Write-observation and Read-preservation TM Correctness Invariants
(Appendix)

Mohsen Lesani Jens Palsberg
Computer Science Department
University of California, Los Angeles
{lesani, palsberg}@ucla.edu

Contents

1 Proof of Marking Theorem 2
2 TL2 Marking 15
3 DSTM (visible reads) Marking 17
4 Opacity 19
1 Proof of Marking Theorem

For the sake of brevity, we use the shorthand notation
\(\exists l = o . n_T(v_1) ; v_2 \in X \)
for
\(\exists l \in X : obj_X(l) = o \land name_X(l) = n \land thread_X(l) = T \land arg_X(l) = v_1 \land retv_X(l) = v_2 \)
and similarly for universal quantification.

We also use \(W, R \) to denote labels.

Lemma 1. For all \(S \in T_{Sequential}, \; T \in S, \; S' = Visible(S, T), \) and \(T', T'' \in S', \) we have \(T' \preceq_S T'' \iff T' \preceq_S T''. \)

Proof.

\[
T' \preceq_S T''
\iff S'|T' \prec_S S'|T'' \lor T' = T''
\iff S|T' \prec_S S|T'' \lor T' = T''
\iff S|T' \prec_S S|T'' \lor T' = T''
\iff T' \preceq_S T''
\]

In these four steps we apply:
1) the definition of \(\preceq_S \),
2) that the definition of \(Visible(S, T) \) implies both \(S'|T' = S|T' \) and \(S'|T'' = S|T'' \),
3) \(S' \subseteq S \), and
4) the definition of \(\preceq_S \).
Lemma 2. For all $S \in T_{Sequential}$, $T \in S$, $i \in I$, $v, v' \in V$, $R = read_T(i) \in GlobalReads(S)$, $S' = \text{Visible}(S, T)$, $T' \in S'$, and $W' = write_T(i, v') \in GlobalWrites(S)$, we have

$$\text{NoWriteBetween}_{(S'|i)}(W', R) \iff \text{NoWriterBetween}_{S,i}(T', \preceq_S, T)$$

Proof.

$$\text{NoWriteBetween}_{(S'|i)}(W', R) \iff \forall W'' \in Writes(S'|i): W'' \preceq_{(S'|i)} W' \vee R \preceq_{(S'|i)} W''$$

$$\iff \forall T'' \in S'|i: \forall i' \in I: \forall v'' \in V: \forall W'' = write_{T''}(i', v'') \in S'|i: W'' \preceq_{(S'|i)} W' \vee R \preceq_{(S'|i)} W''$$

$$\iff \forall T'' \in S'|i: \forall v'' \in V: \forall W'' = write_{T''}(i, v'') \in S'|i: W'' \preceq_{S'} W' \vee R \preceq_{S'} W''$$

$$\iff \forall T'' \in S': \forall v'' \in V: \forall W'' = write_{T''}(i, v'') \in S': W'' \preceq_S W' \vee R \preceq_S W''$$

$$\iff \forall T'' \in S': \forall v'' \in V: \forall W'' = write_{T''}(i, v'') \in S': W'' \preceq_S W' \vee R \preceq_S W''$$

$$\iff \forall T'' \in S': \forall v'' \in V: \forall W'' = write_{T''}(i, v'') \in S': [T'' = T] \vee (T'' \prec_S T \wedge T'' \in \text{Committed}(S)) \wedge [T'' \preceq_T T] \Rightarrow T'' \preceq_S T'$$

$$\iff \forall T'' \in S': \forall v'' \in V: \forall W'' = write_{T''}(i, v'') \in S': (T'' \in \text{Committed}(S) \wedge T'' \prec_S T) \Rightarrow T'' \preceq_S T'$$

$$\iff \forall T'' \in Writers_S(i): T'' \prec_S T \Rightarrow T'' \preceq_S T'$$

$$\iff \forall T'' \in Writers_S(i): T'' \preceq_S T' \Rightarrow \text{NoWriterBetween}_{S,i}(T', \prec_S, T)$$

In these twelve steps, we apply:

1) the definition of NoWriteBetween,
2) the definition of Writes,
3) the definition of projection $S'|i$,
4) R, W' and W'' access location i,
5) $S' \in T_{Sequential}$ and $R \in GlobalReads(S')$ and $W' \in GlobalWrites(S')$ (that are concluded from $S \in T_{Sequential}$, $R \in GlobalReads(S)$, $W \in GlobalWrites(S)$ and $S' = \text{Visible}(S, T)$),
6) Lemma 1,
7) Boolean logic and that \preceq_S is total,
8) the definition of Visible,
9) logical simplification,
10) the definition of Writers,
11) Boolean logic and that \preceq_S is total, and
12) the definition of NoWriteBetween.

\qed
Lemma 3. $T_{\text{Sequential}} \subseteq \text{Sequential}$

Proof. Straightforward from definitions of $T_{\text{Sequential}}$, T_{History} and Sequential.

Lemma 4. $\forall i \in I: \forall v, v' \in V: \forall T, T' \in \text{Trans}: \text{if } R = \text{read}_T(i); v, W = \text{write}_T(i, v), W' = \text{write}_{T'}(i, v'), S \in T_{\text{Sequential}}, W \prec_S R, \text{NoWriteBetween}_S(W, R) \text{ and } W' \prec_S R$, then $T = T'$.

Proof. Suppose (1) $S \in T_{\text{Sequential}}$, (2) $W \prec_S R$, (3) $\text{NoWriteBetween}_S(W, R)$ and (4) $W' \prec_S R$. From [1] and Lemma 3, we have (5) $S \in \text{Sequential}$. From [4] and [5], we have (6) $\neg (R \prec_S W')$. From [3] we have (7) $W' \preceq_S W \vee R \prec_S W'$. From [6] and [7], we have (8) $W' \preceq_S W$. From [2] and [8], we have (9) $W' \preceq_S W \preceq_S R$. From [9], [1], and that W' and R are by T and W is by T', we have $T = T'$.
Lemma 5. Suppose $S \in T_{Sequential}$. We have:

$\forall T \in S: \forall i \in I: \forall v \in V: \forall R = read_T(i): v \in LocalReads(S):$

$\exists T' \in Visible(S, T): \exists W = write_T(i, v) \in Visible(S, T):$

$W \prec_{(Visible(S, T) \mid i)} R \land NoWriteBetween_{(Visible(S, T) \mid i)}(W, R)$

$\iff S \in LocalTSeqSpec$

Proof. Suppose $S \in T_{Sequential}$. Thus, from Lemma 3, we have $S \in Sequential$. Let $S' = Visible(S, T)$. From $S \in T_{Sequential}$ and Lemma 1, we have $S' \in T_{Sequential}$. Thus, from Lemma 3, we have $S' \in Sequential$. From the definition of Visible, we have $S'|T = S|T$.

$\forall T \in S: \forall i \in I: \forall v \in V: \forall R = read_T(i): v \in LocalReads(S):$

$\exists T' \in S': \exists W = write_T(i, v) \in S':$

$W \prec_{(S' \mid i)} R \land NoWriteBetween_{(S' \mid i)}(W, R)$

$\iff \forall T \in S: \forall i \in I: \forall v \in V: \forall R = read_T(i): v \in LocalReads(S):$

$\exists v' \in V: \exists W' = write_T(i, v') \in S': W' \prec_{S} R \land$

$\exists T' \in S': \exists W = write_T(i, v) \in S':$

$W \prec_{(S' \mid i)} R \land NoWriteBetween_{(S' \mid i)}(W, R)$

$\iff \forall T \in S: \forall i \in I: \forall v \in V: \forall R = read_T(i): v \in LocalReads(S):$

$\exists v' \in V: \exists W' = write_T(i, v') \in S': W' \prec_{S} R \land$

$\exists T' \in S': \exists W = write_T(i, v) \in S':$

$W \prec_{(S' \mid i)} R \land NoWriteBetween_{(S' \mid i)}(W, R)$

$\iff \forall T \in S: \forall i \in I: \forall v \in V: \forall R = read_T(i): v \in LocalReads(S):$

$\exists v' \in V: \exists W' = write_T(i, v') \in S': W' \prec_{(S' \mid i)} R \land$

$\exists T' \in S': \exists W = write_T(i, v) \in S':$

$W \prec_{(S' \mid i)} R \land NoWriteBetween_{(S' \mid i)}(W, R)$

$\iff \forall T \in S: \forall i \in I: \forall v \in V: \forall R = read_T(i): v \in LocalReads(S):$

$\exists W = write_T(i, v) \in S'$

$W \prec_{(S' \mid i)} R \land NoWriteBetween_{(S' \mid i)}(W, R)$

$\iff \forall T \in S: \forall i \in I: \forall v \in V: \forall R = read_T(i): v \in LocalReads(S):$

$\exists W = write_T(i, v) \in S'$

$W \prec_{(S' \mid i)} R \land NoWriteBetween_{(S' \mid i)}(W, R)$
\[\forall T \in S: \forall i \in I: \forall v \in V: \forall R = read_T(i): v \in LocalReads(S): \]
\[\exists W = write_T(i, v) \in S: \]
\[W \prec_{S'} R \land \text{NoWriteBetween}_{(S' | i)}(W, R) \]
\[\iff \forall T \in S: \forall i \in I: \forall v \in V: \forall R = read_T(i): v \in LocalReads(S): \]
\[\exists W = write_T(i, v) \in S: \]
\[W \prec_{S} R \land \text{NoWriteBetween}_{(S' | i)}(W, R) \]
\[\iff \forall T \in S: \forall v \in V: \forall R = read_T(i): v \in LocalReads(S): \]
\[\exists W = write_T(i, v) \in S: \]
\[W \prec_{S} R \land \forall W' \in \text{Writes}(S' | i): W' \preceq_{(S' | i)} W \lor R \prec_{(S' | i)} W' \]
\[\iff \forall T \in S: \forall i \in I: \forall v \in V: \forall R = read_T(i): v \in LocalReads(S): \]
\[\exists W = write_T(i, v) \in S: \]
\[W \prec_{S} R \land \forall W' \in \text{Writes}(S' | i): W' \preceq_{(S' | i)} W \lor -(R \prec_{(S' | i)} W') \]
\[\iff \forall T \in S: \forall i \in I: \forall v \in V: \forall R = read_T(i): v \in LocalReads(S): \]
\[\exists W = write_T(i, v) \in S: \]
\[W \prec_{S} R \land \forall W' \in \text{Writes}(S' | i): W \prec_{(S' | i)} W' \prec_{(S' | i)} R \]
\[\iff \forall T \in S: \forall i \in I: \forall v \in V: \forall R = read_T(i): v \in LocalReads(S): \]
\[\exists W = write_T(i, v') \in S: \]
\[W \prec_{S} R \land \forall W' \in \text{Writes}(S | i): W \prec_{(S | i)} W' \prec_{(S | i)} R \]
\[\iff \forall T \in S: \forall i \in I: \forall v \in V: \forall R = read_T(i): v \in LocalReads(S): \]
\[\exists W = write_T(i, v) \in S: \]
\[W \prec_{S} R \land \forall W' \in \text{Writes}(S | i): -(W \prec_{(S | i)} W') \lor -(R \prec_{(S | i)} W') \]
\[\iff \forall T \in S: \forall i \in I: \forall v \in V: \forall R = read_T(i): v \in LocalReads(S): \]
\[\exists W = write_T(i, v) \in S: \]
\[W \prec_{S} R \land \forall W' \in \text{Writes}(S | i): W' \preceq_{(S | i)} W \lor R \prec_{(S | i)} W' \]
\[\iff \forall T \in S: \forall i \in I: \forall v \in V: \forall R = read_T(i): v \in LocalReads(S): \]
\[\exists W = write_T(i, v) \in S: \]
\[W \prec_{S'} R \land \text{NoWriteBetween}_{(S' | i)}(W, R) \]
\[\iff \forall T \in S: \forall i \in I: \forall v \in V: \forall R = read_T(i): v \in LocalReads(S): \]
\[\exists W = write_T(i, v) \in S: \]
\[W \prec_{S} R \land \text{NoWriteBetween}_{(S | i)}(W, R) \]
\[\iff S \in \text{LocalTSeqSpec} \]

In these twenty steps, we apply: 1) the definition of LocalReads,
2) the definition of Visible,
3) $S'|T = S|T$ and that both W' and R are by T,
4) that both W' and R are on i,
5) Lemma 4,
6) duplicate conjunction,
7) the definition of Visible,
8) that both R and W are on i,
9) $S'|T = S|T$ and that both R and W are by T,
10) the definition of NoWriteBetween,
11) first-order logic,
12) $(S' | i) \in \text{Sequential},$
13) from $(S' | i) \in T\text{Sequential}$, R and W are by transaction T and W' is between them, we have W' is by T,
14) $S'|T = S|T$,
15) from $(S | i) \in T\text{Sequential}$, R and W are by transaction T and W' is between them, we have W' is by T.
16) first-order logic,
17) $(S | i) \in \text{Sequential},$
18) $(S | i) \in \text{Sequential}$, $\text{thread}_H(R) = \text{thread}_H(W) = T$ and $\text{arg}_1(H)(R) = \text{arg}_1(H)(W) = i$,
19) the definition of NoWriteBetween,
20) the definition of LocalTSeqSpec.

\Box
Lemma 6. Suppose $S \in T_{\text{Sequential}} \cap T_{\text{Complete}}$. We have:

$$S \in T_{\text{SeqSpec}}$$

$$\iff \forall T \in S: \forall i \in I: (\text{Visible}(S, T) \mid i) \in \text{SeqSpec}(i)$$

$$\iff \forall T \in S: \forall i \in I:$$

$$\forall T'' \in (\text{Visible}(S, T) \mid i): \forall v \in V: \forall R = \text{read}_{T''}(i): v \in (\text{Visible}(S, T) \mid i):$$

$$\exists T' \in \text{Visible}(S, T): \exists W = \text{write}_{T'}(i, v) \in \text{Visible}(S, T):$$

$$W \prec (\text{Visible}(S, T) \mid i) R \land \text{NoWriteBetween}_{\text{Visible}(S, T) \mid i}(W, R)$$

$$\iff \forall T \in S: \forall i \in I:$$

$$\forall T'' \in \text{Visible}(S, T): \forall v \in V: \forall R = \text{read}_{T''}(i): v \in \text{Visible}(S, T):$$

$$\exists T' \in \text{Visible}(S, T): \exists W = \text{write}_{T'}(i, v) \in \text{Visible}(S, T):$$

$$W \prec (\text{Visible}(S, T) \mid i) R \land \text{NoWriteBetween}_{\text{Visible}(S, T) \mid i}(W, R)$$

$$\iff \forall T \in S: \forall i \in I:$$

$$\forall T'' \in \text{Visible}(S, T): \forall v \in V: \forall R = \text{read}_{T''}(i): v \in \text{LocalReads}(S):$$

$$\exists T' \in \text{Visible}(S, T): \exists W = \text{write}_{T'}(i, v) \in \text{Visible}(S, T):$$

$$W \prec (\text{Visible}(S, T) \mid i) R \land \text{NoWriteBetween}_{\text{Visible}(S, T) \mid i}(W, R)$$

$$\land$$

$$\forall T \in S: \forall i \in I:$$

$$\forall R = \text{read}_{T}(i): v \in \text{GlobalReads}(S):$$

$$\exists T' \in \text{Visible}(S, T): \exists W = \text{write}_{T'}(i, v) \in \text{Visible}(S, T):$$

$$W \prec (\text{Visible}(S, T) \mid i) R \land \text{NoWriteBetween}_{\text{Visible}(S, T) \mid i}(W, R)$$

$$\iff S \in \text{LocalTSeqSpec} \land$$

$$\forall T \in S: \forall i \in I:$$

$$\forall R = \text{read}_{T}(i): v \in \text{GlobalReads}(S):$$

$$\exists T' \in \text{Visible}(S, T): \exists W = \text{write}_{T'}(i, v) \in \text{Visible}(S, T):$$

$$W \prec (\text{Visible}(S, T) \mid i) R \land \text{NoWriteBetween}_{\text{Visible}(S, T) \mid i}(W, R)$$
In these thirteen steps, we apply:
1) the definition of $T_{SeqSpec}$ and $S \in T_{Sequential} \cap T_{Complete}$,
2) the definition of $SeqSpec(i)$,
3) R and W access location i,
4) that we can choose $T'' = T$,
5) $Reads(S) = LocalReads(S) \cup GlobalReads(S)$,
6) Lemma 5,
7) that R and W are both on location i,
8) that R and W are by transactions T and T' respectively, $Visible(S,T) \in T_{Sequential}$, and $R \in GlobalReads(Visible(S,T))$ (because $R \in GlobalReads(R)$ and $Visible(S,T)|T = S|T$),
9) Lemma 1,
10) $T' \ll S T$ and $NoWriteBetween(Visible(S,T) | i)(W, R)$,
11) Lemma 2,
12) $T' \in \text{Visible}(S,T)$ and $(T' \prec_S T)$, and
13) the definition of $\text{Visible}(S,T)$.

\square
Lemma 7. (Invariance) If $H \equiv H'$, then $\text{Marking}(H) = \text{Marking}(H')$ and $\text{ReadPres}(H) = \text{ReadPres}(H')$ and $\text{WriteObs}(H) = \text{WriteObs}(H')$.

Proof. Immediate from the definitions of Marking, ReadPres, and WriteObs. \hfill \Box

Lemma 8. \(\forall H \in T\text{History} : \forall \sqsubseteq \in \text{Marking}(H) : \exists S \in T\text{Sequential} : H \equiv S \land \preceq_H \subseteq \preceq_S \land \preceq_S \subseteq \sqsubseteq. \)

Proof. Let $H \in T\text{History}$ and let $\sqsubseteq \in \text{Marking}(H)$. We have that \sqsubseteq is a total order of Trans so we can choose a permutation π on $1..n$ such that $\forall i, j \in 1..n : (i < j) \iff (T_{\pi(i)} \sqsubseteq T_{\pi(j)})$. Define: $S = H[T_{\pi(1)}, \ldots, H[T_{\pi(n)}]$. It is straightforward to prove that $S \in T\text{Sequential} \land H \equiv S \land \preceq_H \subseteq \preceq_S \land \preceq_S \subseteq \sqsubseteq. \hfill \Box

Lemma 9. Suppose $\sqsubseteq \in \text{Marking}(H) \land p_2 \notin \text{Writers}_H(i)$.
If $\text{NoWriterBetween}_{H,i}(T_1, \sqsubseteq, p_2)$ and $\text{NoWriterBetween}_{H,i}(p_2, \sqsubseteq, T_3)$,
them$\text{NoWriterBetween}_{H,i}(T_1, \sqsubseteq, T_3)$.

Proof.

\[
\text{NoWriterBetween}_{H,i}(T_1, \sqsubseteq, p_2) \land \text{NoWriterBetween}_{H,i}(p_2, \sqsubseteq, T_3) \\
\iff \forall T \in \text{Writers}_H(i) : (T \sqsubseteq T_1 \lor p_2 \sqsubseteq T) \land (T \sqsubseteq p_2 \lor T_3 \sqsubseteq T) \\
\iff \forall T \in \text{Writers}_H(i) : (T \sqsubseteq T_1 \land (T \sqsubseteq p_2 \lor T_3 \sqsubseteq T)) \lor \\
\quad (p_2 \sqsubseteq T \land T \sqsubseteq p_2) \lor (p_2 \sqsubseteq T \land T_3 \sqsubseteq T) \\
\iff \forall T \in \text{Writers}_H(i) : (T \sqsubseteq T_1) \lor (T_3 \sqsubseteq T) \\
\iff \text{NoWriterBetween}_{H,i}(T_1, \sqsubseteq, T_3)
\]

The first step uses the definition of NoWriterBetween. The second step uses \land distribution over \lor. The third step simplifies the first disjunct using conjunction elimination, eliminates the second disjunct using $p_2 \notin \text{Writers}_H(i)$ and simplifies the third disjunct using conjunction elimination. The fourth step uses the definition of NoWriterBetween. \hfill \Box
Lemma 10. Suppose \(S \in T_{\text{Sequential}} \cap T_{\text{Complete}} \). We have:

\[
S \in T_{\text{SeqSpec}} \iff S \in \text{Markable}
\]

Proof. Let \(S \in T_{\text{Sequential}} \cap T_{\text{Complete}} \). From Lemma 6, the definition of Markable, and \(S \in T_{\text{Complete}} \), we have that we must prove:

\[
S \in \text{LocalTSeqSpec} \land \\
\forall T \in S: \forall i \in I: \forall v \in V: \forall R = \text{read}_T(i):v \in \text{GlobalReads}(S): \\
\exists T' \in \text{Committed}(S): \exists W = \text{write}_T(i, v) \in \text{GlobalWrites}(S): \\
(T' \prec_S T) \land \text{NoWriterBetween}_{S,i}(T', \preceq_S T) \\
\iff \exists \subseteq \in \text{Marking}(S): \not\subseteq S \subseteq \subseteq \land \subseteq \in \text{ReadPres}(S) \land \subseteq \in \text{WriteObs}(S)
\]

From the definition of WriteObs and LastPreAccessor we have that:

\[
\subseteq \in \text{WriteObs}(S) \\
\iff S \in \text{LocalTSeqSpec} \land \\
\forall T \in \text{Trans}: \forall i \in I: \forall v \in V: \forall R = \text{read}_T(i):v \in \text{GlobalReads}(S): \\
\exists T' \in \text{Trans}: \exists W = \text{write}_T(i, v) \in \text{GlobalWrites}(S): \\
T' \in \text{Writers}_{S,i}(T') \land T' \neq T \land T' \sqsubset R \land \text{NoWriterBetween}_{S,i}(T', \sqsubseteq, R)
\]

We are now ready to prove the two directions of the equivalence.

\(\Rightarrow: \)

Assume that

\[
S \in \text{LocalTSeqSpec} \land \\
\forall T \in S: \forall i \in I: \forall v \in V: \forall R = \text{read}_T(i):v \in \text{GlobalReads}(S): \\
\exists T' \in \text{Committed}(S): \exists W = \text{write}_T(i, v) \in \text{GlobalWrites}(S): \\
(T' \prec_S T) \land \text{NoWriterBetween}_{S,i}(T', \preceq_S T)
\]

Define:

\[
p_1 \sqsubseteq p_2 \iff (p_1 \prec_S p_2) \lor \\
(\text{thread}_{S}(p_1) \preceq_S p_2) \lor \\
(p_1 \preceq_S \text{thread}_{S}(p_2))
\]

\[
p_1 \sqsubseteq p_2 \iff p_1 \sqsubseteq \lor p_2 p_1 = p_2
\]

We show that

\[
\subseteq \in \text{Marking}(S) \land \\
\not\subseteq S \subseteq \subseteq \land \subseteq \in \text{ReadPres}(S) \land \\
S \in \text{LocalTSeqSpec} \land \\
\forall T \in \text{Trans}: \forall i \in I: \forall v \in V: \forall R = \text{read}_T(i):v \in \text{GlobalReads}(S): \\
\exists T' \in \text{Trans}: \exists W = \text{write}_T(i, v) \in \text{GlobalWrites}(S): \\
T' \in \text{Committed}(S) \land T' \neq T \land T' \sqsubset R \land \text{NoWriterBetween}_{S,i}(T', \sqsubseteq, R)
\]
It is straightforward to prove $\square \in \mathit{Marking}(S)$ and $\preceq_S \subseteq \square$, $\square \in \mathit{ReadPres}(S)$. Additionally, the first conjunct of $\mathit{WriteObs}(S)$ (that is, $S \in \mathit{LocalTSeqSpec}$) is immediate from the assumption. So, we still need to prove the second conjunct of $\mathit{WriteObs}(S)$.

Let $T \in \text{Trans}$, $i \in I$, $v \in V$, $R = \text{read}_T(i)\cdot v \in \text{GlobalReads}(S)$. From the assumption (the left-hand side), we have that we can find (1) $T' \in \mathit{Committed}(S)$ and (2) $W = \text{write}_T(i, v) \in \text{GlobalWrites}(S)$ such that (3) $(T' \not\preceq_S T)$ and (4) $\mathit{NoWriterBetween}_{S,i}(T', \preceq_S, T)$. Let us now prove each conjunct of $T' \neq T \land T' \subseteq R \land \mathit{NoWriterBetween}_{S,i}(T', \subsetneq, R)$ in turn.

From [3] and that \preceq_S is a total order of $\text{Trans}(S)$, we have (5) $T' \neq T$. From [3] and the definition of \subseteq, we have $T' \subseteq R$. From [4] and $\preceq_S \subseteq \subseteq$, we have (6) $\mathit{NoWriterBetween}_{S,i}(T', \subsetneq, \subseteq, R)$. From $T \preceq_S T$ and the definition of \subseteq, we have (7) $R \subseteq T$. From [6], [7] and the definition of \subseteq and transitivity of \preceq_S, we have $\mathit{NoWriterBetween}_{S,i}(T', \subsetneq, R)$.

\[\Leftarrow: \]

Assume the right-hand side and choose $\square \in \mathit{Marking}(S)$ such that:

\[
\preceq_S \subseteq \subseteq \land \square \in \mathit{ReadPres}(S) \land \\
S \in T\mathit{LocalSeqSpec} \land \\
\forall T \in \text{Trans}: \forall i \in I: \forall v \in V: \forall R = \text{read}_T(i)\cdot v \in \text{GlobalReads}(S): \\
\exists T' \in \mathit{Committed}(S): \exists W = \text{write}_T(i, v) \in \text{GlobalWrites}(S): \\
T' \neq T \land T' \subseteq R \land \mathit{NoWriterBetween}_{S,i}(T', \subsetneq, R)
\]

We show that

\[
S \in \mathit{LocalTSeqSpec} \land \\
\forall T \in S: \forall i \in I: \forall v \in V: \forall R = \text{read}_T(i)\cdot v \in \text{GlobalReads}(S): \\
\exists T' \in \mathit{Committed}(S): \exists W = \text{write}_T(i, v) \in \text{GlobalWrites}(S): \\
(T' \not\preceq_S T) \land \mathit{NoWriterBetween}_{S,i}(T', \preceq_S, T)
\]

The first conjunct (of the left-hand side), $S \in \mathit{LocalTSeqSpec}$, is immediate from the assumption. From the assumption we have (1) $\preceq_S \subseteq \subseteq$, (2) $\subseteq \in \mathit{ReadPres}(S)$. Let $T \in \text{Trans}$, $i \in I$, $v \in V$, $R = \text{read}_T(i)\cdot v \in \text{GlobalReads}(S)$. From the above property of \subseteq, we have that we can find (3) $T' \in \mathit{Committed}(S)$ and (4) $W = \text{write}_T(i, v) \in \text{GlobalWrites}(S)$ such that (5) $T' \neq T$ and (6) $T' \subseteq R$ and (7) $\mathit{NoWriterBetween}_{S,i}(T', \subsetneq, \subseteq, R)$. From [1], that \subseteq is a total order on $\text{Trans}(S)$ ($\subseteq \in \mathit{Marking}(S)$), and that \preceq_S is a total order on $\mathit{Trans}(S)$ ($S \in T\mathit{Sequential}$), we have (8) $\forall T, T' \in \text{Trans}: T' \subseteq T \Rightarrow T' \not\preceq_S T$.

First we prove $T' \not\preceq_S T$. From [2], we have (9) $\mathit{NoWriterBetween}_{S,i}(T', \subsetneq, \subseteq, R)$. From [3] and [4], we have (10) $T' \in \mathit{Writers}_S(i)$. From [9] and [10], we have (11) $T' \subseteq T \lor R \subseteq T'$. From [6], $T' \neq R$ and \subseteq is a total order on $\{R\} \cup \mathit{Writers}_S(i)$ ($\subseteq \in \mathit{Marking}(S)$), we have (12) $R \not\subseteq T'$. From [11] and [12], we have (13) $T' \subseteq T$. From [8] and [13], we have (14) $T' \not\preceq_S T$. From [14] and [5], we have $T' \not\preceq_S T$.

Second, we prove $\mathit{NoWriterBetween}_{S,i}(T', \preceq_S, T)$. From [2], we have (15) $\mathit{NoWriterBetween}_{S,i}(R, \subsetneq, T)$. From $R \not\in \mathit{Writers}_S(i)$, [7], [15], and Lemma 9, we have (16) $\mathit{NoWriterBetween}_{S,i}(T', \subsetneq, T)$. From [16] and [8] we have $\mathit{NoWriterBetween}_{S,i}(T', \preceq_S, T)$. \\[\square\]
Theorem (Marking) \(\text{FinalStateOpaque} = \text{Markable} \).

Proof.

\[
\text{FinalStateOpaque} = \{ H \in \text{THistory} \mid \exists H' \in \text{TExtension}(H) : \exists S \in \text{TSequential} : \\
H' \equiv S \land \mathcal{S}_{H'} \subseteq \mathcal{S} \land S \in \text{TSeqSpec} \}
\]

\[
= \{ H \in \text{THistory} \mid \exists H' \in \text{TExtension}(H) : \exists S \in \text{TSequential} : \\
H' \equiv S \land \mathcal{S}_{H'} \subseteq \mathcal{S} \land S \in \text{Markable} \}
\]

In these eight steps we apply:
1) the definition of \(\text{FinalStateOpaque} \),
2) Lemma 10 and \(S \in \text{TComplete} \) (because \(H' \in \text{TExtension}(H) \) and \(H' \equiv S \)),
3) the definition of \(\text{Markable} \) and \(S \in \text{TComplete} \),
4) Lemma 7,
5) logical rearrangement,
6) transitivity of \(\subseteq \),
7) Lemma 8, and
8) the definition of \(\text{Markable} \). \(\square \)
TL2 Marking

Shared objects:
- \(r: \text{SafeReg}[I], \text{initially } \bot \)
- \(\text{ver}: \text{AtomicReg}[I], \text{initially } 0 \)
- \(\text{lock}: \text{TryLock}[I], \text{initially } \mathbb{R} \)
- \(\text{clock}: \text{SCounter}, \text{initially } 0 \)

Thread-local objects:
For each \(T \in \text{Trans} \):
- \(\text{rver}_T: \text{SafeReg}, \text{initially } \bot \)
- \(\text{rset}_T: \text{BasicSet}, \text{initially } \emptyset \)
- \(\text{wset}_T: \text{BasicMap}, \text{initially } \emptyset \)

<table>
<thead>
<tr>
<th>R01</th>
<th>def read(_T)(i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R02</td>
<td>if (rver(_T = \bot))</td>
</tr>
<tr>
<td>R03</td>
<td>snap := clock.read()</td>
</tr>
<tr>
<td>R04</td>
<td>rver(_T.write(snap))</td>
</tr>
</tbody>
</table>

| R05 | if (i \(\in\) dom(wset\(_T\))) |
| R06 | return wset\(_T\)(i) |

R07	t := ver\(_[i].read()\)
R08	v := reg\(_[i].read()\)
R09	l := lock\([i].read()\)
R10	t' := ver\(_[i].read()\)
R11	if(\(\neg(l = false \land t = t' \land t' \leq rver_T)\))
R12	rver\(_T\.add(i)\)
R13	return A

W01	def write\(_T\)(i,v)
W02	wset\(_T\.put(i \mapsto v)\)
W03	return ok

C01	def commit\(_T\)
C02	foreach (i \(\in\) dom(wset\(_T\)))
C03	locked := lock\([i].trylock()
C04	if (locked)
C05	lset.add(i)
C06	else
C07	foreach (i \(\in\) lset) lock\([i].unlock()
C08	return A

C09	wver := clock.iaf
C10	if (wver \(!=\) rver\(_T + 1\))
C11	foreach (i \(\in\) rset\(_T\))
C12	l := lock\([i].read()
C13	t := ver\(_[i].read()
C14	if (\(\neg(l = false \land t \leq rver_T)\))
C15	foreach (i \(\in\) lset) lock\([i].unlock()
C16	return A

C17	foreach ((i \mapsto v) \(\in\) wset\(_T\)
C18	reg\([i].write(v)
C19	ver\([i].write(wver)
C20	lock\([i].unlock()
C21	return C

In addition to the orders imposed by the data and control dependencies and lock synchronization, the following orders are required: \(R06 \prec R07, R07 \prec R08, R08 \prec R09, C12 \prec C13, C18 \prec C19 \)

Figure 1: TL2 Algorithm
Consider an execution history X of TL2 such that $H = X|mem$ and $H \in TComplete$. Let

$$\begin{align*}
\text{readAcc}(R) &= R08 \text{ in } R \\
\text{writeAcc}(T, i) &= C18 \text{ for } i \text{ in } \text{Commit}_T \\
\text{Eff}(T) &= \begin{cases} R03 \text{ (in the first read of } T) & \text{ if } T \in \text{Aborted}(H) \\
C09 \text{ (in } \text{commit}_T) & \text{ if } T \in \text{Committed}(H) \end{cases}
\end{align*}$$

Let \prec_{clock} represent the linearization order of the strong counter clock. The marking \sqsubseteq for H is the reflexive closure of \sqsubset that is defined as follows:

Let $T, T' \in \text{Trans}(H)$:

$$T \sqsubseteq T' \iff \text{Eff}(T) \prec_{\text{clock}} \text{Eff}(T')$$

Let $R \in \text{Reads}(H), i = \text{arg1}(R), T \in \text{Writers}_H(i)$:

$$T \sqsubseteq R \iff \text{writeAcc}(T, i) \not\preceq_X \text{readAcc}(R)$$

$$R \sqsubseteq T \iff \text{readAcc}(R) \not\preceq_X \text{writeAcc}(T, i)$$

Figure 2: The marking of TL2.

The marking relation for TL2 is defined in Figure 2. The effect order of transactions is the linearization order of their calls to the clock strong counter. The access order of read operations and writer transactions to location i is the execution order of their access to the $\text{reg}[i]$ register.
3 DSTM (visible reads) Marking

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Shared objects:</td>
</tr>
<tr>
<td></td>
<td>state: CASReg[Trans], initially R</td>
</tr>
<tr>
<td></td>
<td>ref: CASReg[i], initially new Loc(T0, Ø, 0, 0)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>R01</td>
<td>def readT(i)</td>
</tr>
<tr>
<td>R02</td>
<td>r := ref[i].read()</td>
</tr>
<tr>
<td>R03</td>
<td>v := currentValueT(r)</td>
</tr>
<tr>
<td>R04</td>
<td>r' = r.clone()</td>
</tr>
<tr>
<td>R05</td>
<td>r'.rset.add(T)</td>
</tr>
<tr>
<td>R06</td>
<td>b := ref[i].cas(r, r')</td>
</tr>
<tr>
<td>R07</td>
<td>s := stateT.read()</td>
</tr>
<tr>
<td>R08</td>
<td>if (¬b ∨ (s = A))</td>
</tr>
<tr>
<td>R09</td>
<td>return A</td>
</tr>
<tr>
<td>R10</td>
<td>else</td>
</tr>
<tr>
<td>R11</td>
<td>return v</td>
</tr>
</tbody>
</table>

C01	def commitT()
C02	b := stateT.cas(R, C)
C03	if (b)
C04	return C
C05	else
C06	return A

W01	def writeT(i, v)
W02	r := ref[i].read()
W03	w := r.writer.read()
W04	if (w = T)
W05	r.newVal.write(v)
W06	return ok
W07	v' := currentValueT(r)
W08	foreach (T' ∈ r.rset)
W09	stateT'.cas(R, A)
W10	r' := new Loc(T, Ø, v', v)
W11	b := ref[i].cas(r, r')
W12	if (b)
W13	return ok
W14	else
W15	return A

V01	def currentValueT(r)
V02	T' = r.writer.read()
V03	if (¬(T' = T))
V04	stateT'.cas(R, A)
V05	s := stateT.read()
V06	if (s = A)
V07	return r.oldVal
V08	else
V10	return r.newVal

Figure 3: DSTM (visible reads) Algorithm
Consider an execution history X of DSTM such that $H = X|\text{mem}$ and $H \in TComplete$. Let

\[
\begin{align*}
\text{readAcc}(R) &= R06 \text{ in } R \\
\text{writeAcc}(T,i) &= W12 \text{ in the first write to } i \text{ by } T \\
\text{Eff}(T) &= \begin{cases}
C02 \text{ of the commit operation} & \text{if } T \text{ is committed} \\
R06 \text{ of the last successful read} & \text{if } T \text{ is aborted and has a successful read} \\
\text{Any point in } T & \text{if } T \text{ is aborted and has no successful read}
\end{cases}
\end{align*}
\]

Let $\preceq_{\text{ref}[i]}$ represent the linearization order of $\text{ref}[i]$. The marking \sqsubseteq for H is the reflexive closure of \sqsubseteq that is define as follows:

Let $T, T' \in \text{Trans}(H)$:

$\quad T \sqsubseteq T' \iff \text{Eff}(T) \preceq_{X} \text{Eff}(T')$

Let $R \in \text{Reads}(H), i = \text{arg1}(R), T \in \text{Writers}_{H}(i)$:

$\quad T \sqsubseteq R \iff \text{writeAcc}(T,i) \preceq_{\text{ref}[i]} \text{readAcc}(R)$

$\quad R \sqsubseteq T \iff \text{readAcc}(R) \preceq_{\text{ref}[i]} \text{writeAcc}(T,i)$

Figure 4: The marking of DSTM (visible reads).

The marking relation for DSTM (visible reads) is defined in Figure 4.

Committed transactions take effect at the final cas of their state from R to C, $C02$, of their commit operation. Aborted transactions that have successful read operations take effect at state check, $R06$, of their last successful read.

The access order of read operations and writer transactions to location i is the linearization order of their cas calls to the $\text{ref}[i]$ register.
4 Opacity

\[
\begin{align*}
\text{Reads}(H) &= \{ R | R \in H \land \text{obj}_H(R) = \text{this} \land \\
&\quad \text{name}_H(R) = \text{read} \land \text{retv}_H(R) \neq \emptyset \} \\
\text{Writes}(H) &= \{ W | W \in H \land \text{obj}_H(W) = \text{this} \land \\
&\quad \text{name}_H(W) = \text{write} \land \text{retv}_H(W) \neq \emptyset \} \\
\text{Trans}(H) &= \{ T | \exists l \in H : \text{thread}_H(l) = T \} \\
\text{TSequential} &= \{ S \in \text{THistory} | \preceq_S \text{ is a total order of Trans}(S) \} \\
\text{Committed}(H) &= \{ T | \exists l \in H : \text{thread}_H(l) = T \land \text{retv}_H(l) = \emptyset \} \\
\text{Aborted}(H) &= \{ T | \exists l \in H : \text{thread}_H(l) = T \lor \text{retv}_H(l) = \emptyset \} \\
\text{Completed}(H) &= \text{Committed}(H) \cup \text{Aborted}(H) \\
\text{Live}(H) &= \text{Trans}(H) \setminus \text{Completed}(H) \\
\text{TComplete} &= \{ H \in \text{THistory} | \forall T \in \text{Trans}(H) : T \in \text{Completed}(H) \} \\
\text{CommitPending}(H) &= \{ T \in \text{Live}(H) | \exists l \in H : \text{thread}_H(l) = T \land \text{name}_H(l) = \text{commit} \\
&\quad i\text{Ev}(l) \in H \land \neg (r\text{Ev}(l) \in H) \} \\
\text{TExtension}(H) &= \{ H' \in \text{THistory} | H \text{ is a prefix of } H' \land \forall T \in \text{Trans}(H') \Rightarrow T \in \text{Trans}(H) \land \\
&\quad \text{Live}(H) \setminus \text{CommitPending}(H) \subseteq \text{Aborted}(H') \land \\
&\quad \text{CommitPending}(H) \subseteq \text{Completed}(H') \} \\
\text{Visible}(S,T) &= \text{filter} \{ S, \lambda T'.(T' = T) \lor ((T' \prec_S T) \land T' \in \text{Committed}(S)) \} \\
\text{NoWriteBetween}_S(W,R) &= \forall W' \in \text{Writes}(S) : W' \preceq_S W \lor R \prec_S W' \\
\text{SeqSpec}(i) &= \{ S \in \text{Sequential} | \forall R \in \text{Reads}(S) : \exists W \in \text{Writes}(S) : \\
&\quad W \prec_S R \land \text{NoWriteBetween}_S(W,R) \land \\
&\quad \text{retv}_S(R) = \text{arg}_2 S(W) \} \\
\text{TSeqSpec} &= \{ S \in \text{TSequential} \cap \text{TComplete} | \forall T \in S : \forall i \in I : \\
&\quad \text{Visible}(S,T) | i \in \text{SeqSpec}(i) \} \\
\text{FinalStateOpaque} &= \{ H \in \text{THistory} | \exists H' \in \text{TExtension}(H) : \exists S \in \text{TSequential} : \\
&\quad H' \equiv S \land \preceq_{H'} \subseteq \preceq_S \land S \in \text{TSeqSpec} \}
\end{align*}
\]

Figure 5: FinalStateOpaque

Opacity of a TM algorithm is defined in two steps. First, it is defined what it means for a transaction history to be opaque which is called final-state-opacity. Then, a TM algorithm is defined to be opaque if every transaction history of every source program running on top of that TM algorithm is final-state-opaque.

FinalStateOpaque is defined in Figure 5. We use T prefix before some of the terms to avoid confusion with the terms that we defined above for execution histories of objects. We say that a transaction history is sequential if it is a sequence of transactions. A transaction T is committed or aborted in a transaction history H if there is respectively a commit or abort response event for T in H. A completed transaction is either committed or aborted. A live transaction is a transaction that is not completed. A transaction history is complete if all its transactions are completed. A pending transaction has a pending event and a commit-pending transaction has a commit pending event. An extension of a history is obtained by committing or
aborting its commit-pending transactions and aborting the other live transactions. If \(H \) is a transaction history and \(p \) is a predicate on transaction identifiers, we define \(\text{filter}(H, p) \) to be the subsequence of \(H \) that contains the events of transactions \(T \) for which \(p(T) \) is true. The visible history for a transaction \(T \) in a sequential transaction history \(S \), \(\text{Visible}(S, T) \), is the sequence of committed transactions before \(T \) in \(S \) and \(T \) itself. The sequential specification of a location \(i \), \(\text{SeqSpec}(i) \), is the set of sequential histories of read and write method calls on location \(i \) where every read returns the value given as the argument to the latest preceding write (regardless of thread identifiers). It is essentially the sequential specification of a register. Transactional sequential specification is the set of complete sequential transaction histories \(S \) that for every transaction \(T \) and location \(i \), \(\text{Visible}(S, T)|i \) is a member of the sequential specification of \(i \). A transaction history \(H \) is final-state-opaque if there is an equivalent sequential transaction history \(S \) for an extension of \(H \) such that \(S \) is real-time-preserving and a member of transactional sequential specification. The sequential history \(S \) is called the justifying history. In other words, every correct concurrent execution is indistinguishable from a correct sequential execution.