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ABSTRACT
The address sequence on the processor-memory bus can reveal abun-
dant information about the control flow of a program. This can lead
to critical information leakage such as encryption keys or propri-
etary algorithms. Addresses can be observed by attaching a hard-
ware device on the bus that passively monitors the bus transac-
tion. Such side-channel attacks should be given rising attention
especially in a distributed computing environment, where remote
servers running sensitive programs are not within the physical con-
trol of the client.

Two previously proposed hardware techniques tackled this prob-
lem through randomizing address patterns on the bus. One proposal
permutes a set of contiguous memory blocks under certain condi-
tions, while the other approach randomly swaps two blocks when
necessary. In this paper, we present an anatomy of these attempts
and show that they impose great pressure on both the memory and
the disk. This leaves them less scalable in high-performance sys-
tems where the bandwidth of the bus and memory are critical re-
sources. We propose a lightweight solution to alleviating the pres-
sure without compromising the security strength. The results show
that our technique can reduce the memory traffic by a factor of 10
compared with the prior scheme, while keeping almost the same
page fault rate as a baseline system with no security protection.
Categories and Subject Descriptors:
C.1 [Processor Architectures]: Miscellaneous; K.6 [Management
of Computing and Information Systems]: Security and Protection
General Terms: Design, Performance, Security.
Keywords: Secure Processor, Address Bus Leakage Protection.

1. INTRODUCTION
In typical computer systems, host machines are protected from

the exploits of malicious applications. For example, applications
downloaded from unauthorized sources may contain malicious code
such as viruses and worms. We address the other side of the prob-
lem where the confidentiality of an application should be protected
from being revealed by the host machine itself. This is an often
overlooked but realistic problem in prevalent computing models
such as distributed computing.

In distributed computing, for instance, application tasks are dis-
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patched to geographically distributed machines that are often con-
tributed by volunteers. Even though distributed security protocols
authenticate and authorize resources and users, there is no protec-
tion mechanism once a job starts executing on a remote node. It is
difficult to recognize if the execution was tampered with, or if any
secret it carries was compromised locally. A host machine, having
full access to all the local resources, can launch a background pro-
gram to analyze the execution of an active job and extract confiden-
tial information such as the encryption key [21]. Also, the memory
contents could be altered either through software breaches or by
privileged users so that the computation time of a job is length-
ened [12]. This is especially harmful in a commercial environment
where resources and services are charged by hour [2].

There have been a number of proposals that address the attacks
from a host machine to its guest programs. The attacks can origi-
nate from a privileged user [12, 18, 27], a normal user [21], or even
physical accesses [12, 18, 27, 31, 33]. A common countermeasure
is to encrypt memory contents to prevent secrecy violation, and to
authenticate the memory at runtime to prevent memory corruption
induced misbehavior during execution. Both can be provided by a
secure processor architecture such as XOM [18] or AEGIS [27].

In addition, the dynamic execution address sequence can be ob-
served locally and analyzed to expose program’s critical informa-
tion such as the private key in the RSA algorithm [15]. Losing a
key allows an attacker to impersonate a trusted user or to delegate
a victim’s access right to other malicious users. Exposing dynamic
address sequence can also reveal the program’s control flow infor-
mation to enable a commercial software developer to reconstruct
a core algorithm from a competitor [13, 14, 32, 33]. Hardware
tapping devices for extracting addresses from the system bus, or
even injecting traffic into the bus are readily available. For exam-
ple, an FPGA-based programmable device can be attached to an
SMP bus to perform on-line cache emulations taking real-time bus
traffic from real workloads [20]. There are commercially available
mod-chips that can be soldered onto the bus on the motherboard in
a Sony Playstation or Microsoft Xbox to misguide the console to
play pirated games [4].

Several techniques have been designed to combat the address in-
formation leakage: Goldreich et al. proposed three program trans-
formation methods [13, 14] to construct a data-oblivious memory
access pattern. Unfortunately, these software-only methods suffer
from either great performance penalty or memory explosion. Re-
cently, two hardware assisted schemes have been developed to trim
down the overhead. The HIDE scheme [33] permutes memory sub-
space at certain intervals by reading them on-chip and writing them
back after permutation. The Shuffle scheme [32] randomly shuffles
the memory content whenever a block is read on-chip so that it will
be written to a randomly different location later on. Both schemes



try to randomize the address sequence appeared on the bus to hide
easily recognized memory access patterns such as loops.

We have observed that the HIDE scheme increases memory ac-
cess by a factor of 12 to 32 for page sizes between 4KB and 64KB,
due to sequential reads/writes and redundant permutations. On
the other hand, the Shuffle scheme could induce a large number
of page faults in high-performance systems with memory paging.
Designs that significantly increase the memory or disk demand do
not scale well in future machines incorporating multi-threaded or
multi-core processors in which memory and disk bandwidth are
both the first-order constraints. It is therefore compelling to take
those constraints into considerations while designing a secure ar-
chitecture.

In this paper, we address the two main problems of the aforemen-
tioned security methods: memory access increase and page fault
increase. These problems are mainly due to the following reasons:
(1) excessive memory reads and writes on every permutation, (2)
wasteful permutations, and (3) non-restricted block relocation. We
propose a lightweight on-chip address permutation that effectively
addresses all the three problems and achieves the lowest memory
demands and page faults occurrence. Our main idea is to permute
only on-chip cached blocks, to avoid the memory sweeps in HIDE,
and launch a permutation for only those addresses that have not
been remapped since they are read on-chip. Our scheme incurs
only a 0.88× increase in memory accesses and a close-to-base page
fault rate, without compromising the security strength.

The remainder of this paper is organized as follows. Section 2
describes the motivation of this work. Section 3 gives an overview
of the two schemes that we improve, and the in-depth analysis of
them. Section 4 introduces our proposed scheme, followed by its
architecture design issues in Section 5. Section 6 presents our ex-
perimental results. Section 7 discusses the related work and Section
8 concludes this paper.

2. MOTIVATION
The address sequence recorded from the CPU-memory address

bus may disclose the control flow information of a program under
execution. This is true even in secure processors such as XOM [18]
or AEGIS [27] in which the memory contents are all encrypted (the
CPU-memory data bus transfers only ciphertext) but the addresses
are left in plaintext. Such plaintext address sequence can lead to
critical information leakage and is the main problem we tackle in
this paper. First of all, the sequence can be split into code and data
sequences with explicit reads and writes. This is because code and
data are in separate memory regions. Code regions are read-only
and typically accessed sequentially at the start-up of the program
execution. The obtained code sequence shows the control transfers
only at a coarse granularity since most of the instruction reads are
serviced by the on-chip caches. This is not difficult to circumvent
as the on-chip caching can be disabled through setting proper con-
trol register bits [6], or minimized by running a concurrent thread
that competes the shared cache with the victim thread [21, 22].

The sequence obtained hereafter can be used to derive the con-
trol flow graph (CFG)1. A sequence of “abc abc abc” clearly
shows a loop with “a” being possibly the loop starting and “c”
being the loop ending instruction. Whereas a sequence of “abcd
abd abcd abd” indicates a conditional branch after “b” inside
a loop containing “a, b, c” and “d”. Most software nowadays
have a high percentage of reuse code [19] — those that reuse pre-
built libraries from the public domains or a third party. In other
words, the reused portions of a software can be identified once their
1The control flow graph is a directed graph that shows the transfer
among instruction basic blocks.

CFGs are constructed. This could ease the identification of the non-
reused part of the code, leading to a potential intellectual property
theft.

More seriously, the timing attacks to Diffie-Hellman, RSA and
other security algorithms exploit the actual directions of a branch
instruction inside a simple loop to reveal the private key bit-by-bit
[15]. The loop iterates for a number of times equivalent to the bit
width of the private key. Once the address sequence of the loop is
exposed, the private key can be recovered.

Finally, addresses to data region can also expose control flow
since some data are only accessed by one path of the program.
Therefore, protecting the data addresses should be carried with the
code addresses. Next, we will briefly review two existing algo-
rithms on address sequence protection, followed by a performance
evaluation for each of them.

3. OVERVIEW OF ADDRESS SEQUENCE
PROTECTION

The basic idea of address sequence protection is to break its cor-
relation with the CFG of the program. For example, the sequence
of “a a+4 a+8” does not correspond to sequential instructions
in the code. Also a sequence of “abc abc” does not indicate
a loop structure. Prior schemes (HIDE and Shuffle) incorporated
randomization of the memory contents from time to time. Next, we
will explain the processor-memory and hardware support model in
those schemes.

3.1 Model and premises
We choose to use the secure processor models proposed recently

[16, 18, 27] as our foundation. Both HIDE and the Shuffle scheme
fall into this framework. In such a secure model, the processor is
physically secure such that once the data and code are brought onto
the chip, they cannot be tampered with. If any data are sent off-
chip to the memory, they are always encrypted to ensure their con-
fidentiality. Therefore, attacks can only be mounted to components
external to the processor, such as the buses and the memory. Since
the crypto operations are always performed between the processor
and the memory, we assume a fast crypto mechanism is available
on-chip to accelerate the process [26, 28, 30].

3.2 Chunk level permutation
The basic idea of the HIDE technique [33] is to permute the ad-

dress space at suitable intervals to break the correlation between
repeated memory addresses. Ideally, before an address recurs, a
permutation is initiated to map it to a different location. In real-
ity, it is not practical to remember all the addresses between per-
mutations, nor is it efficient to search the history list to detect the
recurrence. Hence, HIDE proposes to augment the L2 cache re-
placement policy with additional locking control — a block that is
newly read from the memory or becomes dirty since its last permu-
tation cannot be replaced after a permutation is performed. This is
because both cases could cause their addresses to recur on the bus
in future reads if they were allowed to be replaced earlier. Hence,
those entries are temporarily locked in the cache. Only blocks that
are not locked could be freely replaced. Each permutation permutes
a chunk (one to several pages) of continuous blocks, mapping each
block to a different address within the chunk, so that recurring ad-
dresses on the bus may not indicate the same block. Fig. 1 shows
how this scheme works.

We assume a two way, two set associative cache, and a two-page
memory with eight blocks in each page. Each chunk consists of
one page, with even-addressed blocks mapped to set 0, and odd-
addressed blocks mapped to set 1. Initially the cache is empty and
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Figure 1: Example of the HIDE scheme

no block is locked. When the CPU reads blocks 0,1,2,3,8,0, the
actual sequence on the bus is 0,1,2,3, permutation traffic, 8,π1(0).
π1(0) is the permuted address of block 0. Permutation traffic con-
sists of sequential reads and writes of all blocks in page 0, and this
permutation is triggered when block 8 replaces the locked block
0. After permuting page 0, all cache blocks of page 0 are cleared
for their locks. Any block brought on-chip is locked afterwards.
Next when the CPU writes block 1 and 3, both are locked again
in the cache. The last read at block 9 causes a writeback of block
1. Since it is locked, a second permutation of page 0 is initiated,
during which the locks on block 0 and 3 are cleared.

Through permuting the entire chunk, control transfers within the
chunk are invisible on the bus, thus reducing the likelihood of in-
formation leakage. However, the strengthened security comes at
a high cost of memory accesses as all the blocks in the chunk are
swept through — read on-chip and then written off-chip — on ev-
ery permutation. In Fig. 2, we categorize the HIDE memory ac-
cesses into true memory requests (“true”) and permutation induced
accesses (“perm”). All the accesses are normalized to the first bar
for 4K-byte chunk size. It is surprising to see that the percentage
of true and useful memory accesses account for only 7.5% and 3%
of the total for 4KB and 64KB chunk sizes respectively. In other
words, the HIDE scheme increases the memory demands by a fac-
tor of 12 (4K) or 32 (64K). Using larger chunk sizes has its own ad-
vantages: 1) it further reduces the control flow exposed on the bus;
and 2) it reduces the frequency of permutations since the chances
of clearing the locks are higher. However, the dramatic increase in
memory traffic using large chunks creates a serious bottleneck in
the system, which overrides its benefit in security. We break down
the extra traffic into two sources:
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Figure 2: Memory traffic breakdown for different chunk sizes.

Excessive memory accesses on permutation. Fig.2 shows that
most memory accesses in HIDE are useless to the program. They
are redundant accesses simply to hide the traces of the useful mem-
ory addresses. Here, “useful blocks” refer to those that have been
accessed by the program. We observed that this quantity is fairly
low between two permutations, an indication of large redundancy
in HIDE.

In Fig. 1(b), only 4 blocks in Page 0 are accessed when the per-
mutation is invoked. During the permutation, they are read on-chip
again with the other half that is never touched. Then the whole
page is written back, increasing the traffic by fourfold. We studied
the excessive accesses in a real system where the page size is 4KB
and each page consists of 128 32-byte blocks. Fig. 3 is a histogram
of the pages with their numbers of accessed blocks from zero to
128 upon a permutation. That is, when a new permutation of a
page is initiated, if it accessed i blocks since the last permutation,
we increment the ith bar in the histogram. The graph is averaged
over 11 SPEC2K benchmark programs for a 1.1B-instruction run.
We can see that only 17% of pages are fully accessed between two
permutations. For those pages, efficiency is good since there is no
reading of useless memory blocks. However, 65% of pages trigger-
ing a permutation are accessed less than a quarter of the blocks.

0

2

4

6

8

10

12

14

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

Number of Blocks

Pe
rc

en
ta

ge
 o

f T
ot

al

18% 17%

65%

Figure 3: Histogram of pages with 0-128 blocks accessed be-
tween permutations.

In fact, if we take a global view of the block usage in a page
during the entire simulation, the percentage of pages that are fully
used is quite high (Fig. 4). More than half (57%) of the total pages
are fully used, much more than that in Fig. 3 because some blocks
inside those pages are recalled before the rest are touched. Each
recall triggers a scan of the entire page and unaccessed portion of
the page can be permuted multiple times due to multiple such re-
calls. Using the example in Fig. 1, if block 4-7 are accessed in the
future, then page 0 would be fully used. However, before this could
happen it is already permuted twice.

Redundant permutations. Due to the difficulty of tracking if
an address is a repeated access, the permutation is triggered pre-
ventively. That is, before a dirty block is written back to the mem-
ory, a permutation of the hosting page is triggered, anticipating that
the block will be read again in the future. This is why the second
permutation in Fig. 1(d) is performed. Such permutations induced
by write locks trigger multiple permutations while only one is nec-
essary. The example below illustrates such a scenario.

Let blocks A, B, C belong to page P. They are initially read on-
chip and then locked. When B has to be replaced, a permutation of
P is triggered since B holds a read lock. Afterward, A, B, C are all
mapped to different addresses, B is written back to a new address
while the others are still on-chip. The permutation also clears off
their read locks. Suppose a later write locks A again. When A
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Figure 4: Histogram of pages with 0-128 blocks accessed dur-
ing the entire simulation.

is replaced at some point, a second permutation of P is initiated,
which we can see is unnecessary because A has been mapped to a
new location in the first permutation. Similarly, B and C are both
re-mapped in the second permutation, which are also redundant.
Note that between permutations, no accesses to page P is necessary,
indicating that a page could be permuted repeatedly without even
a single access. This also explains why the 0th bar in Fig. 3 is
positive (0.46%).

3.3 Memory shuffle
A simpler scheme was proposed in [32] for embedded systems,

since they are more vulnerable to the address attacks. The approach
is to relocate a block if it is brought on-chip so that it will be written
to and read from a different memory address in the future. The new
address is chosen randomly from the program’s memory space. To
implement it efficiently, a small portion of memory blocks is stored
in an on-chip shuffle buffer. A random block is selected from this
buffer to swap with the requested block read on-chip. Effectively, a
memory read is always followed by a memory write, where the read
is demanded by the processor while the write is a swap randomly
picked from the buffer. The block being read still resides in the
buffer (as well as the caches) so that the shuffle buffer always has a
fixed number of memory blocks for swapping.
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Figure 5: Example of the Shuffle scheme (adapted from [31]).

Fig. 5 shows how this scheme works. We assume the on-chip
shuffle buffer only stores 4 blocks. The first 4 accesses fill up the
buffer. Starting from the fifth access, a random swapping of blocks
between memory and the shuffle buffer is performed. For example,
the swapping of block 8 and block 2. If the access hits in the buffer
(e.g. block 1 and 3), no swapping is necessary. Finally, all the
blocks in the shuffle buffer are written back to the very first four
empty slots in memory.

As shown, the memory traffic in the Shuffle scheme – as we will
term it in this paper – is only two times of an unprotected system,

because a read is always followed by a write. This overhead is
significantly lower than the HIDE scheme. However, the blocks are
swapped in the entire program memory space, e.g., the swapping of
block 8 in page 1 and block 2 in page 0. So this scheme needs to
remember the block mapping, i.e., which address is a block mapped
to, using the full-width block address, whereas in the HIDE scheme,
only the offsets in the chunk need to be remembered as the blocks
are re-mapped only within a chunk. The storage overhead of the
Shuffle scheme is therefore greater than in the HIDE scheme (10%
vs. 3.5% as reported previously).

More importantly, in order to make memory accesses look “ran-
dom” in its memory space, the Shuffle scheme shuffles blocks in
the entire program memory. As a result, it destroys the program’s
locality, and blocks in hot pages may be mapped to cold pages.
Eventually, in the long run, all pages are roughly equally warm.
This may increase the page faults if not all pages are in the mem-
ory. If the Resident Set Size2 (RSS) is 100%, i.e., all pages of the
program reside in memory, such a randomization will not incur ex-
tra page faults, and all page faults are cold page faults. However, if
RSS is 50%, i.e., at any time of the program execution, only half of
the pages reside in memory, any access to the pages not in memory
will incur a page fault. In this case, random swapping of blocks
will increase the page faults.
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Figure 6: Page fault curve for gcc.

Fig. 6 plots the trend of page faults versus the RSS for gcc. As
we can see, the number of page faults increases by 257×when RSS
drops from 100% to 50% of the total memory pages. However, the
curve is almost flat for the base case. This shows that preserving
locality is critical to program performance. Similar patterns can be
observed in other programs as well. Here we assumed a 4KB page
size and perfect LRU memory page replacement policy.
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Figure 7: Page fault curve for gzip.

However, if the shuffling happens to keep or improve the pro-
gram’s locality, e.g., page 0 and page 1 in Fig. 5 are always ac-
cessed together, the number of page faults could remain the same
2The number of virtual pages resident in RAM



or even decrease. As we can see from gzip in Fig. 7, the num-
ber of page faults in the Shuffle scheme is the same as that in the
base case. This is because the shuffle buffer of gzip stores mainly
those blocks within the current working set because of its special
memory access pattern.

It is also worth noting that the Shuffle scheme can introduce
some extra memory writes as well. This is because the shuffle
buffer effectively holds the recently fetched memory blocks. On
a new read from an address Addr for example, a block B is ran-
domly picked from the shuffle buffer and written back to Addr.
However, B itself might be too recent to be updated by the proces-
sor. Later when B is updated, it needs to be written back again,
which suggests that the previous write was unnecessary. Our mea-
surements show that such redundant writes account for∼5% of the
total memory traffic on average.

3.4 Summary
The HIDE scheme permutes blocks only within a chunk, prac-

tically one page, and hence has little impact on the memory pag-
ing. However, it incurs extremely high overhead of memory ac-
cesses, which makes it hard to fit into contemporary processors
where memory is still a performance bottleneck and one of most
power-hungry components. The Shuffle scheme, on the other hand,
introduces mild extra memory demands. Yet its demand on the disk
access limits itself to embedded systems only where most applica-
tions have small memory footprints. Accessing memory is usually
several orders of magnitude faster than accessing the most tech-
nologically advanced hard-drives [5]. Hence, in a demand paging
system, it is important to keep the page fault rate low. We will
next introduce our lightweight design in which both the memory
accesses and the page faults are low.

4. PROPOSED INEXPENSIVE ADDRESS
PERMUTATION

Our scheme aims at achieving three goals. The first goal is to
avoid wasteful memory reads and writes in each permutation. The
second goal is to eliminate the wasteful permutations so as to re-
duce the total number of permutations. The third goal is to preserve
locality and keep the page fault rate low. The approach we take is to
permute selective blocks instead of a whole page, aided by a good
decision of when a permutation should happen.

4.1 The permutation mechanism
The idea We propose to perform permutations only on those on-

chip blocks. This is because their addresses have occurred once on
the bus, and could recur if they are evicted out and read in again
in the future. It is therefore necessary to relocate them (i.e., per-
mute them) before they are replaced. However, not every replace-
ment should be preceded by a permutation because if the victim
block has been permuted and mapped to a different address, it is
safe to release it off-chip. It is only those blocks that are recently
read on-chip (RR blocks) but have not participated in any permu-
tations that should be permuted. More clearly, a block B of a page
P is an RR block if B is fetched from memory after P’s last per-
mutation. Hence, a permutation is started only if an RR block is
to be replaced. Afterward, all the RR blocks that are involved in
the permutation are turned into normal blocks which can be safely
released off-chip because the permutation has masked the earlier
traces of accesses and their addresses have been mapped to other
random places.

Since during a permutation only on-chip blocks are involved, the
need of reading chunks of blocks from memory and writing them
back as in HIDE is eliminated. This is the main reason why our

scheme can save most memory traffic. Moreover, a great advantage
of doing so is that we do not need to update the memory right away.
Since the permuted blocks are on-chip, we simply perform the per-
mutation of their addresses and remember the mapping. When they
need to be replaced some time in the future, they refer to the map-
ping to obtain their new addresses to which they should be written.
Note that we write every replaced block into the memory because
it is relocated to a different address even if it is not dirty.
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Figure 8: Comparison of on-chip block permutation and the
HIDE scheme. x, y, z are from the same memory page. x is
mapped to cache set set 1. y and z are mapped to set 2.
The block with a ∗ means an RR block in our scheme, and a
locked block in HIDE. ‘m[a] = x’ means x is stored at memory
address a.

An example We now walk through an example in Fig. 8 to show
our permutation mechanism. Assume initially, x, y, z are from
the same page in memory with address a1, a2, and a3 respectively.
When x, y and z are loaded on-chip, they are marked as RR blocks.
If later a read miss happens in x’s set (event 3) and x is to be re-
placed, a permutation must be performed because x is an RR block.
The permutation generates a random mapping (event 4) for all the
on-chip blocks of the same page as x (and some other blocks which
will be explained later) and then clears off the marks for those RR
blocks being permuted. The mapping is kept on-chip. After that,
x is written back to the memory at new address b1. Note that x
may not be dirty but is still copied back. y and z are not written
back until they are evicted from cache. A write hit on y (event 5)
does not set the RR-bit again. Finally when y is replaced (event 6),
it is written back to the new address b2 assigned during the latest
permutation.

We also illustrate the actions taken by the HIDE scheme in the
same figure as a comparison to our scheme. This example is along
the same line as Fig. 9. The main differences are in the type and
number of blocks involved in each permutation and the time a per-
mutation is triggered. In event (4), the HIDE performs a sequential
reads and writes to the entire page so that all the blocks in the mem-
ory are physically permuted. However, this is wasteful because y
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Figure 9: An example showing redundant permutations in
HIDE.

and z are still on-chip to serve future requests from the CPU. More-
over, the write hit to y in event (5) locks y again, which triggers a
second permutation upon a replacement of y in event (6). The entire
block is again sequentially read and written to the memory although
a remapping of all three blocks at this time is indeed unnecessary.

Let us mention a few subtleties here to make this example more
complete. First, the initial addresses ais are not the true physical
addresses of x, y and z. They have been randomized in previous
permutations or an initial permutation of all memory pages as the
program started. This is a requirement in HIDE and Shuffle as
well. Therefore, one cannot infer, for example “a1 is mapped to
b1 as the permutation is triggered by their cache conflict”, because
what caused the conflict are not really a1 and b1 on-chip. They
have been remapped randomly. Second, permutation on event (4)
of HIDE may not happen at the same time as in our scheme because
of the LRU replacement was modified in HIDE to delay such per-
mutation. However, it can be delayed but cannot be avoided in the
future. Third, the mapping created by the two schemes may not be
identical because they use different block sets. We let them equal
in the example for ease of illustration and comparison only.

Write Lock Induced Permutations
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Figure 10: The percentage of saved permutations due to write
locks.

In brief, our scheme permutes only on-chip blocks, and a permu-
tation takes place only when an RR block is replaced. We save a
significant amount of memory traffic compared to HIDE. The over-
head we pay here is only the writebacks of the non-dirty blocks.
Further, we eliminate those permutations due to the write locks in
the HIDE scheme. Fig. 10 shows the percentage of such permuta-
tions our scheme has saved.

4.2 Permuting sufficient number of blocks
During each permutation, there should be enough number of

blocks involved to ensure the strength of the randomization. For
example, in our 4KB page setting, the HIDE permutes 128 blocks

every time, generating 128! possible mappings or a probability
of 1/128 to guess one mapped address correctly. If there are only
32 on-chip blocks in a page and if we only permute among those
blocks, then the probability is increased to 1/32, much higher than
before and thus not preferred.
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Figure 11: The procedure of searching for sufficient number of
blocks to permute.

Therefore, we increase the available blocks by looking at the
chunk level instead of page level. The HIDE scheme could not
truly scale to chunk level due to its prohibitive increase in memory
demand. Whereas we do not have this concern as we only look at
the on-chip blocks, and thus our scope can be scaled up to include
more pages. Our goal here is to permute the same number of blocks
per permutation as the HIDE scheme. However, the number of
blocks on-chip are dynamic for every page, we cannot be certain
how many pages should be included in order to have 128 blocks in
every permutation. Therefore, we develop a simple incrementally
growing mechanism, as illustrated in Fig. 11 to solve this problem.
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Figure 12: Average number of pages that supply sufficient on-
chip blocks per permutation.

The procedure When a permutation is started by a replacement
of an RR block A in page P, we first check if P has enough, e.g.,
128, blocks on-chip. If so, we simply permute the 128 addresses of
those blocks. Otherwise, we expand the search scope one page at a
time in its neighborhood until we have enough blocks to permute.
When there are sufficient blocks, giving priority to the RR blocks
over normal blocks can reduce the total number of permutations
because only an RR block triggers a permutation and it becomes
a normal block after the permutation. However, our search space
does not grow unbounded. It is limited by the chunk size, i.e., the
chunk boundary where P falls within. If we still cannot find enough
blocks in the entire chunk, to ensure the same level of security,
we choose to read extra blocks from memory within the chunk as
padding blocks to the permutation input. As we can see, the chunk
size should be a reasonable number as too small the chunk size



leads to a HIDE-like scheme because we need to read many extra
blocks, but too big the chunk size leads to a Shuffle-like scheme
because we lose locality among the permuted blocks. Therefore,
choosing an appropriate chunk size depends on the trade-off be-
tween the memory accesses and the incurred page faults.

0

10

20

30

40

50

60

70

80

90

100

ammp art bzip2 equake gcc gzip mcf mesa parser vortex vpr

Nu
m

be
r o

f P
ag

es
 U

se
d 

in
 a

 P
er

m
ut

at
io

n 
[%

]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 13: Number of pages involved in each permutation.

Typically, the collection of enough blocks can be satisfied in just
a couple of pages. The extreme of searching in the entire chunk
does not happen very often. Fig. 12 shows the average number of
pages searched in order to find enough blocks on-chip. We set the
chunk size to 16 pages, which will be explained later. The figure
is averaged over all 11 SPEC2K benchmark programs. Each bar
also shows the weight contributed by each program. In most cases
(∼58%), up to two pages are enough to provide 128 blocks on-
chip. However, searching through the entire chunk does happen
more than 15%. This number is mainly contributed by program
ammp and vortex, both having poor locality and low number of
blocks per chunk in the cache. Note that when the search stops at
16 pages, padding might be needed. If so, they automatically fall
into the 16th bar. An anatomy of the number of pages touched per
permutation for each program is given in Fig. 13. As expected, one
or two pages are sufficient for most programs, which implies that
the searching algorithm can terminate quickly.
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Figure 14: Total number of permutations in percentage of the
HIDE permutation number.

The benefit Permuting across multiple pages on-chip helps
greatly to reduce the number of permutations. For example, sup-
pose a replacement of an RR block in page P1 triggers a permuta-
tion, followed by a replacement of an RR block in P2. In HIDE,
both replacements cause permutations while in our scheme, P2

could be permuted together with P1 in the first permutation, which
might clear off the RR block in P2 and save the second permutation.
Such an effect is the major contribution to the total permutation re-
ductions shown in Fig. 14. On average, our scheme saves nearly
40% of the permutations in HIDE including those due to write locks
shown earlier in Fig. 10.
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Figure 15: Memory traffic comparison among different
schemes. Chunk size is varied from 2 to 16 pages.

Choosing the chunk size As mentioned earlier, a large chunk
size may result in more page faults as the permutation spans over
a wider address space. A small chunk size may generate more ex-
tra memory accesses since not all pages are fully cached on-chip.
Hence it is important to find a good break-even point between the
page faults and memory accesses. We compare the total number
of memory accesses in Fig. 15 with varying chunk sizes in terms
of number of pages. The results are normalized to that in a base
system where no address protection is present. The Shuffle scheme
doubles the memory traffic while HIDE leads to an increase by a
factor of 12. As expected, the larger the chunk size, the less the
traffic. A chunk of 16 pages only brings 88% more traffic on aver-
age, even better than Shuffle, while other sizes increase the traffic
by a factor of 2.46, 3.59, 5.73, respectively. Our memory traf-
fic is lower than the Shuffle scheme because the aforementioned
reason that Shuffle introduces ∼5% extra writes while our scheme
can avoid those. The major portion in the 88% extra traffic comes
from the writebacks of non-dirty blocks. To show the page fault
increases with larger chunk sizes, Figure 16 plots the curves with
gradually decreasing memory RSS. The results are averaged over
all the benchmarks. As we can see although larger chunk size gen-
erates a little more page faults (less than 2% increase from chunk-2
to chunk-16), they all have far fewer page faults than the Shuffle
scheme. So overall speaking, a chunk size of 16 pages has the low-
est memory traffic increase with a reasonable page fault increase.
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Figure 16: Page faults comparison among different schemes
averaged over all benchmarks.

4.3 Security analysis
To find out the address recurrence from our randomized address

sequence, an observer must be able to conjecture at least one ad-
dress mapping correctly between two permutations. Our scheme
has many uncertainties that help reduce the probability of a suc-
cessful guess. For example, there is no clear indication of when a
permutation really happened from off-chip observation since most
permutations do not involve off-chip accesses and only a subset of
off-chip writebacks would cause a permutation. Also, even if a
permutation is identified, it is hard to know which set of on-chip



blocks participated in the permutation since they are decided inter-
nally. Furthermore, it is not clear what set of blocks are really on-
chip soon after some initial execution as writebacks are remapped
so that it is hard to know what blocks are returned to the memory.

Nevertheless, let us assume a case where an observer can make
a correct guess with the highest probability. Other situations are
significantly complex than this case and the probabilities will not
be higher. Suppose a page P is entirely read on-chip. Later on a
block is written back to an address A in P. Since all the blocks of
P were read on-chip and were initially RR blocks, any replacement
would invoke a permutation inside P only. Hence, it is some block
in P that is mapped and written back to A, and the probability is

1
128

, assuming there are 128 blocks per page. If a second writeback
to A’ in P occurs, a block being mapped to A’ has a probability
of (1 − 1

128
) × 1

128
. Similarly, a block being mapped to the nth

writeback has a probability of (1 − 1
128

)n−1 × 1
128

. This is a de-
creasing function with n. Hence, it is best for an observer to make
a guess in the first writeback after a latest permutation. This anal-
ysis is along the same line as the Shuffle scheme. Both achieve the
same probability of guessing one mapping correctly.

Similar to HIDE, what an observer can see on the bus is the
chunk-level transition, instead of fine-grained page level or even
block level transition that can reveal control flow easily. The HIDE
technique has shown that a chunk size of 64KB, i.e., 16 4KB pages,
can cover 95% of the program’s control flow (some compiler as-
sisted layout optimization may be necessary to achieve this num-
ber). However, the HIDE scheme cannot afford to operate on real
64KB chunk, while our scheme performs the best with this size.

By permuting mostly the on-chip blocks with occasionally off-
chip padding blocks, our scheme makes full use of the on-chip
cache. The more blocks stored on chip, the fewer addresses are
transferred on the bus, and the more secure it is. If an attacker
maliciously runs a simultaneously executed thread to inject well
crafted cache accesses in order to push some cache blocks off-chip,
the program under attack would create more memory accesses as
fewer blocks are on-chip, leading to a more HIDE-like effect. Es-
sentially, the address protection scheme plays against the cache-
centric attack until the program runs at very low speed. Now it is
probably good to raise an alarm indicating a possible attack.

5. IMPLEMENTATION ISSUES AND
ARCHITECTURE DESIGN

5.1 Virtual Cache vs. Physical Cache
As with the HIDE address mapping scheme, our permutation

should be performed on virtual addresses (VA) because physical
address (PA) space is managed by the OS which would map a vir-
tual page to different physical pages dynamically. Hence, with the
permutation interface, a VA is always first mapped to another VA
which is then translated to a PA by the TLB in MMU and finally
sent to the memory. This process is carried beneath L2 (or L3 if
there is one) since we only need to protect the addresses that occur
on the processor-memory bus. Therefore, the implementation of
the permutation is different for a virtual L2 than for a physical L2.

If the L2 is physically indexed, the MMU first translates the VA
request sent from L1 (which is typically virtually indexed for per-
formance advantage) into a PA and uses it to access the cache, as
shown in solid line path in Fig. 17(a). If it is a cache hit, the data
is returned to the CPU and L1 and no further action is needed. If a
miss happens, however, the PA should be sent to memory to fetch
the data. In a memory address protected system such as HIDE and
ours, the original VA is remapped to a VA’ and hence the current
PA should not be used for memory access. Instead, we should first

look up the new mapping for the original VA to find VA’ in the
Block Address Table (BAT) [32], and then translate the VA’ to a
PA’. Only after this, can we have the true physical address to ac-
cess memory. As we can see, the TLB lookup happens twice on
every such L2 miss. This procedure is illustrated in the dotted path
in Fig. 17(a).
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Figure 17: Double and single TLB lookups in a physically and virtu-
ally addressed L2.

The problem with the second TLB lookup is that VA’ is a mapped
address within a chunk of pages in both HIDE and our scheme.
Hence, it may belong to a different page than VA, which might
result in a miss on the TLB lookup because VA and VA’ are trans-
lated to different physical pages. As we know, a TLB miss triggers
a memory access for the proper page table entries, which penalizes
the performance. Therefore, in the HIDE scheme, if the chunk size
is larger than one, the scheme requires that the physical pages be
contiguous if the virtual pages are so that only one TLB access is
necessary for the entire chunk. Also, the physical pages belonging
to the same chunk should be swapped in and out together. As we
can see, this could be a high requirement to the OS.

While in a virtual L2, TLB lookups proceed the L2 misses. Hence,
with the address permutation interface, the missed VA is first
searched in the BAT for its mapping, and then translated through
the TLB to get the true physical address. Only one TLB lookup is
necessary, as shown in Fig. 17(b). Putting the TLB below a virtual
L2 has the advantage that its coverage on page table entry is better
than the TLB in a physical L2, since the former holds page entries
for L2 misses [23]. Therefore, the TLB for a virtual L2 has lower
miss rates than a physical L2. To see this, we measured the TLB
misses in Fig. 18 for a virtual L2 (“VL2”), our address permutation
on a virtual L2 (“VL2-perm”), and on a physical L2 (“PL2-perm”),
normalized to the TLB misses in a baseline with a physical L2.
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Figure 18: Comparison of TLB misses for virtual L2, virtual L2 with
permutation (our scheme), and physical L2 with permutation. Results
are averaged over 11 SPEC2k benchmarks.

The results show that using a virtual L2 instead of a physical L2
can reduce the TLB misses by half on average. When enhanced



with address permutation in a virtual L2, TLB misses increase only
by 1% on average. However, if permutation is added to a physical
L2, the TLB misses are increased by 12%. These data show that a
virtual L2 cache is especially useful in our scheme. Using a virtual
L2 has some issues such as the synonyms and exception handling.
They have been addressed well in the literature with certain hard-
ware assisted schemes [23, 24, 25].

5.2 The permutation architecture
To put everything together, we need the following hardware com-

ponents to assist the address protection scheme. First of all, we
need a permutation unit that can generate a random permutation
for 128 blocks. A shuffle algorithm performing 128 swaps would
suffice as long as a hardware true random number generator is
present. Notice that in most cases, we only need to permute the
addresses of the on-chip blocks. Occasionally we also need to read
some padding blocks from memory to participate in the permuta-
tion. Thus, a buffer for temporarily storing them is necessary. Its
size is 127 blocks as there must be at least one block on-chip in the
chunk. Also, storing the 128 block offsets for permutation requires
128×7 bits in total.

Next, we need an information table for every chunk that remem-
bers the block address mappings (in BAT) and the block status.
All address mappings are stored in the chunk information table.
Each chunk has an entry, consisting of two bitvectors and a vir-
tual address BAT. One bitvector remembers if the block is on-chip,
and another remembers if it is an RR-block. The BAT stores the
virtual-to-virtual address mappings for each block, with each map-
ping used only once before being relocated again. The record size
is small compared with the size of a chunk. If we assume the block
size is 32 bytes, and each page is 4KB, then for a 64KB chunk, the
storage overhead is only 5%, since there are only two status bits per
block, and 11 bits for the mapped block offset within the chunk.
Hence, there is approximately the same overhead as in HIDE with
the same chunk size. When compared with the Shuffle scheme
where there is a 10% storage overhead for the BAT, we have saved
almost by half.

Last, we need an address generation unit that can quickly find
128 on-chip addresses to permute. This can be easily performed
through wide shift registers and an adder. We can first AND two
status bitvector of a page into the shift register. And then shift the
register one bit at a time. The adder increments the block offset on
each shift, and outputs the offset to the permutation unit if the bit
is set, i.e., the block address should be used for permutation. Once
a vector for a page is finished, the unit starts with the next page.
It might take two iterations to do so as we may not have enough
RR blocks in one round. In the second round, we shift only the
on-chip status bitvectors. The starting point should be randomly
selected to inject some randomness in selecting the on-chip cache
blocks. Since the adder only operates on block offsets, it is only
7-bit wide. Hence, a conventional 32-bit adder can perform four
adds in parallel, producing 4× the throughput.

The architecture design of the hardware components and the dat-
apath are illustrated in Fig. 19. When a cache miss happens, the
BAT is searched for the mapped address, followed by a TLB access
to obtain the physical address. When a writeback happens, if the
victim is not an RR block, the writeback just needs to go through
address mapping and TLB translation as with the cache miss. If the
victim is an RR block, a permutation must be initiated before it can
go off-chip. The permutation starts by sending the status bitvectors
to the address generation unit which then emits 128 addresses for
the permutation unit. When a new mapping is ready, it is then up-
dated into the BAT table. The victim can now be sent off chip with
a new mapping.
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Figure 19: Architecture of the permutation unit.

We assume the entire permutation takes 300 cycles on a GHz
processor, 128 for the address generation unit, 128 for the permu-
tation, and the rest for address updates (BAT can be multiported).
Since the number of permutations in our scheme is low, and the
permutation is done on the write path which is non-critical, such a
latency does not bring forth noticeable performance penalty.

6. EVALUATION
For all the data shown earlier in the paper, we used the Sim-

pleScalar Tool set 3.0 [7] to run 11 SPEC2K benchmark programs.
All programs were simulated for 1.1 billion instructions. The pa-
rameters used are listed in Table 1.

Table 1: Simulation parameters
Clock freq. 1GHz Unified L2 1MB, 4way, 32B, 12 cy-

cle
RUU/LSQ
size

128/64 L1 I- and D-
cache

8KB, 32B Direct-map, 1
cycle

Fetch queue 32 entries Memory bus 200MHz, 8 byte wide
Decode/Issue/
Commit width

8/8/8 Memory la-
tency

80(critical), 5(inter) cy-
cles

TLB miss 30 cycles Chunk size 4KB∼64KB

We implemented our chunk level permutation scheme, the HIDE
scheme, and the Shuffle scheme. We assumed perfect auxiliary
on-chip storage for the chunk info table in our scheme, the page
info record in the HIDE scheme, and the block address table in the
Shuffle scheme. We have shown the reductions of them earlier in
Fig. 15 and 16. This is mainly due to the removal of memory page
sweeps during each permutation, and the reduction in total number
of permutations due to chunk level permutations shown in Fig. 14.
Memory Energy Consumption We also compare the memory en-
ergy consumptions for different schemes to show the impact of
memory access increase on its total energy. Note that the total en-
ergy may not be proportional to the total access numbers because
burst reads and writes consume less energy than sparse accesses.
The energy is also a function of internal banking and row buffering.
We used a detailed trace driven DRAM simulator [10, 11] with the
latest power model. Due to the simulation speed, the traces were
generated over 100M instructions after fast-forwarding one billion
instructions and the chunk size is set to one page. We simulated our
benchmarks using the DDR2 specification [3] for a 1Gbit memory
with 1 rank, each rank having 5 chips with the 5th being ECC, 32 bit
interface with total bandwidth of 2.67GB/s running at 667MHz on
a 4GHz processor. Hence, our memory model projects into future
processor architectures that will have high bandwidth requirement.

As expected, HIDE and Shuffle consume more energy on aver-
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Figure 20: Memory energy consumption increase normalized to the
base.

age than ours. As shown in Fig. 20, on average, HIDE and Shuf-
fle increase energy consumption level by a factor of 4.53 and 1.79
respectively. In contrast, our scheme shows a modest increase in
energy consumption of 1.21× the baseline. In the case of bench-
mark ammp, our scheme incurs higher memory traffic than Shuffle
as shown in Fig. 15, thus resulted in an increase of memory energy
consumption. However, in the same benchmark HIDE increases
energy by a factor of 166. This is because the trace for ammp dur-
ing the collected interval shows much higher memory demand than
the overall results (68.85× in Fig. 15) for 1.1 billion instructions.

7. RELATED WORK
Apart from the address sequence randomization techniques [13,

14, 32, 33], there are some other techniques that aim at protecting
the CFG of a program as well. Earlier attempts have taken a soft-
ware obfuscation approach to transform a code into a form that is
harder to reverse engineer [9]. However, it is theoretically uncertain
whether a generated transformation can ensure a required level of
protection, as studied and proved in [8, 29]. In the world of embed-
ded computing, protecting the program runtime execution trace has
been adopted in commercial products since many embedded pro-
cessors are used in financial applications in which secrecy is highly
required (e.g., DS5000 and DS5002FP by Dallas Semiconductor
[1]). The protection is done through encrypting the off-chip ad-
dress and data buses, which unfortunately creates a fixed mapping
for addresses that can be easily cracked [17].

8. CONCLUSION
We propose an efficient address permutation scheme for protect-

ing the information leakage from the address bus under physical
tampering. Our technique addresses two main issues of the previ-
ously proposed HIDE scheme: the excessive memory accesses per
permutation and redundant permutations. We also avoid the large
number of page faults that incurred in the Shuffle scheme. On av-
erage, our scheme reduces the memory traffic in HIDE from 12×
to 1.88×, and brings the memory energy consumption from 4.53×
down to 1.21×.
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