
Efficient Processing of Large Graphs via Input Reduction

1Amlan Kusum 1Keval Vora 1Rajiv Gupta 2Iulian Neamtiu

1Department of Computer Science, University of California, Riverside
{akusu001, kvora001, gupta}@cs.ucr.edu

2Department of Computer Science, New Jersey Institute Of Technology
ineamtiu@njit.edu

ABSTRACT
Large-scale parallel graph analytics involves executing iter-
ative algorithms (e.g., PageRank, Shortest Paths, etc.) that
are both data- and compute-intensive. In this work we con-
struct faster versions of iterative graph algorithms from their
original counterparts using input graph reduction. A large
input graph is transformed into a small graph using a se-
quence of input reduction transformations. Savings in execu-
tion time are achieved using our two phased processing model
that effectively runs the original iterative algorithm in two
phases: first, using the reduced input graph to gain savings
in execution time; and second, using the original input graph
along with the results from the first phase for computing
precise results. We propose several input reduction transfor-
mations and identify the structural and non-structural prop-
erties that they guarantee, which in turn are used to ensure
the correctness of results while using our two phased pro-
cessing model. We further present a unified input reduction
algorithm that efficiently applies a non-interfering sequence
of simple local input reduction transformations. Our ex-
periments show that our transformation techniques enable
significant reductions in execution time (1.25×-2.14×) while
achieving precise final results for most of the algorithms. For
cases where precise results cannot be achieved, the relative
error remains very small (at most 0.065).
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•Computing methodologies→ Parallel computing
methodologies; Parallel programming languages;
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1. INTRODUCTION
With the proliferation of data, parallel graph analytics

has become a difficult task because it involves executing it-
erative algorithms on very large graphs. This has led re-
searchers to explore acceleration strategies, some of which
produce approximate results. There are two main strategies
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for approximate computing: algorithmic [5, 18, 1] and code-
centric [21, 20, 29, 25, 2, 27]. The algorithmic approach
is application specific and thus the ideas for one applica-
tion may not transfer to others. The code-centric approach
transforms the application so that at runtime it switches
between code versions or skips computations to save time,
albeit sacrificing accuracy. However, for applications whose
behavior is input sensitive, intelligent skipping is difficult as
the program lacks global view of input characteristics.

In this paper we present a general approach for acceler-
ating parallel vertex-centric iterative graph algorithms that
repeatedly process large graphs until convergence. Even
though these algorithms are parallel, their execution times
can be large for real-world inputs. Thus there is a great
deal of benefit in approximating them to save processing
time. The novel aspect of our two-phased approach is that
it is input data-centric. In the first phase, the original (un-
changed) iterative algorithm is applied on a smaller graph
which is representative of the original large input graph; this
step yields savings in execution time. In the second phase,
the results from the smaller graph are transferred to the orig-
inal larger graph and, via application of the original graph
algorithm, error reduction is achieved, possibly converging
to the final accurate results. The additional time required
to process the reduced graph in the first phase (Tphase1)
pays off as it is significantly lower than the savings achieved
by the second phase (Toriginal − Tphase2); hence the overall
processing time reduces from Toriginal to Tphase1 + Tphase2.

To reduce the size of input graphs, we propose light-weight
vertex-level input reduction transformations whose applica-
tion is guided by their impact on graph connectivity (i.e., the
global structure of the graph). While there exist works [7,
17, 3, 18, 23, 35, 9, 8, 10] that reduce the size of graphs to
accelerate processing, they mainly present algorithm-specific
reduction techniques and mostly operate of regular meshes.
[7, 17] present a multilevel graph partitioning algorithm
where first a hierarchy of smaller graphs is created, then
the highest level graphs are partitioned and then, these par-
tition results are carefully propagated back down the hier-
archy to achieve partitioning of the original graph. They
use edge contraction or maximal independent set computa-
tion over dual graph which are suitable for relatively regular
mesh structures but can be computationally expensive. [3,
9, 8, 10] also partition graphs via recursive edge contrac-
tion using maximal independent set computation to generate
multinodes. In contrast, we identify light-weight, local and
non-interfering transformations which are general (i.e., not
algorithm-specific) and are suitable for reducing large irreg-
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ular input graphs. Moreover, our reduction strategy is not
hierarchical (multi-level) since our transformations are de-
signed from the vertex’s perspective and are applied at most
once on each vertex. Other works like [23, 35] are specif-
ically designed for certain problems (e.g., shortest paths)
and require path-level or component-level transformations
that involve computationally intensive pre-processing. Our
transformations are vertex-level, light-weight, ans suitable
for large irregular graphs.

Upon carefully studying various characteristics of vertex
centric algorithms and properties of input reduction trans-
formations, we show that it is possible to achieve fully accu-
rate results for a subclass of graph algorithms, while remain-
ing algorithms produce approximate solutions. In compari-
son to algorithmic works our approach is more general and
in contrast to code-centric our approach has two advantages:

– Input Data-centric Approximation: via graph reduction,
we achieve the effect of skipping computations like the code-
centric approach. However, since skipping is achieved as a
consequence of input graph reduction that is performed as
a preprocessing phase, the decision of what to skip is sensi-
tive to the structure of the input graph – graph connectivity
guides the application of transformations.

– Uncompromised Processing Algorithm: our approach re-
quires no changes to the core graph analysis algorithm. The
original algorithm is used until convergence on the reduced
graph and then on the full graph for error reduction. With
careful choice of input transformations, the algorithm’s ca-
pability can remain uncompromised, i.e., upon convergence
the error reduction phase can give precise results.

We evaluate our two-phased processing technique in a
shared memory environment using Galois [19], a state-of-
the-art parallel execution and graph processing framework.
Our experiments with six graph algorithms and multiple
real-world graphs show that our techniques achieve an av-
erage speedup of 1.25×-2.14× while achieving precise final
results for five benchmarks and approximate results for one
with very low relative error (at most 0.065).

2. OVERVIEW OF OUR APPROACH
This section provides an overview of our two phased pro-

cessing model. While graph reduction based processing strat-
egies are used in various works like [7, 17], we focus on it-
erative general purpose graph algorithms and operate on a
single reduced graph along with the original input graph
(i.e., there are no multiple levels in the hierarchy). We
use the vertex-centric programming model as it is intuitive
and commonly used by many graph processing systems like
GraphLab [15], GraphX [34], and Galois [19]. We consider
directed graphs in our discussion; our approach easily sim-
plifies to handle undirected graphs.

Given an iterative vertex-centric graph algorithm iA and
a large input graph G, the accurate results of vertex values
VG can be computed by applying iA to G, that is:

VG = iA(G)

To accelerate this computation, we use the following steps:

• Reduce input G to G′: we transform the large input
graph G into a smaller graph G′ via multiple appli-
cations of an input reduction transformation T .

• Compute results for G′: we apply iA to G′ to compute
VG′ . Computing on VG′ takes lesser time than on VG .

• Obtain results for G: using simple mapping rules mRs,
we convert the results VG′ to V 1

G . Then, via multiple
application of update rules in iA, we reduce the error
in V 1

G and obtain the result V 2
G .

Thus, our approach replaces computation VG = iA(G) by:

[INPUT REDUCTION] G′ = T ∆(G)
[PHASE 1] VG′ = iA (G′)
[MAP RESULTS] mR : VG′ → V 1

G
[PHASE 2] V 2

G = iA (V 1
G , G)

where ∆ is a parameter that controls the degree of reduction
performed as it represents the number of applications of T
to G. Thus, the greater the value of ∆, the smaller the size
of the reduced graph G′. Depending on various properties
of input reduction transformations T (Section 3.2) and the
nature of iterative algorithm iA, the computed values will
be accurate, i.e., V 2

G = VG . However, we identify cases in
which V 2

G may not be the same as VG (Section 4) — the
computed results are approximate for those cases.

2.1 Efficient Input Reduction Transformations
Given the iterative nature of algorithms considered, ap-

plying iA to G′ as opposed to G is expected to result in ex-
ecution time savings. However, these savings can be offset
by the extra overhead due to application of input reduction
transformations and result converting rules. Therefore we
must ensure that these steps are simpler than the iterative
computation that they aim to avoid. We do so by placing
the following restrictions on the kind of transformation that
is allowed (local) and the sequence of its application (non-
interfering) permitted for reducing G to G′.
A. Local transformation. Transformation T (v,G), where
v is a vertex in G, is a local transformation if its application
only examines edges directly connected to v. The subgraph
involving v and its edges is denoted as subGraph(T (v,G)).

G1 ← T (v1,G); G2 ← T (v2,G1) · · ·
· · · G∆−1 ← T (v∆−1,G∆−2); G′ ← T (v∆,G∆−1)

B. Non-interfering sequence. T ∆, a sequence of ∆ ap-
plications of local transformation T as shown above is non-
interfering if and only if: vertices v1 · · · v∆ are distinct ver-
tices in G; and each subGraph(T (vi,G)) is contained in G.
Note that the above restrictions (local and non-interfering)
ensure that input reduction is performed via a single pass
over the original graph because:

• An edge vi → vj from G is only examined when con-
sidering the application of T to vi or vj ; and

• Any vertex or edge created during one application of
T cannot be involved in any other application of T .

Thus, the cost of applying the transformation sequence is
linear in the size of G, i.e., the number of vertices and edges
in it. Moreover, the cost of converting results is proportional
to the size of the transformed portions of G. In contrast,
those computations over the transformed portions of G that
we avoid would have required repeated passes due to the
iterative nature of graph algorithms considered.

In conclusion, the restrictions on transformations and se-
quences ensure that the cost of applying them will be less
than the cost of the computation they avoid, leading to net
savings in execution time.



Algorithm 1 Iterative Vertex-Centric Graph Algorithm.

1: function TPiA ( input G )
2: G′ ← ReduceGraph ( G, T , ∆ )
3: V 1

G ← iA(G′)
4: V 2

G ← iAP2(V 1
G , G)

5: return V 2
G

6: end function

7: function ReduceGraph ( G, T , ∆ )
8: G′ ← G
9: for ( Vertex v : G ) do

10: if ( NI ( subGraph(T (v,G)) ) then
11: G′ ← T (v,G′)
12: ∆← ∆− 1
13: if ( ∆ == 0 ) then break end if
14: end if
15: end for
16: return G′
17: end function

18: function iA ( input G )
19: Initialize VG & WorkQ
20: while ( ! WorkQ.empty ) do
21: v ← WorkQ.getFirst()
22: if ( UpdateVals (v, VG) ) then
23: WorkQ.add ( outNeighbors (v) )
24: end if
25: end while
26: return VG
27: end function

28: function UpdateVals ( v, VG )
29: Updated ← false
30: if updateCheck ( v, inNeighbors (v) ) then
31: update VG [v]
32: Updated ← true
33: end if
34: return Updated
35: end function

36: function iAP2 ( V 1
G , G )

37: Initialize WorkQ
38: for ( Vertex v : G ) do
39: if ( v ∈ G′ ) then
40: V 2

G ( v ) ← V 1
G (v)

41: else
42: V 2

G ( v ) ← initval ( )
43: WorkQ.add ( v )
44: end if
45: end for
46: WorkQ.add ( Vertex v s.t. v is affected by
47: addition / deletion of edges)
48: while ( ! WorkQ.empty ) do
49: v ← WorkQ.getFirst()
50: if ( UpdateVals (v, VG) ) then
51: WorkQ.add ( outNeighbors (v) )
52: end if
53: end while
54: return VG
55: end function

Algorithm 2 SSSP Algorithm.

1: function TwoPhaseSSSP ( input G; srcVertex )
2: � VG of a vertex v = length of the
3: � shortest path from srcVertex to v
4: end function

5: function ReduceGraph ( G, T , ∆, srcVertex )
6: � srcVertex is not part of applied T ’s
7: end function

8: function InitializeSSSP ( input G; srcVertex )
9: � Initialize VG

10: for ( Vertex v : G ) do VG [v] ← ∞
11: end for
12: VG [srcVertex] ← 0
13: � Initialize WorkQ
14: WorkQ.add( outNeighbors(srcVertex) )
15: end function

16: function UpdateVals ( v, VG )
17: Updated ← false
18: for ( Vertex v′ : inNeighbors (v) ) do
19: if VG [v] > VG [v′] + wt(v′, v) then
20: VG [v] ← VG [v′] + wt(v′, v)
21: Updated ← true
22: end if
23: end for
24: return Updated
25: end function

26: function Phase2SSSP ( VG′ , G )
27: initval() assigns ∞ or results from phase 1
28: end function

2.2 Original and Two-Phased Algorithms
Next we summarize our approach by presenting the gen-

eral form of an original iterative vertex-centric graph algo-
rithm and its corresponding two phased version. In Algo-
rithm 1, function iA represents the original algorithm whose
application to graph G produces the accurate (VG) result.
Function TPiA is the two phased version that calls iA and
iAP2 in first and second phases. Note that the processing
logic in iAP2 (lines 48-53) is exactly the same as that in iA

(lines 20-25). The result (V 2
G ) is obtained from the applica-

tion of TPiA to G. The result obtained from TPiA might not
be accurate; we discuss this in Sections 4.1 and 4.2.

ReduceGraph examines the vertices in G one at a time and
if T (v,G′) is non-interfering with transformations already
applied, then it is applied on v. The function NI enforces
non-interference by ensuring that all vertices and edges in
subGraph(T (v,G)) are being examined for the first time.
The algorithm terminates after applying ∆ transformations.
The function iAP2 copies results from vertices in G′ to ver-
tices in G for each vertex that is present in both graphs. The
vertices in G that were eliminated in the process of creating
G′ are assigned initial values by initval(). Then, similar
to iA, UpdateVals is applied to V 2

G until convergence.

2.3 Example: Single Source Shortest Paths
Algorithm 2 presents the two-phased version of the Single

Source Shortest Paths (SSSP) algorithm. Only the code se-
quences that are specific to SSSP are shown while other code
sequences from Algorithm 1 remain the same. The function
UpdateVals() computes the shortest path for a vertex v
based on its incoming edges.
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Figure 1: Graph reduction example.

s

c
d

a

b

2

1

63
2

1

2 2
3

90

(a) VG′ computed - 1st phase.

f

s

c
d

a

bg
e

1

1

1

1

2

3

4

63
32

1

1

0 9

2 2 3

∞∞
∞

(b) V 1
G initialized from VG′

f

s

c
d

a

bg
e

1

1

1

1

2

3

4

63
32

1

1

0 9

2 2 3

∞1
1

(c) V 2
G computed - 2nd phase.

Figure 2: Two-phased SSSP processing on G & G′.
Figure 1 illustrates graph reduction by converting G to
G′ and Figure 2 illustrates how the two-phased SSSP algo-
rithm works on the example graph by first computing VG′
(Figure 2-a), then feeding these computed results to V 1

G (Fig-
ure 2-b), and then computing V 2

G (Figure 2-c). In this case a
single application of UpdateVals in the second phase yields
precise results (i.e., V 2

G = VG). In general, for large com-
plex graphs and different applications, this may not be the
case; however, the results computed in the first phase will
accelerate the second phase.

3. INPUT REDUCTION
We present six transformations to reduce input graph and

discuss their properties to gain useful programming insights.

3.1 Transformations for Input Reduction
Since many graph algorithms are super-linear in the num-

ber of edges, the goal of graph reduction is to reduce the
number of edges in the graph. If all edges involving a node
are eliminated, then so is the node. Figure 3 shows the
transformations. The red dashed edges are the ones that are
eliminated by the transformations. Algorithm 3 presents the
algorithm which examines every vertex of the input graph
(G), and considers applicability of transformations.

T1/T2. If vertex v has no incoming/outgoing edges, its out-
going/incoming edges are removed and v is dropped.

T3. For every vertex v with a single incoming and a sin-
gle outgoing edge, transformation T3 eliminates v and
adds a direct edge between the other end vertices of
v’s edges. Thus, in a single step we bypass multiple
nodes; however, for simplicity we consider bypassing
a single node only. Note that T3 ensures that a path
between two vertices v and w is preserved even though
direct edges or intervening nodes are dropped.

T4. For a vertex v with high number of incoming edges,1

1 An indegree threshold can be set while using T4 and T6.
Based on our experiments, we set this threshold to be 1000.

(a) T1 (inDegree = 0). (b) T2 (outDegree = 0).

(c) T3 (inDegree = outDegree = 1).

(d) T4 (coalesce nodes).

(e) T5 (drop edge). (f) T6 (drop edges).

Figure 3: Transformations for Input Reduction.

transformation T4 merges the vertices for those in-
coming edges with v. T4 achieves input graph reduc-
tion by coalescing directly connected nodes so that the
edges connecting them are eliminated and a reduced
graph with fewer edges is obtained. This approach
does not reduce connectivity, rather it can introduce
new directed paths that were not present in the orig-
inal graph, hence increasing connectivity. As seen in
Figure 3, T4 adds a path between the two gray vertices
which is not present in the original graph.

T5. This transformation drops edge v → w, if there exists a
u such that v → u and u → w. Effectively, for vertex
v, T3 drops the outgoing edge v → w if a neighboring
vertex of v is directly connected to w. As in T3, T5

ensures path preservation; however, T5 increases the
hops/distance between connected vertices.

T6. Transformations T1-T5 can only be applied when their
preconditions are satisfied. Thus, the amount of re-
duction obtained will depend upon the input graph’s
structural characteristics. In fact, in our experiments
the input graph FT is greatly reduced by T1-T5 com-
pared to the other graphs. Hence, we introduce trans-
formation T6 which randomly eliminates incoming edges
for a given vertex with high indegree.1 In this case,
the edges are dropped in proportion to the vertex’s in-
degree. Since T6 can aggressively eliminate edges, it
is applied when none of the previous transformations
(T1-T5) can be used because the vertex does not satisfy
their corresponding preconditions.

We classify T5 and T6 as aggressive transformations mainly
because they do not fully preserve the structural similarity



Algorithm 3 Graph Reduction Algorithm.

1: Algorithm TRANSFORM ( G(V, E) )
2: E ′ ← E
3: for ∀v ∈ V do
4: if ( inDegree(v) = 0 ) then
5: � apply T1 : drop v → ∗
6: E ′ ← E ′\ outEdges(v)
7: elseif ( outDegree(v) = 0 ) then
8: � apply T2 : drop ∗ → v
9: E ′ ← E ′\ inEdges(v)

10: elseif ( inDegree(v) = outDegree(v) = 1 ) then
11: � apply T3 : bypass v
12: E ′ ← (E ′ \ {u→ v, v → w}) ∪ {u→ w}
13: where {u→ v, v → w} ⊆ E ′
14: elseif ( all inNeighbors(v) are unchanged ) then
15: � apply T4 : coalesce v and inNeighbors(v)
16: E ′ ← coalesce(G, E ′, v)
17: end if
18: end for
19: if ( G requires further reduction ) then
20: for ∀v ∈ V s.t. v is unchanged do
21: if ( w ∈ outNeighbors(v) s.t. w is unchanged and
22: outNeighbors(v) ∩ inNeighbors(w) 6= φ ) then
23: � apply T5 : drop v → w
24: E ′ ← E ′ \ {(v → w)}
25: elseif ( inDegree(v) > threshold ) then
26: � apply T6 : drop some ∗ → v
27: E ′ ← E ′ \R where R ⊆ inEdges(v)
28: end if
29: end for
30: end if
31: return E ′ of G′
32: end algorithm
33:
34: Algorithm COALESCE ( G(V, E), E ′, v )
35: for ∀(w → v) ∈ inEdges(v) do
36: E ′ ← E ′ \ {w → v}
37: for ∀(u→ w) ∈ inEdges(w) do
38: E ′ ← E ′ \ {u→ w}
39: E ′ ← E ′ ∪ {u→ v}
40: end for
41: for ∀(w → u) ∈ outEdges(w) do
42: E ′ ← E ′ \ {w → u}
43: E ′ ← E ′ ∪ {v → u}
44: end for
45: end for
46: return E ′ of G′
47: end algorithm

between the transformed graph and the original graph. In
particular, T5 can effectively increase the diameter of the in-
put graph by spreading out vertices which are close to each
other in the original graph, far apart in the transformed
graph and hence, increasing the traversal cost. T6, on the
other hand, randomly drops edges from high-degree vertices
which are typically important locations defining the graph
structure. Care must be taken while reducing the graph us-
ing these transformations since the computed values from
first phase using structurally dissimilar graphs can prove to
be useless and hence, demand significant computation on the
original graph in the second phase. Algorithm 3 achieves our
objective of applying a non-interfering sequence of transfor-

T
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[V
-A
D
D
]

[V
-S
U
B
]

[E
-A
D
D
]

[E
-S
U
B
]

[C
-M

E
R
G
E
]

[C
-S
P
L
IT
]

T1 7 3 7 3 7 ?
T2 7 3 7 3 7 ?
T3 7 3 3 3 7 7
T4 7 3 3 3 7 7
T5 7 7 7 3 7 7

T6 7 7 7 3 7 ?

Table 1: Structural guarantees for each transformation.
3and 7 indicate occurrence and non-occurrence of the

corresponding property respectively, whereas ? indicates
that the corresponding property may or may not occur.

mations as it efficiently applies the transformations by mak-
ing a pass over the vertices in the graph. Since this is a
conservative approach, we can run the algorithm to comple-
tion applying as many transformations from T1-T4 as possi-
ble in one pass (lines 3-18). If the expected reduction is not
achieved, we use the aggressive transformations for further
reduction (lines 19-30).

3.2 Transformation Properties
We consider each transformation and deduce strong guar-

antees about various properties of the transformed graph
G′ compared to that of the original graph G. These guaran-
tees are categorized into two types: a) Structural Guarantees
that determine a relation of structural properties, i.e., edges,
vertices and components; and b) Non-Structural Guarantees
that determine a relation of edge-weights.

Structural Guarantees. Consider six transformational pr-
operties that determine the relation of structural properties
of G′ with G when transformation Tk (1 ≤ k ≤ 6) is applied.

[V-ADD]: Tk results in vertex v s.t. v ∈ G′, v /∈ G.

[V-SUB]: Tk results in vertex v s.t. v ∈ G, v /∈ G′.
[E-ADD]: Tk results in edge e s.t. e ∈ G′, e /∈ G.

[E-SUB]: Tk results in vertex e s.t. e ∈ G, e /∈ G′.
[C-MERGE]: Tk results in a new component c s.t.

c1 ∈ G, c2 ∈ G, c = c1 ∪ c2, c ∈ G′.
[C-SPLIT] Tk results in new components c1 and c2 s.t.

c1 ∈ G′, c2 ∈ G′, c = c1 ∪ c2, c ∈ G.

It is easy to follow that T1 and T2 guarantee occurrence
of [V-SUB], [E-SUB] and non-occurrence of [V-ADD], [E-
ADD], [C-MERGE]. Also, [C-SPLIT] can occur when these
two transformations are applied. Transformations T3 and T5

guarantee occurrence of [E-SUB] and non-occurrence of [V-
ADD], [C-MERGE], [C-SPLIT]. T3 also guarantees occur-
rence of [E-ADD] and [V-SUB], whereas T5 also guarantees
non-occurrence of [E-ADD] and [V-SUB]. Transformation T4

guarantees occurrence of [V-SUB], [E-ADD], [E-SUB] and
non-occurrence of [V-ADD], [C-MERGE], [C-SPLIT]. Fi-
nally, T6 guarantees occurrence of [E-SUB] and non-occurrence
of [V-ADD], [V-SUB], [E-ADD], [C-MERGE]. While drop-
ping edges using T6, [C-SPLIT] can occur.

Table 1 overviews all structural properties guaranteed by
each of the transformations. Note that all transformations
guarantee non-occurrence of [V-ADD] and occurrence of [E-
SUB] which result in reduction of transformed graph sizes.



Non-Structural Guarantees. Since transformations T3

and T4 guarantee occurrence of [E-ADD], correct edge weights
need to be assigned to newly added edges for weighted graphs.
We define two transformational properties which determine
the relation of edge weights of G′ with that of G when trans-
formation Tk (1 ≤ k ≤ 6) is applied. In the following ex-
pressions, a =⇒ b means b ∈ G′ is resulted from a ∈ G.

[E-EQUAL] Tk results in edges e1 and e2, both with weights
w(e) s.t. e1 ∈ G, e1 /∈ G′, e2 ∈ G′, e2 /∈ G, e1 =⇒ e2.

[E-FUNC] Tk results in edges e1, e2 and e3, with weights
w(e1), w(e2) and w(e3) respectively s.t.
{e1, e2} ∈ G, {e1, e2} /∈ G′, e3 ∈ G′, e3 /∈ G,
w(e3) = func(w(e1), w(e2)), (e1, e2) =⇒ e3.

[E-FUNC] represents the weight of the newly added edge as
a function of weights of edges from the original graph that
resulted in this new edge. For example, the new weight can
be set as the sum, minimum, or maximum of the original
edge weights ([E-SUM], [E-MIN], or [E-MAX] respectively).

Transformation T3 guarantees occurrence of [E-FUNC] and
non-occurrence of [E-EQUAL]. For transformation T4, both
[E-EQUAL] and [E-FUNC] can occur. As we will see in
Section 4.1, we use [E-SUM] to benefit the exploratory and
traversal based graph algorithms.

4. PROGRAMMING FOR TRANSFORMED
GRAPHS

Using the transformation properties described in Section 3.2,
we discuss properties of vertex-centric graph algorithms that
permit them to benefit from the two-phased model.

4.1 Impact of Transformations
on Vertex Functions

Since the aforementioned transformations change the struc-
tural and non-structural properties of the graph, it is impor-
tant to determine the impact of these changes on how pro-
grammers should correctly express graph algorithms. Even
though custom algorithms can be written so that computa-
tions performed on transformed graphs always lead to cor-
rect values, we eliminate this programming overhead by sup-
porting the popular vertex centric programming for our two
phased processing model.

Vertex-centric programming. In this model, algorithms
are expressed in a vertex-centric manner, i.e., computations
are written from the perspective of a single vertex. These
computations, called vertex functions, are iteratively exe-
cuted on all vertices in parallel, until all the vertex values in
the graph stabilize. Vertex functions typically use the values
coming from its incoming edges as inputs for computation.
Hence, the newly computed value of a vertex depends on
the values coming from its incoming edges. Moreover, the
asynchronous nature of the graph algorithms requires com-
putations over updates coming from incoming edges to be
commutative and associative — this way, updates coming
from different incoming edges can be processed in any or-
der, e.g., the order of their arrival.

To guarantee correct answers at the end of computation,
we need to reason about the behavior of vertex functions,
first when applied on the transformed graph G′, and later
on the original graph G. For illustration, we use two ver-
sions of the SSSP vertex functions, SSSP-IN and SSSP-SIN,

Algorithm 4 Variants of SSSP vertex functions.

1: function SSSP-IN ( Vertex v )
2: if ( v = source ) return 0; end if
3: minPath←∞
4: for ( Vertex u : inNeighbors (v) ) do
5: if ( u.path+ wt(u,w) < minPath ) then
6: minPath← u.path+ wt(u,w)
7: end if
8: end for
9: return minPath

10: end function
11:
12: function SSSP-SIN ( Vertex v )
13: if ( v = source ) return 0; end if
14: minPath← v.path
15: for ( Vertex u : inNeighbors (v) ) do
16: if ( u.path+ wt(u,w) < minPath ) then
17: minPath← u.path+ wt(u,w)
18: end if
19: end for
20: return minPath
21: end function

shown in Algorithm 4. Computations in SSSP-IN only de-
pend on values coming from incoming neighbors, whereas
those in SSSP-SIN depends on the previous value of the ver-
tex in addition to the values coming from neighbors. The
only difference between SSSP-IN and SSSP-SIN is the ini-
tialization of minPath (line 3 and 14 marked in red); the
rest of the functions are identical. Note that both of these
variants produce correct results when used in the traditional
vertex centric processing model. However, they behave dif-
ferently when used in our two-phased processing model, in
which only SSSP-IN leads to accurate results.

Let us evaluate each of the structural and non-structural
properties which are affected by our transformations.

(A) [V-SUB] and [E-SUB]: [E-SUB] leads to compu-
tations being performed even when all the incoming edges
of a vertex are not available. Such computations are equiva-
lent to that in the staleness-based (i.e., relaxed consistency)
computation model [31] where the edges can potentially con-
tain stale values; in this case, missing edges can be viewed
as edges with no new contribution. The same argument
also holds true for [V-SUB] since the effect of vertex dele-
tion is viewed as edge deletion by its neighbors, reducing
to [E-SUB]. In both of these cases, SSSP-IN and SSSP-SIN
produce an over-approximation of path distance when ap-
plied on G′, compared to the precise distance computed on
G, i.e., minPath(G′) ≥ minPath(G). In the second phase
when missing vertices and edges become available in G, this
approximation automatically gets corrected.

(B) [E-ADD], [E-EQUAL], and [E-FUNC]: Trans-
formations resulting in [E-ADD] are introduced in order to
preserve the connectivity in the graph which is essential for
various traversal-based graph algorithms. Moreover, both
[E-EQUAL] and [E-SUM] attempt to create edge-weights of
newly added edges to represent an approximation of the dis-
tance between corresponding vertices in the original graph.
This allows traversal algorithms to proceed with computa-
tions based on those newly added edges since the results for
transformed graphs are close to the results for the original
graph, and hence can accelerate processing over the orig-



Alg. Vertex Function

SSSP v.path← min
e∈inEdges(v)

(e.source.path+ e.wt)

SSWP v.path← max
e∈inEdges(v)

(min(e.source.path, e.wt))

CC v.component← min
e∈edges(v)

(e.other.component)

PR v.rank ← 0.15 + 0.85×
∑

e∈inEdges(v)

e.source.rank

Alg. Vertex Function

GC

change← ∨
e∈edges(v)

(v.color == e.other.color)

if change == true then:

v.color ← c : where ∀e∈edges(v)(e.other.color 6= c)

CD

∀e∈edges(v)frequency[e.other.community] += 1

v.community ← c : where

frequency[c] = max
i∈frequency

(frequency[i])

Table 2: Various vertex-centric graph algorithms. SSSP, SSWP, CC, PR, and GC produce 100% accurate results.

inal graph in the second phase. However, care must be
taken to ensure that algorithms which cannot tolerate such
newly added relationships do run correctly; in such cases,
the newly added edges can be eliminated dynamically from
the computation. When [E-ADD] results from eliminating
intermediate vertices such that there is a path between the
end vertices in G (as in T3), correctness of both SSSP-IN
and SSSP-SIN is guaranteed by [E-SUM].

However, T4, which results in [E-EQUAL], can add an
edge between two vertices across which a directed path did
not exist in G. In this case, the approximation computed by
SSSP-IN and SSSP-SIN can include calculated paths that
are smaller than the true shortest paths. During the second
phase using G, SSSP-IN recovers from such approximation
since the computation of a path does not depend on its own
previous value, resulting in 100% accurate results.2 On the
other hand, computation in SSSP-SIN relies on the previ-
ously computed path value for the given vertex, and hence
SSSP-SIN cannot recover from such approximate solution.
In this case, instead of directly using [E-EQUAL], the edge
weight for such newly added edges resulting in new paths
can be set to ∞ ([E-INF]) which can guarantee 100% ac-
curate results for SSSP-SIN as well.

(C) [C-SPLIT]: Finally, transformations resulting in
[C-SPLIT] typically do not impact correctness since com-
putations are performed locally at vertex-level. If the algo-
rithm requires collaborative tasks at component level, they
can be performed correctly in the second phase on the orig-
inal graph. In our examples, both SSSP-IN and SSSP-SIN
remain unaffected by [C-SPLIT].

Transformations beyond T1-T6. Note that our transfor-
mations can be used as fundamental building blocks to cre-
ate more complicated transformations which can be applied
to reduce the graph size. Conversely, the correctness of
graph algorithms while using any new transformation Tx
(x > 6) can be argued by reducing the new transforma-
tion to one or many of the proposed set of transformations.
If there exists a sequence of transformations among T1-T6

which produces the same transformed subgraph as that pro-
duced by Tx, correct answers can be guaranteed at the end
of computation using the transformed graph produced by
Tx. For some Tx which cannot be expressed as a sequence of
proposed transformations, arguments using their structural
and non-structural properties can be used to ensure correct-
ness of results. Note that this relationship is transitive and
hence, the newly proved Tx can be further used along with
T1-T6 to prove correctness of results while using other new
transformations.

2This is true for graph structures consisting of loops as well.

4.2 Graph Algorithms
We now discuss how each of the graph algorithms used in

this work will perform using our technique. Table 2 shows
details about each of the seven vertex functions considered
in this work. We will argue that PR, SSSP, SSWP, GC, and
CC produce 100% accurate results whereas the same accu-
racy cannot be ensured by CD.

(A) Shortest & Widest Paths: As discussed in Sec-
tion 4.1, when shortest path (SSSP) is computed on G′,
the transformations lead to an approximate solution which
gets corrected in the second phase of processing when using
SSSP-IN. For the widest path (SSWP), recall that [E-SUM]
is a specialization of [E-FUNC] which can support a wide
range of such traversal based algorithms. Hence, SSWP can
be supported by ensuring that the weight of any newly added
edge is the minimum of the edges whose removal caused the
addition of this new edge ([E-MIN]). In this case, [E-MIN]
ensures that the calculated path width in G′ is always at
most that of the equivalent path in G.

(B) Connected Components: Since the main idea
behind CC is that vertex values within a component are
the same and those in different components are different, we
determine its correctness using [C-MERGE] and [C-SPLIT]
properties. All the transformations guarantee non-occurrence
of [C-MERGE]; hence, values flowing in different compo-
nents of the original graph will always be different in the
transformed graph. When [C-SPLIT] occurs, vertices within
the same component of the original graph can now belong
to different components of the transformed graph, leading
to different values flowing in the same original component.
This approximation gets corrected when these vertices are
re-grouped together into the same component in the second
phase; the computation simply picks one of the vertex values
to flow across the entire component.

(C) Graph Coloring: The underlying idea behind
GC is to assign different colors to the end vertices of ev-
ery edge while using minimal 3 set of colors to color all ver-
tices. Hence, we determine its correctness using [E-ADD]
and [E-SUB] properties. When [E-ADD] occurs, an edge
connects two vertices in G′, which were disconnected in G.
Even though this causes the two vertices to be assigned dif-
ferent colors, it does not violate the correctness of the so-
lution: when the edge is removed in the second phase, the
color assignment for one of these two vertices gets updated
and is propagated throughout the graph. When [E-SUB] oc-
curs, vertices which are connected by an edge in G become
disconnected. This can cause the vertices to be assigned

3Graph coloring is NP-complete and hence the constraint
is usually relaxed to minimal colors which can be solved in
polynomial time.



the same color when processing on G′. However, during the
second phase, these edges become available in G which re-
processes the vertices and hence, the self-correcting nature
of the algorithm detects and corrects the coloring inconsis-
tency. This in turn ensures that different colors are assigned
to connected vertices. Note that different executions of the
same original graph coloring algorithm on the same graph
can result in different color assignments and minimal num-
ber of colors, i.e., the set of correct solutions is not a sin-
gleton and hence, the solution computed by our two-phased
approach is one of the solutions in the correct set because it
adheres to the two constraints of the problem.

(D) PageRank: As shown in [6], PR converges to the
correct solution regardless of the initial vertex values. With
different initializations, the path to convergence changes.
Since computations over G′ provide an approximation of the
final results, these results, when fed as initialization values
for G, cause the second phase to converge faster.

(E) Community Detection: CD detects communities
in the graph by propagating labels that are most frequent
among the immediate neighborhood of the vertices. Both
[E-SUB] and [E-ADD] influence this computation since the
frequency of labels get affected by edge addition/deletion,
which leads to an approximation at the end of first phase.
During the second phase when G becomes available, this ap-
proximation may not be fully corrected because individual
corrections due to availability of original edges might not af-
fect the highly approximate frequency calculated in previous
iterations. This can lead to results which are not accurate.

Early Termination in First Phase. A key advantage of
our approach is that none of the algorithms require process-
ing over G′ to converge to its final solution before moving on
to G. This is because the intermediate values produced while
processing G′ also represent a valid approximation of the fi-
nal solution. Hence, to speed up the computation even fur-
ther, we can employ early termination of first phase, where
the computation does not wait to reach to its converged so-
lution, and the available computed values are directly used
in the second phase to process the original graph.

5. ANALYSIS & GENERALITY
We first theoretically analyze the performance benefits

that can be achieved by our two-phased model and then
discuss the generality of our approach to achieve similar ben-
efits in different scenarios.

5.1 Analysis
Let PG and PT be the average execution times of a single

iteration over G (original graph) and GT (reduced graph) re-
spectively. Further, let PT

G be the average execution time of
a single iteration over G in the second phase using computed
results fed from GT to G. Note that PT

G < PG. Moreover,
since |GT | < |G|, i.e., GT has fewer edges than G, we know
that PT < PG. In order to accelerate processing using the
two-phased approach, we require:

I1.PT + I2.P
T
G < I.PG (1)

where I1, I2, and I are the number of iterations in which
GT is processed in the first phase, G is processed in the
second phase when computed results are fed from GT , and
G is processed in the original processing model, respectively.
Upon rearranging Eq. 1 we get:

I1.PT < I.PG − I2.PT
G (2)

which conveys that in order to achieve benefits from our
technique, the savings from the second phase (I.PG−I2.PT

G )
should be larger than the time spent in the first phase (I1.PT ).

For example, if we want to accelerate the overall process-
ing by 25%, we should have:

I1.PT +
1

4
.I.PG = I.PG − I2.PT

G

=⇒ I1.PT =
3

4
.I.PG − I2.PT

G

=⇒ I1.PT <
3

4
.I.PG ; |GT | <

3

4
.|G| (3)

The above implication from processing times to graph sizes
(|G| and |GT |) is an approximation that holds true as GT is
created primarily by dropping vertices and edges from G and
hence, I1.PT reduces proportionately compared to I.PG.

Eq. 3 shows that if we want to accelerate the overall pro-
cessing by 25% using our two phased processing technique,
we must ensure that the reduced graph is reduced to at least
75% of the original graph. As we will see in our evaluation
(Section 6), reducing the original graph by a quarter to a
half of its original size practically allows up to 32% savings
in execution times.

5.2 Generality
From the above analysis, it can be clearly seen that the

savings in the overall processing times are largely depen-
dent on |G| and |GT |, i.e., size of original and transformed
graphs. This allows us to argue that the our technique is
independent of the underlying processing environments, it-
erative algorithms, and input graphs.

Processing Environments. Processing large graphs in dif-
ferent environments incurs different overheads and since our
technique eliminates significant amount of processing on the
entire large graph, it can help alleviate some of these over-
heads. For example, processing large graphs on GPUs would
require frequent transfer of subgraph information and com-
puted values between host-memory and device-memory which
is a significant overhead [11, 26]. Since our transformed
graph is much smaller, bulk of this transfer gets eliminated
in the first phase and is only performed for remaining few
iterations in the second phase. Moreover, if the transformed
graph fully fits in the GPU memory, absolutely no transfers
are required in the first phase.

In a distributed processing environment, the overall per-
formance is largely dependent on the communication of ver-
tex updates between nodes [31]. Again, using our technique,
much of the communication can be avoided in the first phase,
hence reducing the overall communication overheads. More-
over, the transformed graph in the first phase can be pro-
cessed on the subset of nodes in the cluster to reduce syn-
chronization and communication overheads.

The applicability is similar in an out-of-core processing
environment where the graph is resident on secondary stor-
age [13, 22]. The first phase eliminates costly disk read and
writes while reducing them in the second phase due to re-
duction in number of iterations.

Iterative Algorithms. The two-phased processing is suit-
able for iterative graph algorithms whose convergence is de-
pendent on the values being computed. As shown in Sec-
tion 6, the performance benefits are noteworthy for different



kinds of graph algorithms: on one hand, traversal algorithms
like SSSP/SSWP which require lesser computation and on
other hand, algorithms like PR/GC/CD which require more
computation to compute final solution. Also, the benefits
achieved are higher for asynchronous graph algorithms [31]
because correctness guarantees are stronger for those cases.
Again, as deduced in the above analysis, the performance
benefits of our technique are mainly due to reduction in the
data-size that needs to be processed and is independent of
the kind of processing being performed on the data.

Input Graphs. The proposed reduction and processing tec-
hniques are best suited for irregular graphs where the degree
distribution across vertices is spread across a wider range,
allowing various pre-conditions for our transformations to
be satisfied 4. As long as the input graph is large enough
that reduction in its size achieves perceivable reduction in
processing time, the two-phased processing model can be
used to accelerate processing. As shown in Table 4, we use
large real-world input graphs which are highly irregular and
sparse for our evaluation on which our technique achieves
reasonable benefits. Moreover, our transformations T4 and
T6 are tunable so that they can be applied even to a graph
on which no other transformations can be applied.

6. EVALUATION
We thoroughly evaluate our two-phased processing tech-

nique to show that our approach is efficient (savings in
execution time), scalable (higher savings in execution with
higher number of threads) and produces accurate results for
most of the graph applications with low time overhead.

Benchmarks, Inputs and System. We consider six pop-
ular vertex centric graph algorithms, as shown in Table 2
and Table 3. We implemented the baseline and the two-
phased version of each of the benchmarks in Galois [19], a
state-of-the-art parallel execution framework.

Table 4 shows the details of the input graphs, their re-
duced versions and time taken for reduction. We use 4 input
graphs, 3 of which are real-world graphs (Friendster, Twit-
ter and UKDomain) from publicly available Konect repos-
itory [12]. The synthetic graph (RMAT-24) is a scalefree
graph (a = 0.5, b = c = 0.1, d = 0.3) similar to the one

4Real-word graphs from various domains like social network
analytics, web anaytics, mining, etc. are highly irregular.

Benchmark Type
Single Source Shortest Path (SSSP)

Accurate
Single Source Widest Path (SSWP)
PageRank (PR)
Graph Coloring (GC)
Connected Components (CC)
Community Detection (CD) Approximate

Table 3: Graph Algorithms.

Input Graph Graph Size Reduction
#Nodes #Edges Time (sec)

Friendster Original 68.3M 2.6B
5.63-9.37

(FT) Reduced 41.9-51.8M 0.78-1.9B
Twitter Original 41.7M 1.5B

1.31-7.13
(TT) Reduced 23.4-30.8M 0.4-1.1B

UKDomain Original 39.5M 936.4M
0.23-1.46

(UK) Reduced 27.6-32.1M 280.9-702.3M
RMAT-24 Original 17M 268M

0.05-0.34
(RM) Reduced 11.6-13.5M 80.4-201M

Table 4: Input Graphs.

used in [19]. To transform these graphs, we define a tunable
parameter Edge Reduction Percentage (ERP) as:

ERP =
|EG′ |
|EG |

× 100

where |EG | and |EG′ | are the number of edges in original
graph G and the reduced graph G′. We generate the reduced
graphs with varying ERP (75%, 70%, 60%, 50%, 40% and
30%) using our transformation tool based on Algorithm 3.

Experiments were performed on a machine with 4 six-core
AMDTM 8431 processors (total 24 cores) and 32 GB RAM
running Ubuntu 14.04.1 (kernel version 3.19.0-28-generic).
The programs were compiled using GCC 4.8.4, optimization
level -O3.

We evaluate the performance of following versions of the
benchmark implementations:

• Baseline: based on the traditional processing model.

• TP-X: based on our two-phased processing model us-
ing reduced graphs with ERP = X%. Note that the ex-
ecution times include the graph reduction times which
are already presented in Table 4.

Unless otherwise specified, the benchmarks were run with
20 software threads.

Efficiency of Two-Phased Processing. Figure 4 show
the speedups achieved by TP-X over Baseline for X ∈ {30%,
40%, 50%, 60%, 70%, 75%}. As we can see, the speedups in-
crease as ERP decreases from 75% to 40%; on an average,
TP-75, TP-70, TP-60, TP-50 and TP-40 achieve a speedup
of 1.23×, 1.27×, 1.41×, 1.51× and 1.53× respectively. This
is because of the high savings achieved in the second phase
while processing the original graphs. On an average for TP-
75, TP-70, TP-60, TP-50, and TP-40, the savings achieved
in the second phase are 84.88%, 83.08%, 80.65%, 77.99% and
73.71% respectively. These high savings allow tolerating the
execution times of reduction and first phase over reduced
graphs; the execution times normalized w.r.t. Baseline for
the first phase of TP-75, TP-70, TP-60, TP-50, and TP-40
are 0.66, 0.61, 0.50, 0.42, and 0.36 respectively and for the
reduction are as low as 0.01, 0.02, 0.03, 0.03, and 0.04 re-
spectively. Since our reduction transformations are local and
non-interfering, the cost of performing the input reduction
is much lower than the savings achieved in processing.

As expected, the time taken to process the reduced graph
in the first phase decreases as ERP decreases simply because
the work done is typically proportional to the size of graph.
On the other hand, the execution time in second phase in-
creases as ERP decreases. This is mainly because an ag-
gressively reduced graph with lower ERP is structurally less
similar to the original graph compared to that reduced with
a higher ERP. Hence, the values which are fed from reduced
graph with lower ERP require more computation in the sec-
ond phase in order to reach to maximum possible accuracy
for the original graphs.

The savings achieved by our two-phased processing model
increases as ERP decreases up to a certain limit. Across each
of our benchmark-input-ERP combination, the maximum
savings are observed for ERP around 40-50%. However, note
that further decreasing ERP reduces the amount of savings
achieved; with ERP = 30% the performance degrades and
the average speedup drops to 1.41×. This is because the
reduced graph with very low ERP becomes too small (i.e.,
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(a) Normalized Execution times for SSSP.
For comparison, the Baseline execution

times (in sec) for FT, TT, UK and RM are
127.14, 96.15, 4.65 and 2.71 respectively.
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(b) Normalized Execution times for SSWP.
For comparison, the Baseline execution

times (in sec) for FT, TT, UK and RM are
134.67, 104.32, 4.81 and 2.9 respectively.
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(c) Normalized Execution times for PR.
For comparison, the Baseline execution

times (in sec) for FT, TT, UK and RM are
2957, 2120, 298 and 57.64 respectively.
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(d) Normalized Execution times for GC.
For comparison, the Baseline execution

times (in sec) for FT, TT, UK and RM are
1216, 1014, 771 and 33.51 respectively.
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(e) Normalized Execution times for CC.
For comparison, the Baseline execution

times (in sec) for FT, TT, UK and RM are
264.64, 118.71, 137.6 and 3.05 respectively.
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(f) Normalized Execution times for CD.
For comparison, the Baseline execution

times (in sec) for FT, TT, UK and RM are
1351, 896, 654 and 33.25 respectively.

Figure 4: Normalized execution time of two-phased execution for each benchmark-graph-ERP value.
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Figure 5: Scalability of Reduction Algorithm w.r.t. ERP
(left) and number of threads (right) for TP-50.

structurally very dissimilar) compared to the original graph
and the major burden of processing then moves over from
first phase to second phase. As an extreme example, one
can see that ERP = 0 means that no processing is required
in the first phase whereas the second phase is exactly same
as processing the original graph from the very beginning.

It is interesting to note that the benefits achieved from our
two-phased approach are greater for FT graph (1.37-1.69×)
mainly because it is larger than TT and UK graphs.

Scalability of Input Reduction. We study the scalabil-
ity of our input reduction algorithm while 1) varying ERP
from 30% to 75% with 20 threads; and, 2) varying number of
threads from 1 to 20 for TP-505. As we can see in Figure 5
(left), with increase in ERP the reduction algorithm runs
faster than for ERP=30% mainly because there are fewer
edges to be removed for higher ERP, and hence, the reduc-
tion algorithm only needs to traverse certain percentage of
the graph to achieve the expected ERP. Moreover, Figure 5
shows that the reduction algorithm is scalable w.r.t. num-
ber of threads; this naturally follows from the requirement of
the transformations to be local and non-interfering allowing
them to be executed at vertex-level in parallel.
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Figure 6: Improvement in scalability using the two-phased
model with varying number of threads. For comparison,

the Baseline execution times (in sec) for PR/SSSP with 1
thread for FT, TT, UK and RM are 24577/1674.43,

22307/1016.88, 3014.39/53.64 and 934.43/12.07.

Scalability of Two-Phased Processing. As shown in
[19], the Baseline system scales well with increase in number
of threads. To show the impact of our approach, Figure 6
shows the improvement in scalability achieved by TP-505

over Baseline while varying the number of threads from 1 to
20. Note that in Figure 6 the Baseline is also parallel, i.e., a
data-point with t threads represents improvement achieved
by our technique using t threads compared to baseline using
t threads. As we can see in most cases, the improvements

5 Since ERP = 50 performs best across most cases in our
previous experiments, we only consider TP-50 to save space.



slowly increase as number of threads increase and the max-
imum improvements are achieved with 20 threads. We be-
lieve this is because the reduced graphs become denser com-
pared to the original graphs and hence, the probability of
the same vertex to be scheduled multiple times by different
threads increases rapidly in TP-50 with increase in threads
compared to that in Baseline. This in turn allows more
merging of such multiple schedule requests of same vertices
to single vertex computations. Moreover, the second phase
mostly performs value corrections, hence, less contention is
expected since probability of all neighboring vertices to be
scheduled simultaneously is greatly reduced.
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Memory Overhead. While
the two phases can be pro-
cessed separately, feeding
values from the first phase to
the next can incur expensive
reads and writes which can
offset the performance ben-
efits achieved by our tech-
nique. Hence, it is crucial
to maintain the reduced and
the original graph in memory
and eliminate the explicit intermediate feeding by incorpo-
rating a unified graph which leverages the high structural
overlap across the two graphs. Figure 7 shows the increase
in memory when using a unified graph. On an average, the
memory consumption increases by 1.25×; it goes higher for
TT (1.34×-1.48×) mainly because the percentage of newly
added edges in the transformed graphs is much higher (25%-
40%) for TT compared to other graphs (2.7%-23%).

It is interesting to note that the overhead increases as
ERP decreases. This is due to the impact of increase in
the structural dissimilarity between the original and trans-
formed graphs that requires representing the dissimilar com-
ponents (i.e., newly added edges) separately for both graphs.
Note that these overheads are tolerable compared to those
incurred by representing both the graphs separately in mem-
ory which can be as high as 1.75×.

Relative Error for CD. As discussed in Section 4.2, the
accuracy of results for CD could not be guaranteed. In or-
der to determine how good the calculated results are, we
define relative error as the ratio of vertices whose computed
community values are different compared to the ideal re-
sults. Table 5 shows the relative error for CD across all
input-ERP combinations. As we can see, the relative er-
ror is very small; the average relative error across all cases
is 0.02 and the maximum relative error is only 0.065. In
fact, the relative error for FT across ERP-60, ERP-70 and
ERP-75 is very low (<1E-5). It is interesting to note that
the error values decrease as ERP increases. This is mainly
because with fewer reduction transformations being applied
for higher values of ERP, the probability of merging com-
munities in reduced graphs decreases.

Input TP-30 TP-40 TP-50 TP-60 TP-70 TP-75

FT 0.017 0.002 0.001 <1E-5 <1E-5 <1E-5
TT 0.049 0.041 0.036 0.021 0.019 0.017
UK 0.065 0.023 0.017 0.013 0.012 0.011
RM 0.043 0.034 0.021 0.018 0.012 0.01

Table 5: Relative Error for CD.
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Figure 8: Relative Error (log scale) vs. Execution Time
(sec) for CD: Baseline and TP-40. Note that the point at
which the Baseline version terminates, i.e., relative error

becomes zero, is not plotted due to use of log scale.

We further study how the relative error changes during
execution by plotting it for TP-40 in Figure 8. The vertical
dotted lines indicate different phases of execution; the first
line (close to 0) indicates end of reduction process and the
second line (in the middle) indicates the end of the first
phase and the beginning of the second phase. As we can see,
the relative error remains high during the first phase mainly
because of vertices which are missing in the reduced graph.
However, the relative error drops rapidly during the second
phase due to availability of missing vertices and edges in the
original graph. At the end of the first phase, the relative
error for FT, TT, UK and RM remain at 0.014, 0.084, 0.22
and 0.12 respectively.

Contribution of Individual Transformations. Finally,
we evaluate the effect of applying individual transformations
one after the other on the overall performance. We define a
transformation set T1−k as the set of transformations start-
ing from T1 up to Tk. Hence, the transformation set T1−4

includes T1, T2, T3 and T4 whereas T1−1 only includes T1.
The reduced graphs for this set of experiments are gener-

ated using different transformation sets T1−k (1 ≥ k ≤ 4).
To clearly present the impact of transformations on both,
the size of reduced graphs and the savings in execution time,
we select ERP = 50% and only consider the SSSP bench-
mark. Figure 9 shows the speedups achieved for each of the
graphs transformed using the transformation sets, compared
to the Baseline. Since the transformations being applied
have their pre-conditions which need to be satisfied, the ac-
tual ERP using a smaller transformation set can be higher
than the requested ERP of 50%. Hence, we also present the
actual ERP obtained using the transformation sets.

As we can see in Figure 9, T1, T2 and T3 collectively reduce
only small portion of TT, UK and RM graphs; T1−3 achieves
95.26%, 96.58% and 99.39% ERP for TT, UK and RM re-
spectively. Due to this, little to no savings are achieved
until T4 is included in the transformation sets for which
speedups of up to 1.34-1.55× are achieved. FT graph, on
the other hand, is amenable to T2 and T3, allowing 50% ERP
to be achieved for T1−2 and T1−3 too. Hence, the speedups
achieved for those transformation sets are ∼2.15×.
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7. RELATED WORK
Graph processing has gained a lot of attention due to its

applicability across various domains. Many graph process-
ing frameworks have been developed for distributed ([16, 14,
31, 34, 24]), shared memory ([19, 28, 32]) and GPU based
environments ([11, 26]). These frameworks include a parallel
runtime that iteratively processes the input graph until all
the graph values convergence. The computation is based on
asynchronous or bulk synchronous model [30]. This tradi-
tional style of processing includes a single processing phase.

Multilevel transformation techniques. There is a body
of work [7, 17, 3, 18, 23, 35, 9, 8, 10, 33] that reduces the size
of graphs to accelerate processing. These works mainly rely
on algorithm-specific reduction techniques and mostly oper-
ate of regular meshes. [7] presents a multilevel graph parti-
tioning algorithm where first a hierarchy of smaller graphs
is created, then the highest level graphs are partitioned and
then, these partition results are carefully propagated back
down the hierarchy to achieve partitioning of the original
graph. It uses edge contraction where neighbors are uni-
fied into a single vertex which is suitable for relatively reg-
ular meshes. [17] uses the same three phases and relies on
quality functions of the reduced (coarse) grids based on as-
pect ratio. Moreover, the reduction algorithm operates on
the dual graph and uses maximal independent set compu-
tation which requires non-trivial processing. [3, 9, 8, 10]
also aim to partition graphs via recursive edge contraction
using maximal independent set computation and edge con-
traction to generate multinodes. In contrast, our work iden-
tifies light-weight, local and non-interfering transformations
that are general (i.e., not algorithm-specific) and effective for
irregular input graphs. Moreover, our reduction strategy is
not hierarchical (multi-level) since our transformations are
designed from the vertex’s perspective and are applied at
most once on each vertex. [33] processes queries by provid-
ing multiple levels of abstractions and refining the query to
these abstraction levels. [23] is specifically designed for dis-
tance based algorithms like SSSP where they aim to achieve
gate vertex sets which allow traversals to be constructed on
the reduced graphs. [35] reduces by pruning weakest edges
based on cost functions and which adhere to specific con-
straints related to connectivity maintenance. These works
require path- or component-level transformations that are
computationally expensive whereas our transformations are
light-weight and hence effective for large graphs.

Beyond these works, various optimization techniques have
been developed which attempt to accelerate processing at
the cost of achieving approximate results. We divide the lit-
erature encompassing such approximation based graph pro-
cessing techniques into two categories, discussed below. None

of these techniques provide correctness guarantees and hence
the results of these techniques are always approximate.

Algorithm-specific approximation. Chazelle et al. pro-
posed a technique for approximating the weight of minimum
spanning tree in sublinear time by approximating the num-
ber of connected components [5]. The technique approxi-
mates the weight of the minimum spanning tree but it does
not find the tree. Nanongkai [18] proposed an approximation
technique to find SSSP and all-pair shortest path (APSP)
by bounding the diameter of the graph. Bader et al. [1] pro-
posed the approximation of Betweenness Centrality (BC) by
employing an adaptive sampling technique. The algorithm
samples a subset of vertices and performs SSSP on them se-
lected, thus reducing the number of SSSP operations to de-
termine BC. In contrast to sampling, our approach to input
graph reduction is smarter as it considers graph connectivity
and is more general as it is applied to a class of graph al-
gorithms. In fact all of the above approximation techniques
were developed for a single specific graph application. In
contrast, our technique applies to many iterative graph algo-
rithms all using the same input reduction transformations.

Compiler-based approximation. Researchers have foc-
used on trading accuracy for execution time by skipping a
task’s execution or by choosing a specific implementation
from multiple ones provided by the developer. Rinard pro-
posed early termination [21] and task skipping [20] that are
applied during execution. These techniques use a distortion
model based on sampling to estimate the error introduced
due to early termination or task skipping. The work does not
provide an empirical justification for the distortion model
and thus it is unclear if it will work for input graphs with
different characteristics. Green [2] selects a specific imple-
mentation out of many different implementations provided
by the developer while maintaining the quality of output.
Hoffman et al. [29] proposed loop perforation where certain
iterations of a loop are skipped to trade off accuracy for
faster execution. The loops that are perforated are chosen
with the help of training input and the error bound set by
the user. This technique is not useful for different graph ap-
plications since it requires perforated loops to fall into one
of the specified categories of the global patterns. Our tech-
nique does not require loops to follow any such pattern and
it does not perform any static or dynamic analysis of the
application to achieve approximation.

The Sage [25] compiler generates CUDA kernels that ex-
ploit GPUs to achieve approximation using different opti-
mizations. The runtime system includes a tuning phase
which selects the best optimization technique and a cali-
bration phase to help maintain quality. Although we tested
our methodology only for CPU systems, it can be easily ap-
plied for GPUs as we achieve approximation by reducing the
input graph. Shang et al. [27] proposed auto-approximation
of vertex-centric graph applications by automatically syn-
thesizing the approximate version of an application. They
combined different approximation techniques such as task
skipping, sampling, memorization, interpolation and system
function replacement for synthesizing the approximate ver-
sion. Carbin et al. [4] proposed a language to specify ap-
proximate program transformations. Our approach works
without modifying the original implementation. Moreover
input reductions, guided by impact on graph connectivity,
customize the skipped computations to input characteristics.



8. CONCLUSION
We proposed input reduction transformations and faster

iterative graph algorithms that run in two phases: first, us-
ing the reduced input graph, and second using the original
graph along with the results from first phase. We evaluated
our two-phased model using Galois; our experiments with
multiple algorithms and large graphs show that our tech-
nique reduces execution time by 1.25× to 2.14×.
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