistencies between unoptimized (correct) code and op-
timized (potentially incorrect) code to detect bugs in the op-
timizer by Jaramillo et al. [14, 15]. The values computed by
the two versions of the program were comparison checked
to locate faults.

In this section we apply the idea of comparison check-
ing to find inconsistencies between the sequential version
of a program and its parallelized version. These inconsis-
tencies arise due to faulty parallelization performed by the
programmer using a high level parallel programming model
such as OpenMP [9], TBB [28], or SpiceC [11]. We observe
that incorrect parallelization can lead to violation of data
dependences by the parallelized version, i.e., dependences
enforced by the sequential version are not preserved by the
parallelized version. In particular, data dependence faults in-
troduced during parallelization can result in data races and
atomicity violations. Therefore to locate data dependence
faults we can comparison check the data dependences ex-
ercised by the executions of the sequential and parallelized
program versions on a given input. We assume that the two
versions of the program are to perform the same computa-
tion and thus their dynamic dependence graphs are expected
to be the same.

The executions of the sequential and parallelized ver-
sions are characterized using their respective dynamic Data
Dependence Graphs, sDDG and pDDG. In dynamic data
dependence graphs, nodes represent execution instances of
statements (or instructions) and edges show the data de-
pendences between nodes. By tracking reads and writes to
memory locations and registers during program executions,
we can construct the DDGs. The data dependences include,
Read-After-Write (RAW), Write-After-Write (WAW), and
Write-After-Read (WAR) dependences. The formal defini-
tions of DDGs are given below:

DEFINITION 1. A Dynamic Dependence Graph (DDG)
for a program execution is a directed graph G = (V,E),
where each node si ∈ V denotes the ith execution instance
of a statement s and each directed edge e ∈ E denotes
a runtime data dependence from execution instance sai of
statement sa to execution instance sbj of statement sb.

DEFINITION 2. A sequential Dynamic Dependence Graph
(sDDG) is a DDG for a sequential program run; A paral-
lel Dynamic Dependence Graph (pDDG) is a DDG for a
parallel program run.

DEFINITION 3. A faulty parallelization of a sequential
program is determined if there exists a pair of sDDG and
pDDG constructed using the same input that are different
from each other.

An Example. Next we show how data races and atom-
icity violations are reflected in the form of sDDG and
pDDG inconsistency. For illustration purposes we consider
the 197.parser program which is a syntactic parser for
English based on link grammar. In this program, a linked
dynamic data structure is employed to store dictionary
information and temporary parsing results. The function
batch process(), called directly by the main() function,
performs most of the detailed task of parsing and relevant



1: char s[MAX LINE] = “”;
2: #pragma SpiceC doacross {
3: for(;;) {
4: #pragma SpiceC region R1 after(ITER-1, R1) {
5: if (fgets (s, MAX LINE, stdin) == NULL) break;
6: /* Other relevant code here */
7: #pragma SpiceC commit

8: }
9: #pragma SpiceC region R2 {

10: if (s[0] == ‘!’) {
11: special command1 (s);
12: special command2 (s);
13: continue;
14: }
15: if (!separate sentence (s)) continue;
16: print sentence(stdout, id);
17: /* Other relevant code here */
18: #pragma SpiceC commit

19: }
20: #pragma SpiceC region R3 {
21: fflush (stdout);
22: /* Other relevant code here */
23: #pragma SpiceC commit

24: }
25: }
26: }

Figure 1. A Motivating Example in SpiceC.

(a) sDDG (b) pDDG

Figure 2. DDGs for a Sequential Run and a Parallel Run.

function calls. The execution time of batch process()

takes up over 90% of the total execution time.
Data races occur when two or more threads simultane-

ously access the same memory location and at least one of
these accesses is a memory write operation, with no locks
to synchronize the accesses. Figure 1 shows an example of
data races in the kernel of 197.parser parallelized using
SpiceC. We simplify this kernel for illustration purposes.
Due to the presence of cross-iteration dependences on shared
variables, the programmer needs to use DOACROSS paral-
lelism and partition the loop body into three regions to par-
allelize this loop. Region R1 and R3 must be executed in
sequential order due to use of shared file pointers in input
and output functions fgets() and fflush() at statements
5 and 21 respectively, while region R2 can be executed in

parallel. Specifically, the programmer needs to place appro-
priate after clauses in the declaration directives of region
R1 and R3 to allow the sequential execution order for the
cross-iteration dependences on shared file pointers. Other-
wise, data races will occur due to potential simultaneous
writing to the same file pointer. The dependence violation
can be observed by comparing sDDG and pDDG of program
executions. As shown in Figure 2, the sDDG and pDDG do
not match on the dependences between instances of state-
ment 21. Instead of being data dependent upon the previous
instance, each instance of statement 21 depends on instances
at random distances, which indicates that a subsequent iter-
ation may overwrite the results of previous one. Therefore,
the original program semantics is not preserved by the par-
allelization of this loop.

Atomicity violations occur when the execution of a code
block in one thread is interleaved by the execution of state-
ments from other threads. The results obtained when atom-
icity violations occur may differ from those obtained when
code blocks in different threads are executed sequentially
with no interleaving. In SpiceC, atomicity violations occur
when atomicity checking directives are mistakenly not in-
troduced by the programmer. An example of atomicity viola-
tions is illustrated in Figure 1 where region R2 is executed in
parallel. Statements 11 and 12 read a shared dictionary struc-
ture, array s[], while statement 15 possibly writes s[]when
given conditions are satisfied in different threads. The reads
of s[] need to be performed atomically to ensure statements
11 and 12 read consistent data when statement 15 writes s[].
If the programmer forgets to specify atomicity check in re-
gion R2, statements 11 and 12 may get inconsistent values
of s[] from statement 15 in the subsequent iteration due to
atomicity violations. Likewise, such a concurrency bug will
be observed when comparing the sDDG and pDDG given in
Figure 2. The dependence violation is found in the inconsis-
tency of dependences among instances of statements 11, 12,
and 15. In the sDDG, all instances of statements 11 and 12
depend on those of statement 5 where the value of s[] is ini-
tialized, while some instances of statement 12 in the pDDG
depend on those of statement 15 in the subsequent iteration.
The dependence violation indicates that in a parallel run one
thread may read a shared variable while another thread is up-
dating it. The inconsistent data may lead to wrong outputs or
a program crash.

Limitations of DDG based Comparison Checking. Next
we discuss some limitations of the above comparison check-
ing algorithm. These limitations motivate our optimized
comparison checking algorithm that will be presented in
the next section.
(i) DDG Construction Overhead. Figures 3 and 4 show the
time and memory cost of DDG construction for the bench-
marks in Table 1. Since DDGs record dependences between
all instances of instructions, it takes considerable time and
space to build them. On average, sDDG construction slows



Table 1. Benchmark details. From left to right: benchmark name, test case used, number of instructions executed, parallelized
function, lines of code in the function, execution time percentage of the function relative to total, parallelism and parallelization
system employed, and concurrency bugs introduced intentionally.

Benchmark Description & Test Case Inst. Num. Function LOC Runtime Parallelism & Faulty Versions(in Billion) (in %) Parallelized by

bodytrack Track a 3D pose of a human 15.558 mainOMP 48 97.8% DOALL Data Raceswith 4 cameras and 4 frames. OpenMP

freqmine Perform frequent itemset mining 36.978 FP growth first 140 98.1% DOALL Data Racesin 990000 click streams. OpenMP

256.bzip2 Compress a 207 KB file. 0.139 compressStream 130 98.9% DOACROSS Data Races
SpiceC Atomicity Violations

CRC32 Calculate 32-bit CRC for 10 0.236 main 13 100% DOACROSS Data Races
files of total size 3.065 MB. SpiceC Atomicity Violations

Barnes-Hut Simulate gravitational forces 4.606 main 92 100% DOALL Data Racesacting on 10000 bodies. SpiceC

197.parser Analyze structure and grammar 7.324 batch process 284 91.9% DOACROSS Data Races
of a 35.6 KB file. SpiceC Atomicity Violations

ferret Perform content-based similarity 28.984 do query 86 99.1% Pipeline Data Racessearch in 34973 images. SpiceC

DelaunayRefinement Refine an initial Delaunay mesh 165.527 read 59 10.3% DOACROSS Data Races
of 100770 triangles. SpiceC Atomicity Violations

swaptions Price a portfolio of 64 swaptions 12.609 main 202 100% DOALL Data Raceswith 20000 simulations. TBB

streamcluster Perform an online clustering 19.036 pkmedian 143 99.8% DOALL Data Racesalgorithm on 16384 points. TBB
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Figure 3. DDG: Time Overhead.
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Figure 4. DDG: Memory Overhead.
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Figure 5. DDG: Graph Size.

down the execution of the sequential version by a factor of
6.67x and the memory consumption goes up by a factor of
7.03x. For constructing pDDGs, on average, the time slow-
down is 7.32x relative to the execution of the uninstrumented
parallelized version, since tracking of data accesses must be
performed atomically. The memory consumption goes up
by a factor of 9.59x in comparison to the parallel execution
without instrumentation.
(ii) Graph Size and Checking Time. The graph sizes of
sDDG and pDDG grow with the length of program runs;
thus, they can become very large. As a consequence, com-
parison checking sDDG with pDDG can also take a signifi-
cant amount of time. From Figure 5 we can see that the graph
size reaches 1 GB for two programs. Figure 3 shows that the
average checking time is 5.44x of the execution time of the
uninstrumented version.
(iii) Reproducibility Rate. Because of the non-deterministic
interleaving in parallel program runs, it may require con-
siderable amount of runs to expose a concurrency bug (an
atomicity violation in particular). For example, it has been
reported that the reproducibility rate of Apache Qpid client
hanging bug while joining threads is only around 10% [2]. It
took 22 hours to manifest an atomicity violation from run-
ning the Apache HTTPd Server [26]. The small probability
for particular interleaving of exposing concurrency bugs fur-
ther increases the cost of fault localization.

(iv) Validity of Comparing Two Runs. Some programs
depend on random numbers that may alter the control flow
arbitrarily in different runs regardless of the program input
[13]. For such programs the inconsistency between sDDG
and pDDG may be wrongly viewed as a bug.

3. Optimizing Comparison Checking
In this section we present a series of three optimizations
that one by one will overcome the limitations of the DDG
based approach described above. Table 2 shows the benefits
of the optimizations in reducing the cost of comparison
checking. In addition, the final optimization (OPT-3) also
eliminates the last two limitations of the DDG approach, i.e.,
reproducibility rate and validity of comparing two runs.

Table 2. Reduction Achieved by Three Optimizations.
Optimization Execution Time Memory Space

Tracking Checking Tracking Graph Size
OPT-1

√ √ √ √

OPT-2
√ √ √

OPT-3
√ √

3.1 OPT-1: Region Graphs
The first optimization we present in this section performs
two tasks. First, it eliminates the collection and representa-
tion of irrelevant dependences that have nothing to do with
the parallelized portions of the program. Second, a compact
dependence graph is constructed in which nodes correspond



to code blocks or regions instead of individual statements (or
instructions). This is possible because the parallelization is
typically performed at the granularity of code regions and
thus it is sufficient to capture dependences between regions.

Next we show how the above approach is applied in the
context of DOALL, DOACROSS, and Pipeline loops. Figure
6 shows that the control flow graph of a sequential loop as
well as the graph after parallelization have been applied for
all three types of parallelism. By comparing the sequential
and parallelized control flow graphs, we derive the sets of
dependences between code regions that must be comparison
checked for the parallelization to be correct.

DOALL. Given a loop parallelized using the DOALL con-
struct as shown in Figure 6, the comparison checked depen-
dences from the sequential and parallelized versions must
include RAW, WAW, and WAR dependences between dif-
ferent instances of the same region Rk, i.e. (Rik, Rjk), where i
and j are distinct region instance numbers (1 ≤ (i, j) ≤ n)
and n is the number of iterations in the loop.

DOACROSS. A body of a loop parallelized using the
DOACROSS construct contains three regions (R1, R2, R3)
where the parallelism is captured by the middle region (see
Figure 6). The comparison checked dependences from the
sequential and parallelized versions must include RAW,
WAW, and WAR dependences between following region
instances: (Ri2/3, Rj

1/2), where i < j and R
j

1/2 depends on
Ri2/3 in sequential version of the program, i.e., Rj

1/2 → Ri2/3.

Pipelining. A loop parallelized using Pipeline construct as
shown in Figure 6. The comparison checked dependences
from the sequential and parallelized versions must include
RAW, WAW, and WAR dependences between instances of
following different regions and different loop iterations: (Rkj,
Rk+1..n
i ), where i < j and Rk+1..n

i depend upon Rkj in the se-
quential version of the program, i.e., Rk+1..n

i → Rkj.

We can see that according to the above rules, not only
are relevant subset of all dynamic data dependences com-
parison checked, they are also represented at the granularity
of regions. Instead of building and comparing DDGs at in-
struction instance level, we propose to identify DDG incon-
sistency by constructing and checking two coarse-grained
graphs at region instance level. In a Region Graph (RG),
each node stands for a code region that denotes a code block
annotated by parallel constructs and each edge represents a
dependence between region instances. A Dynamic Region
Graph (DRG) is constructed by profiling executions of the
sequential or parallelized version of a program to capture
dynamically arising dependences between region instances.
By comparing DRGs of running both versions, we can lo-
cate dependence violation at region instance level that re-
flects faulty parallelization. This representation is clearly
more compact. Below we define region graphs formally.

Figure 6. Dependence Tracking and Checking for DOALL,
DOACROSS, and Pipeline Parallelism.

DEFINITION 4. Intra-iteration dependences are RAW,
WAW, and WAR dependences from an instruction instance
in a region instance Rj to an instruction instance in a region
instance Ri, where Rj follows Ri in program execution order
(j ≥ i), within the same loop iteration.

DEFINITION 5. Cross-iteration dependences are RAW,
WAW, and WAR dependences from an instruction instance
in a region instance Rj of the tth loop iteration to an instruc-
tion instance in a region instance Ri of the sth loop iteration,
where t > s.

DEFINITION 6. A Region Graph (RG) is a directed graph
G = (V,E), where: V is a set of vertices, each of which iden-
tifies one region instance in a loop of a program parallelized
using parallel constructs; and E is a set of edges, where each
edge identifies a data dependence between region instances.

DEFINITION 7. A Dynamic Region Graph (DRG) is an
RG where each edge represents a dynamic data dependence
that arises in a program execution. A sequential Dynamic
Region Graph (sDRG) is a DRG for a sequential program
run; A parallel Dynamic Region Graph (pDRG) is a DRG
for a parallel program run.

The data races and atomicity violations can be located by
comparing only data dependences at region instance level.



(a) sDRG (b) pDRG

Figure 7. DRGs for Two Runs of Figure 1.

Figure 7 shows the sDRG and pDRG pair for the motivat-
ing example given in Figures 1 and 2. We observe that in
the sDRG an instance of R3 depends on the region instance
executed immediately before it, while in the pDRG some in-
stances of R3 depend on earlier region instances at an ar-
bitrary dependence distance. This is because there are no
parallel constructs specifying the sequential execution order
of R3. The faulty parallelization causes data races in par-
allel runs and is reflected as an inconsistency in the sDRG
and pDRG pair. Further, the sDRG is not equivalent to the
pDRG due to an additional R2i→ R2i+1 edge in the pDRG.
This edge reveals that in the sequential runs, cross-iteration
dependences only occur from subsequent region instances
to preceding ones, while in the parallel runs, cross-iteration
dependences can occur in both directions. Such additional
edges result when a write to a shared variable interleaves
the execution of two consecutive reads of the same variable
without atomicity checking directive in R2. Thus, the second
read obtains inconsistent data revealing atomicity violation.

THEOREM 1 (Correctness I). Given a parallelized pro-
gram p and an input x, sDRG(p, x) ≡ pDRG(p, x) ⇐⇒
sDDG(p, x) ≡ pDDG(p, x).

Proof. We prove the sufficiency and necessity separately.

Sufficiency. The edges in a DDG can be divided into two
categories: inter-region and intra-region edges. Inter-region
edges represents data dependences between region instances
while intra-region edges represents those within region in-
stances. Given the premise that the sDRG(p, x) is equiva-
lent to the pDRG(p, x), we can infer that all dynamic data
dependences between region instances during the sequen-
tial execution of p on the input x matches their counterparts
during the parallel execution of p on the input x. That is,
at region instance level, the original sequential program se-
mantics is preserved. Therefore, the inter-region edges in the
sDDG(p, x) will definitely appear in the pDDG(p, x). As
for the intra-region edges, they will not change since the
data dependences coming from outside the region instance
are the same. Thus the intra-region edges in the sDDG(p, x)
will definitely appear in the pDDG(p, x) as well. Finally, all
edges in the sDDG(p, x) appear in the pDDG(p, x), which
concludes sDDG(p, x) ⊆ pDDG(p, x).

On the other hand, since all dynamic data dependences
in the sequential run are preserved, all the branches in the

sequential run will produce the same outcomes as those in
the parallel run. Therefore, the control flows are the same in
both runs. As both runs go through the same execution path,
the total number of data dependences must be the same in
both runs, i.e., |sDDG(p, x)| ≡ |pDDG(p, x)|.

With current inferences sDDG(p, x) ⊆ pDDG(p, x)
and |sDDG(p, x)| ≡ |pDDG(p, x)|, we can conclude that
sDDG(p, x) ≡ pDDG(p, x).

Necessity. Given the premise that sDDG(p, x)≡ pDDG(p,
x), we can infer that all dynamic data dependences between
region instances during the parallel execution of p are always
the same as those arising during the sequential execution of
p. This indicates that the original sequential program seman-
tics at region instance level is not altered in the parallel run
since data dependences between region instances are a sub-
set of all data dependences, i.e., sDRG(p, x) ≡ pDRG(p, x).
Otherwise, there must exist a parallel run that has different
dynamic data dependences between region instances from
the corresponding sequential run.

LEMMA 1 (Basic Determination of Faulty Paralleliza-
tion). Given a parallelized program p, when ∃ an input x,
sDRG(p, x) 6= pDRG(p, x), the parallelization of p is faulty.

Proof. From THEOREM 1, we can easily infer that given
a parallelized program p and an input x, sDRG(p, x) ≡
pDRG(p, x) ⇐⇒ sDDG(p, x) ≡ pDDG(p, x). The inverse
negative proposition of the theorem is also true, i.e., ∃ p, x
such that sDDG(p, x) 6= pDDG(p, x) ⇐⇒ sDRG(p, x) 6=
SRG(p). According to DEFINITION 3, when ∃ p, x such that
sDDG(p, x) 6= pDDG(p, x), the parallelization of p is faulty.
This concludes the proof of the lemma.

Therefore, we can employ the coarse-grained region
graph approach to locate concurrency bugs instead of using
the fine-grained DDG approach without loss of accuracy.

3.2 OPT-2: Summarizing Region Instances
While DRGs are more compact than DDGs, still the size of
a DRG grows with the length of a program run as each ex-
ecution instance of a code region must be represented by a
distinct node in the DRG. In this section, we show that we
can summarize all the dynamic data dependences involving
a region such that we do not need to explicitly distinguish
between its execution instances, i.e., a single node in a DRG
represents all execution instances of a region. This summa-
rization however requires that all different dependences en-
countered during the execution of a region are remembered.
This is achieved by annotating each edge by a dynamic de-
pendence distances. The value of a dependence distance of 0
indicates an intra-iteration dependence and a non-zero value
indicates a cross-iteration dependence.

DEFINITION 8. Given a dependence d in a region graph
from one region instance in the ith iteration of a loop to the



other in the jth iteration, a dependence distance dist is an
integer that equals to i− j.

A simplified version of Figure 7 according to this opti-
mization is shown in Figure 8. It should be noted that the
two simplified DRGs are not equivalent due to inconsistency
related to R2 and R3. Specifically, R2 of the pDRG has an
additional edge R2

−1−→ R2 that reveals a cross-iteration de-
pendence with a dependence distance of -1. Besides, R3 of
the pDRG has additional R3 2→ R3 edges that reveals cross-
iteration dependences with a dependence distance of 2.

(a) sDRG DepDist (b) pDRG DepDist

Figure 8. DRGs with Dependence Distances for Two Runs
of Figure 1.

Next we show that by using dependence distances, the
correctness of the region graph approach is preserved, since
the use of dependence distances is sufficient to capture the
faulty parallelization caused by dependence faults.

THEOREM 2 (Correctness II). Given a parallelized pro-
gram p and an input x, sDRG′(p, x) ≡ pDRG′(p, x) ⇐⇒
sDRG(p, x) ≡ pDRG(p, x), where sDRG′ and pDRG′ de-
note sDRG and pDRG with dependence distances respec-
tively.

Proof. We prove the sufficiency and necessity separately.

Sufficiency. We prove it by contradiction. Let us as-
sume that for a program p and an input x, sDRG′(p, x)
≡ pDRG′(p, x) but there exists a parallel execution that
sDRG(p, x) 6= pDRG(p, x). Thus there must exist at least
one pair of dependences between sDRG(p, x) and pDRG(p,
x) that do not match. Assume that a load in region instance
Rix reads a value from region instance R

j
y (i.e., causing a de-

pendence R
j
y → Rix) in the sequential run but reading from

another region instance Rkz (i.e., Rkz → Rix) in a parallel run.
Since Ry

j−i−→ Rx exists in sDRG′(p, x) and sDRG′(p, x) ≡
pDRG′(p, x), then Ry

j−i−→ Rx must also exist in pDRG′(p,
x). Therefore, there must exist another parallel run where
Rix reads from R

j
y. Since Rix could depend on different re-

gion instances (e.g., Rjy or Rkz) in different runs, this means
that the interleaving of region instances of Rx, Ry, and Rz
is non-deterministic. Due to the non-deterministic nature of
parallel executions, in a parallel run region instance Rix could
actually be dependent on any instance of Ry and Rz. After
summarizing the dependences, pDRG′(p, x) can have any
edge e ∈ {Rz

l−i−→ Rx}, where l could be any iteration num-
ber. Since sDRG′(p, x) only has a limited number of edges
from Rz to Rx, there must be a parallel execution producing
an edge e ∈ {Rz

l−i−→ Rx} that does not exist in sDRG′(p, x).
Therefore, sDRG′(p, x) 6= pDRG′(p, x) for certain parallel
execution, which leads to a contradiction. This concludes
the proof of the sufficiency.

Table 3. Dependences Allowed by Parallel Constructs in
OpenMP, SpiceC, and TBB.

Construct Allowed Dependences
OpenMP
parallel [for|do] Intra-iteration dependences
section Intra-iteration dependences
critical Intra-iteration/cross-iteration dependences
ordered Intra-iteration/cross-iteration dependences
SpiceC
doall Intra-iteration dependences
doacross Intra-iteration dependences
pipelining Intra-iteration/cross-iteration dependences

after(ITER-x, Ry)
Intra-iteration/cross-iteration dependences from
region Ry to current region with a distance x

atomicity check Intra-iteration/cross-iteration dependences
TBB
parallel for Intra-iteration dependences

parallel reduce
Intra-iteration dependences and
cross-iteration dependences of join

parallel scan
Intra-iteration dependences and
cross-iteration dependences of reverse join

parallel pipeline
Intra-iteration dependences and
cross-iteration dependences of filter

Necessity. Given sDRG(p, x) ≡ pDRG(p, x), we can infer
that all dependences at region instance level match. It is
obvious that the corresponding dependence distances are the
same. Thus sDRG′ and pDRG′ are equivalent.

3.3 OPT-3: Static Region Graph
Previous comparison checking techniques, as well as what
we have described so far, require that both versions of the
program be instrumented and executed [14, 15]. In this sec-
tion, we show that comparison checking can be accurately
performed by only executing the sequential version. The ex-
ecution of the parallelized version is not required because
a precise region graph can be constructed for the paral-
lelized version by statically analyzing the parallel constructs
inserted. This optimization not only reduces the time and
memory cost of our technique, it also eliminates additional
limitations of the DDG based method.

Since the program semantics is reflected by the sequen-
tial run and the parallelization semantics is specified by the
parallel constructs, the execution of the parallelized version
is not necessary. Our approach only executes the sequen-
tial version of the program and reports real bugs that are
revealed by the given sequential execution if it exercises
data dependences that are prohibited by the parallel con-
structs used in the parallelization. Previous concurrent de-
bugging works [21] have shown that data races can be ex-
posed by enumerating different interleaving at accesses to
synchronization variables. Our approach analyzes the paral-
lel constructs to find if any possible interleaving at the re-
gion boundaries (i.e., accesses to synchronization variables)
will violate the data dependences in the sequential run. Table
3 lists the allowed data dependences for core parallel con-
structs from OpenMP, SpiceC, and TBB. All these constructs
are designed to parallelize loops. Each of these constructs
enforces certain execution ordering, which allows some data
dependences from the sequential run to be retained in the
parallel run. We can easily construct a Static Region Graph



for a parallelized program conforming to the constraints in
the table.

DEFINITION 9 (Transitivity). If both dependences Ri
s→ Rk

and Rk
t→ Rj are allowed to occur in program executions,

then the dependence Ri
s+t−→ Rj is also allowed.

DEFINITION 10. A Static Region Graph (SRG) is an RG
where each edge represents a data dependence allowed to
occur in program executions by either a parallel construct
inserted, as given in Table 3, or DEFINITION 9.

LEMMA 2 (Optimized Determination of Faulty Paral-
lelization). Given a parallelized program p, when ∃ an
input x, sDRG(p, x) * SRG(p), the parallelization of p is
faulty.

Proof. Given sDRG(p, x) * SRG(p), we can infer there ex-
ists at least one edge e in sDRG(p, x) but not in SRG(p).
Now we need to prove there exists at least one parallel ex-
ecution where the edge e is not in pDRG(p, x). We know
an SRG consists of all allowed data dependence at runtime
expressed by a parallel construct. If e is not in SRG(p), we
know there is no such a parallel construct in the parallelized
program p to enforce (i.e., allow) the dependence d repre-
sented by e. Therefore, due to the non-deterministic inter-
leaving in parallel runs, d may not occur in parallel exe-
cutions of p. That is, there exists at least one parallel run
where e is not included in pDRG(p, x). Thus there exists at
least one edge e in sDRG(p, x) but not in pDRG(p, x), i.e.,
sDRG(p, x) 6= pDRG(p, x). From LEMMA 1, we conclude
the parallelization of p must be faulty.

(a) sDRG DepDist (b) SRG

Figure 9. sDRG with Dependence Distances and SRG.
Figure 9 illustrates the same example as in Figure 8 with

pDRG replaced by SRG. The sDRG is not equivalent to the
SRG since R2 and R3 of the sDRG have additional R2 1→ R2

and R3
1→ R3 edges respectively that reveals cross-iteration

dependences, while there are no corresponding edges in
the SRG due to no parallel constructs performing atomic-
ity checking in R2 and specifying the sequential execution
order of R3.

Now let us briefly discuss why the above approach elimi-
nates two additional limitations of the DDG based approach:

• Reproducibility Rate. Because the parallelized version
of the program is no longer executed, this problem does
not arise; and

• Validity of Comparing Two Runs. Some programs de-
pend on random numbers that may alter the control flow
arbitrarily in different runs regardless of the program in-
put [13]. However, since we do not run the parallelized
version, this problem is also eliminated.

4. Evaluation
We have implemented our approach for comparison check-
ing as summarized in Figure 10. We used the Intel’s dynamic
binary instrumentation tool Pin [18] to track memory and
register read and write instructions during runs of the se-
quential program. We construct an sDRG by profiling mem-
ory and register accesses and source code locations during
a sequential run. Data dependences are maintained at region
level. The construction of SRGs is based upon static analy-
sis of parallel constructs in the parallelized version. When a
corresponding sDRG and SRG pair is ready, inconsistency
checking is carried out by comparing the corresponding ver-
tices, edges, and labels between two graphs.

Figure 10. Overview of Our Implementation.
As expected, our approach successfully identifies the in-

jected bugs that result in data dependence faults. Therefore,
in the remainder of this section, we focus on evaluating our
approach in terms of its efficiency. We applied our tech-
nique to ten benchmarks parallelized by OpenMP, SpiceC,
and TBB to assess the costs of our technique and the ben-
efits of using the optimizations introduced. All experiments
were performed on a 2-core 2.66 GHz Intel Core Duo DELL
Dimension 9200 machine with 4 GB RAM running Linux
kernel 2.6.32. Time was measured using C++ time functions
and GNU tool gprof. All results were normalized with re-
spect to the time and space consumed by the uninstrumented
version of each benchmark. Benchmarks used were selected
from MiBench, SPEC CPU2000, Lonestar, and PARSEC
suites. Table 1 shows the details of these benchmarks.

4.1 Overhead of the Region Graph Approach
We measured the overhead of our approach in three respects:
time overhead in terms of the slowdown experienced by the
sequential program run due to execution of instrumentation
code and performing comparison checking; space overhead
in terms of increase in memory used by the program at run-
time because of tracking dynamic dependences; and graph
size in terms of memory needed to hold the sDRG con-
structed by running the sequential program. These results
are presented in Figures 11, 12, and 13 respectively. From
Figure 11 we can see that, on average, the execution of se-
quential program slows down by a factor of 3x. From Fig-
ure 12 we can see that, on average, the memory used during
the sequential program run increases by a factor of 6.55x.
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Figure 11. DRG: Time Overhead.
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Figure 13. DRG: Graph Size.

The above time and memory costs are mainly the costs of
tracking dependences using Pin and are therefore quite rea-
sonable. Finally, from Figure 13 we can see that the sizes
of sDRGs do not exceed 1 MB for these benchmarks. This
graph is quite small and can be easily kept in memory. More-
over, it explains why the execution time cost of comparison
checking the sDRG and SRG is very small in comparison to
the cost of building the sDRG as can be seen from Figure 11.

4.2 DRG vs. DDG
While the cost of our fully optimized region graph approach
is quite small, recall that the cost of the original DDG based
approach is very high. This is because it requires the execu-
tion of instrumented versions of both sequential and paral-
lelized versions of the program. Moreover, since the DDGs
constructed are much larger than DRGs, the memory con-
sumption for holding DDGs as well as the execution time
spent on comparison checking them are also very high. Table
4 presents the final cost of our sDRG+SRG based approach
as a percentage of using the original sDDG+pDDG based
approach. As we can see, both time and memory costs of
comparison checking are greatly reduced by our approach.

Table 4. Cost of Using DRG as a Percentage of DDG.
Benchmark Execution Time Memory Space

Tracking Checking Tracking Graph Size
bodytrack 4.487% 0.371% 45.765% 0.049%
freqmine 14.416% 0.586% 51.985% 0.082%
256.bzip2 17.594% 0.623% 46.155% 0.584%
CRC32 22.854% 0.694% 47.240% 1.923%
Barnes-Hut 5.819% 1.519% 32.463% 0.139%
197.parser 9.474% 2.632% 34.419% 0.138%
ferret 12.713% 1.067% 33.196% 0.044%
DelaunayRefinement 33.483% 0.371% 71.006% 0.051%
swaptions 32.437% 1.976% 36.379% 0.494%
streamcluster 9.884% 1.282% 39.001% 0.064%
GeoMean 13.463% 0.907% 42.534% 0.151%

The substantial savings of our approach shown above can
be broken down to further observe the effectiveness of the
three optimizations we presented. This breakdown is shown
in Figure 14 – the four bars for each benchmark correspond
to the Tracking Time (TT), the Checking Time (CT), the
Tracking Memory (TM), and the Graph Size (GS). Next we
analyze the impact of the optimizations on overhead costs as
demonstrated by Figure 14.

Tracking Time. OPT-1 and OPT-3 are responsible for
most of the reductions in TT. This is because OPT-1 elim-
inates the tracking of irrelevant dependences corresponding

to those parts of the program that are executed sequentially.
On the other hand, OPT-3 eliminates the need to run the
parallelized version of the program and hence eliminates the
corresponding TT. Finally, the reductions in TT due to OPT-
2 result because the runtime overhead of maintaining the
dynamically observed dependences at region instance level
is simpler than maintaining them at statement instance level.
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Figure 14. Breakdown of Total Reduction Achieved.

Checking Time. OPT-1 reduces the checking time as
it eliminates collection, and hence checking of a signifi-
cant fraction of dynamic data dependences. OPT-2 reduces
checking time further as it summarizes dynamic data depen-
dences to region level and hence greatly reduces the number
of checks to be performed. Finally, OPT-3 does not reduce
checking time as it does the number of checks performed is
unaffected. OPT-3 does not alter the sDRG with dependence
distance produced by OPT-2; thus, checking each edge in
sDRG with dependence distance takes the same time.

Tracking Memory. For detecting all instances and forms
of dynamic data dependences (i.e., RAW, WAW, and WAR)
we need to buffer multiple reads to each memory address.
In particular, multiple reads to a memory address must be
buffered till a write to the address is encountered so that
all WAR dynamic data dependences can be detected. The
buffering of above information takes up significant amount
of memory. The use of this memory is reduced significantly
by OPT-1 because all reads and writes need not be tracked.
OPT-3 further reduces this overhead because OPT-3 elimi-
nates this overhead by eliminating the need to dynamically
track data dependences in the parallel execution. OPT-2 has
the potential of reducing the number of buffered reads and



writes by buffering at most one read or write to a memory
address corresponding to specific execution instance of a re-
gion. However, we observed very small reductions because
typically a region instance does not perform many reads and
writes for the same address.

Graph Size. OPT-1 reduces the graph size because it only
requires capture and hence representation of only a subset of
dynamic data dependences. OPT-2 further reduces the graph
size because it summarizes multiple dynamic dependences
by representing them at region level and using dynamic
dependence distances. In programs where sequential part of
the computation is substantial, OPT-1 is more useful. On the
other hand, in programs where most of execution has been
parallelized, OPT-2 is more useful. Finally, OPT-3 does not
have any impact on the graph size.

In summary, we observe that the savings in TT and TM
primarily result from OPT-1 and OPT-3 while CT and reduc-
tions in GS primarily benefit from OPT-1 and OPT-2.

5. Related Work
Comparison Checking. Comparison checking [14, 15] was
introduced to see if two versions of a program behave dif-
ferently. It was used to compare the runtime values com-
puted by the unoptimized and optimized versions of a pro-
gram to determine if an error existed in the unoptimized
code or was introduced by the optimizer. More recently it
has been observed that this approach can be helpful for par-
allel programs [25]. In our work, we compare executions of
the sequential and parallelized versions of the code. A major
difference is that we require only one (sequential) version
of the program to be executed while traditional comparison
checking requires execution and profiling of both versions
of the program. Chen et al. [7] extracted program intentions
of message passing to check whether the intentions are ful-
filled correctly by the underlying MPI libraries for detecting
bugs in MPI libraries. In a similar approach proposed in [8],
firstly memory accesses in the MPI applications and corre-
sponding message transition operations in the MPI library
were tracked, and then checking was performed between the
MPI application and the MPI library to determine whether
the correct execution order was guaranteed.

Locating Faults in Parallelized Programs. Several ap-
proaches have been proposed to locate faults in programs
parallelized using OpenMP [9] and TBB [28]. Due to wide
support on most processor architectures and operating sys-
tems, OpenMP has been widely used to parallelize sequen-
tial programs on shared memory systems. Thus there are a
lot of commercial debuggers supporting debugging OpenMP
programs, such as TotalView [3], VivaMP static analyzer [4],
and Intel Parallel Inspector [1]. They are similar to tradi-
tional debuggers and provide the ability to control program
execution and track values of variables. These debuggers can
also detect some data races through static analysis. Some
other static methods has been proposed for fault localization

for OpenMP via use of formal verification. Basupalli et al.
proposed a static verifier based on the polyhedral model that
can only detect data races [5]. Süß et al. [30] have discussed
common mistakes in OpenMP programs but no effective
approaches and tools have been reported. In comparison to
these debugging techniques, our approach is more general.
We can detect all kinds of data dependence related bugs,
including data races and atomicity violations. Our approach
also helps developers fix bugs since it identifies the depen-
dences that violate the user inserted parallel constructs. Our
technique applies to OpenMP, SpiceC and TBB.

Recently there has been significant research on specula-
tive parallelization of programs to exploit dynamic paral-
lelism present in many applications that cannot be detected
via static analysis [10, 11, 17, 31, 32]. Since parallelization
is performed assuming absence of certain infrequently aris-
ing data dependences, misspeculation detection and recov-
ery mechanisms are provided to handle the situation when
these dependences are encountered during execution. There-
fore the misspeculation detection is very much like data de-
pendence violation detection presented in this paper. How-
ever, unlike speculative parallelization we do not require
support to enable recovery as our approach is meant for de-
bugging. Moreover, our solution is based upon running the
sequential version of the program which overcomes the bug
reproducibility problem.

Locating Faults in Parallel Programs. There are a large
number of techniques and specialized tools released for lo-
cating concurrency bugs like data races, atomicity viola-
tions, order violations, and deadlocks for parallel programs.
Some approaches are based on static analysis [21, 23, 27].
Runtime techniques have also been proposed for detecting
concurrency bugs, such as data races from Eraser [29], Lit-
eRace [19], and FastTrack [12], and atomicity violations
from AFix [16] and CTrigger [26]. Some hybrid approaches
have also been proposed. For example, data race detection
in [24, 33, 34] combined lockset and happens-before tech-
niques, and HAVE [6] integrated static and dynamic analy-
sis. In addition, DRFx [20] proposed to use hardware for ef-
ficiently detecting data races. Our approach is different from
the above work as it leverages the availability of two pro-
gram versions and only executes the sequential version.

6. Conclusions
This paper proposes an efficient and precise approach for lo-
cating data races and atomicity violations in programs par-
allelized by introducing parallel constructs. This approach
uses region level data dependence graphs and avoids the ex-
ecution of the parallelized program to achieve efficiency.
Comparison checking is achieved by comparing the Static
Region Graph of the parallelized version (SRG) and the Dy-
namic Region Graph of the sequential version (sDRG). The
inconsistency between SRG and sDRG in terms of depen-
dence violation reflects faulty parallelization. The evaluation



shows that on average our approach slows down the origi-
nal executions by a factor of 3×. This work is novel in two
respects. First, comparison checking is performed without
running both versions of the program. This enables us to
deal with situations where the two versions of the program
may behave differently due to use of features such as random
number generators. Second, we debug the parallelized ver-
sion of the program by executing the sequential version. This
enables us to deal with the problem of reproducing bugs.
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