A Appendix

Given an execution history x, the history $x[p]$ denotes the subsequence of x for the calls issued by the process p, and the history $x[u]$ denotes the subsequence of x for the calls on the update method u. Similarly, $x[g]$ denotes the subsequence of x for the calls on the update methods in the group g.

We use the familiar functions size(l), prefix(l, e) (excluding e and later elements), and $l \cdot l'$ (concatenation) and the predicate prefix-of(l, l') on lists.

Definition 1 (Refinement Relation).

For all K, W and τ, $\text{refines}(K, W, \tau)$ if

\[
\text{let } [p_i \mapsto \sigma_j, A_i, S_i, F_i, L_i]_{i \in \{1..|P|\}} = K,
\]

and $\langle [p_i \mapsto \sigma_j]_{i \in \{1..|P|\}}, [p_i \mapsto x_j]_{i \in \{1..|P|\}} \rangle = W$ in

(R0) For all $i, j \in \{1..|P|\}$ and u,

\[
\text{prefix-of}(x_j[p_i], u, x_j[p_i][u]) = \text{prefix-of}(x_j[p_i], [p_i \mapsto x_j])
\]

(R1) For all $i \in \{1..|P|\}$,

\[
\sigma_i = \text{Apply}(S_i)_{\text{prefix}(\sigma_i)}
\]

(R2) For all $i, j, k \in \{1..|P|\}$, u, v, r and u',

\[
\text{let } c = u(v)[p_i, r] \rightarrow
\]

\[
\langle c, D \rangle \in F_j(p_i) \land u' \in \text{Dep}(u) \rightarrow
\]

\[
\text{size}(\text{prefix}(x_i, c)[p_k][u']) = D(p_k, u')
\]

(R2') For all $i, j \in \{1..|P|\}$, u, v, r, g and u',

\[
\text{let } c = u(v)[p_i, r] \rightarrow
\]

\[
\langle c, D \rangle \in L_j(g) \land \text{Leader}(u) = g \land \text{Leader}(u) = p_i \rightarrow
\]

\[
\text{size}(\text{prefix}(x_i, c)[p_k][u']) = D(p_k, u')
\]

(R3) For all $j, k \in \{1..|P|\}$ and u,

\[
\text{size}(x_j[p_k][u]) = A_j(p_k, u)
\]

(R4) For all $i, j, k \in \{1..|P|\}$, u, v and r,

\[
\text{let } c = u(v)[p_i, r] \rightarrow
\]

\[
\langle c, _ \rangle \in F_j(p_i) \rightarrow k = i \land c \in x_i \land c \notin x_j
\]

(R5) For all $i, j \in \{1..|P|\}$, u, v, r, g and u',

\[
\text{let } c = u(v)[p_i, r] \rightarrow
\]

\[
\langle c, _ \rangle \in L_j(g) \land \text{SyncGroup}(u) = g \land \text{Leader}(g) = p_i \rightarrow
\]

\[
k = i \land c \in x_i \land c \notin x_j
\]

(R6) For all $i, j \in \{1..|P|\}$, u, v, r and u',

\[
\text{let } c = u(v)[p_i, r] \rightarrow
\]

\[
x_j[p_k][u] \rightarrow (\text{map}(\text{fst}, F_j(p_k))) = x_j[p_k][u] \cdot (\text{map}(\text{fst}, F_j(p_k)))
\]

Lemma 4 (Refinement). For all K and τ, if $K_0 \xrightarrow{\tau} K$, there exists W, such that $W_0 \xrightarrow{\tau} W$ and $\text{refines}(K, W, \tau)$.

Proof. The proof is by induction on the concrete steps with the refinement relation defined in **Definition 1**.

Case analysis on the concrete step:

Case Reduce:
The abstract steps are Call for p_j and Prop for other processes.

Since SyncGroup(u) = ⊥ and Dep(u) = Ø, the conditions CallConfSync and PropDepPres trivially hold. Thus, the abstract steps are enabled.

R0:

The call by p_j is only added to the history x_j of p_j.

R1:

The relation R_1 for the post-states holds by R_0 for the pre-states, the summarization property, and the state-commutativity property of u.

R2:

F maps stay the same and x_j is only extended.

R3:

The call is added to all processes and the record of the applied calls is advanced for all.

R4:

The maps F stay the same. The call c is added to x_i for each $i \in 1..|P|$. However, by the uniqueness of request identifiers in the trace, $(p_j, c) \notin \tau$. Therefore, by the contra-positive of C_3, we have $(c, _) \notin F_j(p_j)$. Therefore, the addition of c to x_j does not invalidate R_4 for any element in $F_j(p_j)$.

R5:

The map L stays the same. The call c is added to x_i for each $i \in 1..|P|$. However, by the uniqueness of request identifiers in the trace, $(p_j, c) \notin \tau$. Therefore, by the contra-positive of C_3, we have $(c, _) \notin L_j(g)$. Therefore, the addition of c to x_j does not invalidate R_5 for any element in $L_j(g)$.

R6:

Trivial since c is applied at p_j and all other processes $p_i, i \neq j$.

R7:

Trivial as the added call is in the label.
\(R_8: \) The premise is refuted since \(\text{SyncGroup}(u) = \bot. \)

\(R_9: \) As \(\text{SyncGroup}(u) = \bot, \) the step of this case do not apply a method of any synchronization group.

\(R_{10}: \) This case adds the call to the history of all processes and does not change \(F \) maps.

Case Free:

The abstract step is \(\text{CALL} \) for \(p_j. \)

Since \(\text{SyncGroup}(u) = \bot, \) the conditions \(\text{CallConfSync} \) trivially holds. Therefore, the abstract step is enabled.

\(R_0: \) The call by \(p_j \) is only added to the history \(x_j \) of \(p_j. \)

\(R_1: \) The relation \(R_1 \) for the post-states holds by \(R_1 \) for the pre-states, and the state-commutativity property of \(u. \)

\(R_2: \) By the rule \(\text{CALL} \), the call \(c \) is appended to the history \(x_j \) in the post-state, \(\text{prefix}(x_j, c) = x_j \) before the step. By the rule \(\text{Free,} \) the dependencies \(D \) are a projection over \(A. \) By \(R_3, A \) represents the size of the sub-histories.

\(R_3': \) \(L \) maps stay the same and \(x_j \) is only extended.

\(R_5: \) The map \(L \) stays unchanged. Similar to the case \(\text{Reduce}, \) by \(C_3, R_5 \) is preserved for the elements of \(L \) map.

\(R_6: \) Trivial since \(i = j. \)

\(R_7: \) Trivial as the added call is in the label.

Case Conf:

The abstract step is \(\text{CALL} \) for \(p_j. \)

Let \(c = u(\nu)p_{jr}. \)

We show that the condition \(\text{CallConfSync} \) holds:

By the contra-positive of \(R_7, \) for all \(k \in \{1..|P|\}, \) we have \(c \notin x_k. \)

Consider arbitrary \(k, k' \in \{1..|P|\} \) and \(c' = u'(\nu')p_{jr}, \) such that \(c' \in x_k \) and \(c' \not< c. \)

From \(c' < c, \) and \(\text{SyncGroup}(u) = g, \) we have \(u' \in g. \)

By \(R_0 \) and \(\text{Leader}(g) = p_j, \) we have \(k' = j. \)

By \(R_6, \) we have \(c' \in x_j. \)

Thus, the \(\text{CallConfSync} \) condition holds.

Thus, the abstract step is enabled.

\(R_0: \) The call by \(p_j \) is only added to the history \(x_j \) of \(p_j. \)

\(R_1: \) The relation \(R_1 \) for the post-states follow from \(R_1 \) for the pre-states and the state-commutativity property of calls in \(S. \)

\(R_2: \) \(F \) maps stay the same and \(x_j \) is only extended.

\(R_2': \) By the rule \(\text{CALL} \), the call \(c \) is appended to the history \(x_j \) in the post-state, \(\text{prefix}(x_j, c) = x_j \) before the step. By the rule \(\text{Conf,} \) the dependencies \(D \) are a projection over \(A. \) By \(R_3, A \) represents the size of the sub-histories.

\(R_3: \) The call is added to the history of \(x_j \) and its record of the applied calls \(A_j(p_j) \) is advanced.

\(R_4: \) The maps \(F \) stay unchanged. Similar to the case \(\text{Reduce}, \) by \(C_3, R_4 \) is preserved for the elements of \(F \) maps.

\(R_5: \)
The call \(c \) is added to \(x_j \) and all \(L_i(p_j) \), \(i \neq j \). By the uniqueness of request identifiers in the trace, \((p_j, c) \notin \tau\). Therefore, by the contra-positive of \(R_7 \), we have \(c \notin x_j \). Therefore, \(R_5 \) holds in the post-state for the new call \(c \) in the \(L \) maps. Further, similar to the case \(\text{REDUCE} \), \(R_5 \) is preserved for previous elements in \(L_j(g) \) as well.

\(R_6: \)
Trivial since \(i = j \).

\(R_7: \)
Trivial as the added call is in the label.

\(R_8: \)
The call is added to \(x_j \). Trivial from the premises of the rule \(\text{Conf} \).

\(R_9: \)
We have that \(p_j = \text{Leader}(g) \). This step applies the call to \(x_j \), and appends it to the \(L_i \) map for each other process \(p_i \), \(i \neq j \). Therefore, the equality is preserved for any pair of \(j \). Further, \(L_{\text{Leader}(g)}(g) \) stays empty and the equality is preserved for any pair of \(i \) and \(j \).

\(R_{10}: \)
This case does not apply since \(\text{SyncGroup}(g) = \perp \).

Case \(\text{Free-App} \):
Let the concrete step be for the process \(p_j \).
The abstract step is \(\text{Prop} \) for \(p_j \).
The condition \(\text{PropConfSync} \) hold by \(C_1 \).
The condition \(\text{PropDepPres} \) holds as follows:
Let \(c = u(v)_{p_i,r} \) and \(u' \in \text{Dep}(u) \).
By \(R_3, D \leq A \) and \(R_2 \), for all \(k \in \{1..|P|\} \), we have \(\text{size}(x_j, c)|p_k|u'| \leq \text{size}(x_j, p_k|u') \).
By \(R_6 \), we have that \(x_j|p_k|u' \) and \(x_j|p_k|u' \) are prefixes of \(x_j|p_k|u' \). Thus, one is a prefix of another:
- \(\text{prefix-of}(x_j, p_k|u', x_j|p_k|u) \lor \text{prefix-of}(x_j, p_k|u, x_j|p_k|u) \).
From the size equation above, we have:
- \(\text{prefix-of}(\text{prefix}(x_i, c)|p_k|u', x_j|p_k|u) \).
Thus, for all \(v', c' = u'(v')_{p_k,r} \),
\(c' \triangleq_{x_j} c \mapsto c' \notin x_j \).
Thus, the condition \(\text{PropDepPres} \) holds.
The condition \(c \in \text{xs}(p') \setminus \text{xs}(p) \) hold by \(R_4 \).
Thus, the abstract step is enabled.

\(R_0: \)
Immediate from \(R_4 \).

\(R_1: \)
The relation \(R_1 \) for the post-states follow from \(R_1 \) for the pre-states and the state-commutativity property of calls in \(S \).

\(R_2: \)
An element is only removed from the \(F \) maps and the history \(x_j \) is only extended.

\(R'_0: \)
\(L \) maps stay the same and \(x_j \) is only extended.

\(R_3: \)
The call from \(p_i \) added to the history of \(x_j \) and its record of the applied calls \(A_j(p_i) \) is advanced.

\(R_4: \)
An element is only removed from \(F \). However, the call \(c \) from \(F_j(p_i) \) is applied in \(x_j \). By \(C_4 \), there is no duplicate call in \(F_j(p_i) \). Therefore, \(R_4 \) is preserved for remaining elements of \(F_j(p_i) \).

\(R_5: \)
The \(L \) maps stay unchanged. However, the call \(c \) from \(F_j(p_i) \) is applied in \(x_j \). By \(C_4 \), there is no duplicate call in \(F_j(p_i) \) and \(L_j(g) \) for each \(i \in \{1..|P|\} \). Therefore, \(R_5 \) is preserved for the elements of \(L_j(g) \).

\(R_6: \)
It follows from \(R_4 \) in the pre-state.

\(R_7: \)
Follows from \(C_3 \).

\(R_8: \)
The call from \(F \) is added to \(x_j \). By \(C_2 \), \(\text{SyncGroup}(u) = \perp \); thus, the premise is refuted.

\(R_9: \)
By \(C_1 \), this rule does not change the set of methods on synchronization groups.

\(R_{10}: \)
The call is removed from \(F \) map and added to the history.

Case \(\text{Conf-App} \):
Let the concrete step be for the process \(p_j \) and call \(c = u(v) \).
The abstract step is \(\text{Prop} \) for \(p_j \).
The condition \(\text{PropDepPres} \) holds similar to the case \(\text{Conf-App} \) except that instead of the relation \(R_9 \), the relation \(R'_2 \) is used.
We show that the condition \(\text{PropConfSync} \) holds:
Consider arbitrary \(i \in \{1..|P|\} \) and \(c' = u'(v')_{p_i,r} \) such that \(c' \triangleq_{x_j} c \) and \(c' = c \). From \(C_2 \), we have \(u' \in g \). Thus, we consider the group \(g \).
By \(R_6 \), we have
\[x_j|g \cdot (\text{map}(\text{fst}, L_i(g))) = x_j|g \cdot (\text{map}(\text{fst}, L_j(g))) \]
where \(c = u(v) = \text{head}(\text{map}(\text{fst}, L_j(g))) \).
We consider two cases:
Case prefix(\(x_i|g, x_j|g\)):
From \(c' \prec x_j, c\), we have \(c' \prec x_j, c\).
Case prefix(\(x_i|g, x_j|g\)):
Thus, prefix(\(x_i|g, c\)) = \(x_j|g\).
Thus, if \(c' \prec x_j, c\) then \(c' \prec x_j, c\).
Thus, the condition PropConfSync holds.
The condition \(c \in x(s') \setminus x(s)\) hold by \(R'_4\)
Thus, the abstract step is enabled.

\(R_0\):
Immediate from \(R_4\).

\(R_1\):
The relation \(R_1\) for the post-states holds by \(R_4\) for the pre-states, and the state-commutativity property of \(S\).

\(R_2\):
The \(F\) maps stay the same and the history \(x_j\) is only extended.

\(R'_2\):
An element is only removed from the \(L\) maps and the history \(x_j\) is only extended.

\(R_3\):
The call from \(p_i\) is added to the history of \(x_j\) and its record of the applied calls \(A_j(p_i)\) is advanced.

\(R_4\):
The \(F\) maps stay unchanged. However, the call \(c\) from \(L_j(g)\) is applied in \(x_j\). By \(C_4\), there is no duplicate call in \(F_j(p_i)\) and \(L_j(g)\) (for each \(i \in \{1..|P|\}\)). Therefore, \(R_4\) is preserved for the elements of \(F_j(p_i)\).

\(R_5\):
An element is only removed from \(L_j(g)\). However, the call \(c\) from \(L_j(g)\) is applied in \(x_j\). By \(C_4\), there is no duplicate call in \(L_j(g)\). Therefore, \(R_5\) is preserved for remaining elements of \(L_j(g)\).

\(R_6\):
It follows from \(R_5\) in the pre-state.

\(R_7\):
Follows from \(C_3\).

\(R_8\):
The call from \(L\) is added to \(x_j\). Thus, the conclusion immediately follows from \(R_5\).

\(R_9\):
This step removes a call from the head of the \(L\) list and appends it to the execution history \(x\). Thus, the equality is preserved.

\(R_{10}\):
This case does not apply since by \(C_2, \text{SyncGroup}(u) \neq \perp\).

Case \textbf{Query}:
The abstract step \textbf{Query} is trivially enabled.
By \(R_1\), the two return values \(o'\) are equal.

\(R_0\):
The histories stay the same.

\(R_1\):
The states \(\sigma\) and \(S\) stay the same.

\(R_2\):
The map \(F\) and the histories \(xs\) stay the same.

\(R'_2\):
The map \(L\) and the histories \(xs\) stay the same.

\(R_3\):
The histories and the record of applied calls stay the same.

\(R_4\):
The map \(F\) and the histories \(xs\) stay the same.

\(R_5\):
The map \(L\) and the histories \(xs\) stay the same.

\(R_6\):
The histories \(xs\) stay the same.

\(R_7\):
The histories \(xs\) stay the same and the trace is extended.

\(R_8\):
The histories \(xs\) stay the same.

\(R_9\):
The histories \(xs\) and the maps \(L\) stay the same.

\(R_{10}\):
The histories \(xs\) and \(F\) maps stay the same.

Application of a call \(c\) to a state \(\sigma, c(\sigma)\) is naturally lifted to application of an execution history \(x\) to a state \(\sigma, x(\sigma)\).

\textbf{Definition 2} (Locally permissible). A replicated execution \(xs\) is locally permissible, written as \text{LocalPerm}(xs)\), iff every call \(c = u(\nu)_p, r\) of \(xs\) is permissible in the state resulting from the sub-history of \(xs(p)\) before \(c\), i.e., \(\text{P}(\text{prefix}(xs(p), c)|\sigma_0, c)\).

\textbf{Definition 3} (Conflict-synchronizing). A replicated execution \(xs\) is conflict-synchronizing, written as \text{ConfSync}(xs), iff
for every pair of processes p and p' and pair of calls c and c' such that $c \equiv c'$,
1. $c \in xs(p) \land c' \in xs(p') \Rightarrow c \in xs(p') \lor c' \in xs(p)$
2. $c' \sim x_{s}(p) c \rightarrow c \not\sim x_{s}(p') c'$

Definition 4 (Dependency-Preserving). A replicated execution xs is dependency-preserving, written as $\text{DepPres}(xs)$, iff for every pair of calls $c = u(v)p$ and c' such that $c' \not\equiv c$, if $c \sim x_{s}(p) c'$, then for every process p', $c \sim x_{s}(p') c'$.

Lemma 5 (Abstract Invariant). For all W and τ, if $W_0 \xrightarrow{\tau} W$, then let $\langle \tau \rangle_{i \in \{1..|P|\}} (\beta, xs) = W$ in
definelet $\{p_i \mapsto xs\}_{i \in \{1..|P|\}} = xs$ in
(A.0) For all $i \in \{1..|P|\}$, u, v, and τ, $u(v)p \in \tau
(A.1) For all $i \in \{1..|P|\}$, $\sigma_i = x_i(\sigma_0)$
(A.2) $\text{LocalPerm}(xs)$
(A.3) $\text{ConfSync}(xs)$
(A.4) $\text{DepPres}(xs)$

Proof. The proof is by induction on the steps.

Case analysis on the step:

Case CALL:

A.0: The call is on the label and is added to $xs(p)$.

A.1: By the induction hypothesis and the premise $\sigma' = u(v)(\sigma)$.

A.2: Immediate from the premise $P(\sigma, c)$.

A.3: The condition 1 of ConfSync for the new call c. It follows from the premise PropConfSync that $c' \in xs(p)$.
The condition 2 of ConfSync for the new call c: From the contra-positive of A.0, for all p', $c \not\in xs(p')$. Therefore, $c \sim x_{s}(p') c'$.

A.4: Immediate as p is the issuing process itself.

Case PROP:

A.0: $c = u(v)p'$. Since $c \in xs(p')$, by the induction hypothesis, $(p', (u(v)) \in \tau$.

A.1: By the induction hypothesis and the premise $\sigma' = u(v)(\sigma)$.

A.2: The two processes p and p' are distinct. The issuing process of the call is p and the call is applied to the process p'.

A.3: The condition 1 of ConfSync for the new call c: It follows from the premise PropConfSync that $c' \in xs(p)$ and therefore, $c' \in xs'(p)$.
The condition 2 of ConfSync for the new call c: From the premise PropConfSync we have that $c' \sim x_{s}(p') c \rightarrow c' \in xs(p)$.

A.4: Immediate from the premise PropDepPres.

Case Query:

A.0: The histories and the states stay the same.

A.1: The histories and the states stay the same.

A.2: The histories stay the same.

A.3: The histories stay the same.

A.4: The histories stay the same.

Lemma 6 (Convergence). For all ss, xs, p and p', if $W_0 \rightarrow^* (ss, xs)$ and $xs(p) \sim ss(p')$ then $ss(p) = xs(p')$.

Proof. This lemma follows from the invariant A.3 and Lemma 1 of [39].

Lemma 7 (Integrity). For all ss and p, if $W_0 \rightarrow^* (ss, _) then I(ss(p))$.

Proof. This lemma follows from the invariants A.2, A.3 and A.4 and Lemma 2 of [39].

Lemma 8 (Concrete Invariants). For all K, if $K_0 \rightarrow K$, then

let $\left[p_i \mapsto \sigma_i, A_i, S_i, F_i, L_i \right]_{i \in \{1..|P|\}} = K$ in

(C.1) For all $i, j \in \{1..|P|\}$, u and v,
\[\langle u(v), _ \rangle \in F_i(p_j) \Rightarrow \text{SyncGroup}(u) = \perp \]
(C.2) For all $i \in \{1..|P|\}$, u, v,

\(\langle u(v), _ \rangle \in L_i(g) \rightarrow \text{SyncGroup}(u) = g \)

\((C_3)\) For all \(i, j \in \{1..|P|\}, u, v, \) and \(r, \)
let \(c = u(v)_{p, r} \) in
\(\langle c, _ \rangle \in F_j(p_i) \lor \langle c, _ \rangle \in L_i(g) \rightarrow (p_i, (u(v))_r) \in \tau \)

\((C_4)\) For all \(i, j, k \in \{1..|P|\} \) and \(g, \)
\[\text{map}(\text{fst}, F_j(p_i)) \cdot \text{map}(\text{fst}, L_k(g)) \] is an isogram.

Proof. The proof is by induction on the steps.
Case analysis on the step:

Case REDUCE:

\(C_1: \)
The \(F \) map stays the same.

\(C_2: \)
The \(L \) map stays the same.

\(C_3: \)
The \(F \) and \(L \) map stays the same.

\(C_4: \)
The \(F \) and \(L \) map stays the same.

Case FREE:

\(C_1: \)
A premise of the rule \(\text{Free} \) is \(\text{SyncGroup}(u) = \bot. \)

\(C_2: \)
The \(L \) map stays the same.

\(C_3: \)
A call is added to the \(F \) map that is on the label. The \(L \) map stays the same.

\(C_4: \)
The \(L \) map stays the same. A call is added to the \(F \) map. By the uniqueness of call requests in the trace and the contra-positive of \(C_3, \) the added call was not previously in \(F \) and \(L. \)

Case CONF:

\(C_1: \)
The \(F \) map stays the same.

\(C_2: \)
An element from the \(L \) is only removed.

\(C_3: \)
A call is only removed from the \(L \) map.

\(C_4: \)
A call is only removed from the \(L \) map.

Case QUERY:

\(C_1: \)
The \(F \) map stays the same.

\(C_2: \)
The \(L \) map stays the same.

\(C_3: \)
The \(F \) and \(L \) maps stays the same.

\(C_4: \)
The \(F \) and \(L \) maps stays the same.

\[\square \]

Corollary 3 (Convergence). For all \(i, j \in \{1..|P|\}, \)
if \(K_0 \rightarrow^* [p_i \mapsto \sigma_{j, F_i, L_i}]_{i \in \{1..|P|\}} \) and \(F_i = F_j = \emptyset \) and \(L_i = L_j = \emptyset \) then \(\text{Apply}(S_i)(\sigma_i) = \text{Apply}(S_j)(\sigma_j). \)
Proof. By Lemma 4 (R_9 and R_{10}) we have $xs(p_i) \sim xs(p_j)$. Hence, the conclusion follows from Lemma 6 and Lemma 4 (R_1).

\[\square \]

Corollary 4 (Integrity). For all $i \in \{1..|P|\}$, if $K_0 \rightarrow^* [p_i \mapsto \sigma_j, \ldots, S_i, \ldots]_{i \in \{1..|P|\}}$ then $I(Apply(S_i)(\sigma_i))$.

Proof. Immediate from Lemma 4 (R_i) Lemma 7. \[\square \]
Figure 14. Effect of summarization and remote writes for on response time of reducible methods.

Figure 15. Effect of summarization and remote writes for on response time of irreducible methods.